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Abstract 

Screening complex biological specimens such as exhaled air, tissue, blood and urine to identify 
biomarkers in different forms of cancer has become increasingly popular over the last decade, 
mainly due to new instruments and improved bioinformatics. However, despite some pro-
gress, the identification of biomarkers has shown to be a difficult task with few new bi-
omarkers (excluding recent genetic markers) being considered for introduction to clinical 
analysis. This review describes recent advances in gas chromatographic methods for the 
identification of biomarkers in the detection, diagnosis and treatment of cancer. It presents a 
general overview of cancer metabolism, the current biomarkers used for cancer diagnosis and 
treatment, a background to metabolic changes in tumors, an overview of current GC 
methods, and collectively presents the scope and outlook of GC methods in oncology. 

Key words: cancer, biomarkers, gas chromatography, mass spectrometry, metabolomics, exhaled 
air, blood, tissue, urine, extracellular fluid.  

Overview of cancer metabolism 

Cancer is a disease of DNA deregulation where 
endogenous as well as exogenous factors are linked to 
its development (1). Different forms of cancer (mainly 
lung-, prostate-, colon- and breast cancer), are now 
responsible for a quarter of all deaths among males 
and females in the United States (2). The transfor-
mation of normal cells to malignant cells is associated 
with important metabolic disturbances, in which the 
starting points and paths that a cell can take in be-
coming malignant are extremely variable. The result-
ing changes in cellular function are known as the 
‘hallmarks of cancer’ (3) and may be described as: 
self-sufficient growth signals, insensitive anti-growth 
signals, evading apoptosis (process of programmed 
cell death), unlimited replication and sustained angi-
ogenesis (growth of new blood vessels from 

pre-existing ones), tissue invasion and metastasis 
(spread of cancer), unstable genome, infection and 
inflammation and cancer metabolic phenotype. 

The last two hallmarks - infection and inflam-
mation (4) and cancer metabolic phenotype (5) - have 
recently been added to the list of the hallmarks of 
cancer (3). Specifically, the ‘cancer metabolic pheno-
type’ considers that mutations present are predomi-
nantly clustered in a few pathways across different 
cancers, therefore the ultimate effects on metabolism 
are similar (6). It is uniquely explained due to: high 
glucose uptake, increase in glycolytic activity, de-
crease in mitochondrial activity for the production of 
energy, low bioenergetic expenditure, increase in 
phospholipid turnover and change in the lipid profile, 
increase in amino acid, protein transport and DNA 
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synthesis, increase in hypoxia (deprivation of neces-
sary oxygen supply) and an increase in the tolerance 
of reactive oxygen species (ROS). 

The above effects may be characterized by spe-
cific chemical signal(s) that evidence the onset or pro-
liferation of the cancer, and so analytical chemistry 
methods should be able to monitor these chemical 
changes. 

Technologies for metabolic profiling in 
oncology  

The detection of cancer, when localized and 
early treatment applied, usually ends in better clinical 
outcomes (7). Many different methods are currently 
available for tumor identification, including: positron 
emission tomography (PET), magnetic resonance im-
aging (MRI), computerized tomography (CT), ultra-
sonography and endoscopy (8-10), which are collec-
tively physical ‘visualization/detection’ methods for 
the presence of cancer. They do not focus on the dis-
crete metabolic products of the cancer.  

Chemical analytical methods offer an alternative 
approach to identification of the presence of a can-
cerous condition by analyzing diagnostic biomarkers, 
and this should constitute either a valuable confirm-
atory tool or a method of first choice if the link be-
tween cancer and its chemical characteristics or sig-
nature can be proven. These methods may be used for 
the detection of different biomarkers beside diagnos-
tic markers. Prognostic biomarkers harbouring in-
formation on outcome regardless of treatment as well 
as predictive biomarkers containing information on 
outcome for a specific treatment may be found. In 
addition, the methods offer the possibility of easily 
repeated assessments, which allows them to be used 
for monitoring treatment effect. 

Other technologies (in addition to the above) 
which have become increasingly available and are 

being applied by medical researchers recently for 
early detection and diagnosis of cancer, including: 
magnetic resonance spectroscopy (MRS), nuclear 
magnetic resonance (NMR) (mostly 1H NMR), Fouri-
er-transform ion cyclotron resonance mass spectrom-
etry (FT-MS) and other (MS) methods, which may 
often be in combination with separation methods 
(liquid chromatography (LC)-MS and gas chroma-
tography (GC)-MS) (11). Whilst NMR may be a pop-
ular choice of technique employed in cancer studies ex 
vivo (11), each technique has its own advantages and 
disadvantages (12). NMR may be less sensitive, less 
readily automated and a more expensive approach, 
but it is also nonselective for metabolite detection and 
can simultaneously quantify multiple metabolites 
(13). Table 1 illustrates PET approaches, compared to 
NMR approaches, used for analysis of different bio-
chemical processes linked to various cancers (6). MRS 
can be used as a complement to MRI, and allows for 
the detection of specific metabolites in vivo (14). The 
main advantage associated with MRS is its ability to 
detect and quantify certain tissue-specific metabolites 
(including N-acetyl-asparate, creatine/ 
phosphocreatine, choline compounds, myo-inositol, 
glutamine-glutamate-GABA complex, lactate and 
certain free lipids). Disadvantages of MRS include its 
low sensitivity and spectral resolution. 

In comparison, MS is very sensitive for specific 
molecules, and it is selective and readily automated, 
with lower costs (15). MS is therefore emerging as a 
promising technique in clinical diagnosis (12). In the 
last decade, GC-MS in cancer detection has gained 
attention e.g. through the work of Phillips and 
co-workers, who developed a ‘breathanalyzer’ for 
automated breath analysis and detection of volatile 
organic compounds (VOC) from different types of 
cancer (16-24). 

 

Table 1. PET tracers and NMR observed metabolites used for the diagnosis of various cancers (reproduced from (6)) 

Biochemical Process PET Tracer NMR Observed Metabolites 

Energy metabolism: Glycolysis; incom-
plete TCA 

[19F]fluorodehydrogenase citrate, glucose, acetate, glutamine, creatine, lac-
tate, pyruvate, succinate 

Membrane and lipid synthesis [11C]choline 
[18F]fluorocholine 
[18F]fluoroacetate 

choline containing metabolites, glycerol, lipids, 
triglycerides, creatine 

DNA synthesis [11C]thymidine 
[18F]fluorothymidine 

 

Amino acid transport and protein syn-
thesis 

3,4-dihydroxy-6-[18F]fluoro-l-phenylalanine 
[11C]-L-methionine 
[18F]-1-m tyrosine 

Alanine, phenylalanine, threonine, tryptophan, 
valine, glycine, asparagines, aspartate, leucine, 
glutamate, glutamine, tyrosine, histidine 

Hypoxia [18F]fluoromisonidazole  
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The profiling of metabolites (such as VOCs in 
breath analysis described above) has led to the coin-
age of the terms ‘global metabolomics’ or ‘metabo-
lomics’ (which is concerned with the analysis of as 
many metabolites as possible) and ‘targeted metabo-
lomics’ or metabolic profiling (which concentrates on 
specific individual, or groups of, metabolites). The 
term ‘metabolomics’ was first defined in 2002 as the 
unbiased quantification of all or a large number of 
metabolites of low molecular weight in a biological 
sample (25). This approach is particularly helpful in 
identifying metabolic network changes in pathologies, 
as measurements can be made in vivo, ex vivo and in 
vitro, in body fluids (blood, urine, liquor cerebrospi-
nalis etc.) as well as in tissue samples and cell lines.  

The challenge for any chemical instrumental 
method lies in its specificity towards the chemical 
measurement at hand, and the ability to quantify the 
chemical amounts and/or their changes over and 
above background matrix or natural levels. For po-
tential cancer markers, this should also be at a bio-
logically-relevant concentration. Additionally, a better 
understanding of cancer cell molecular routes should 
also offer the way to effectively classify patients in 
various differentially responding classes. 

Biomarkers for cancer diagnosis  

The separation of specific biomarkers from the 
many other genes, proteins or metabolites present in 
biological samples, allows their unique measurement, 
assessment and evaluation as an indicator of normal 
biological or pathologic processes (or pharmacologic 
responses to therapeutic interventions). These genes, 
proteins or metabolites, if identified and correlated 
with the presence of a specific cancer, can be referred 
to as ‘biomarkers’ (‘cancer biomarkers’ or ‘on-
co-markers’). A biomarker has been defined as ‘‘a 
characteristic that is objectively measured and evalu-
ated as an indicator of normal biological processes, 
pathogenic processes, or pharmacologic/ 
pharmacodynamic responses to a therapeutic inter-
vention’’ (26). They can be divided into the following 
three types: 1) diagnostic markers (such as tumour 
markers), 2) prognostic markers and 3) predictive 
markers. More attention should be given when de-
termining whether a certain biomarker is a prognostic 
or predictive marker (even though many markers 
harbour both predictive and prognostic information). 
Currently, no biomarker is available which obtains 
100% sensitivity (persons having disease) and 100% 
specificity (persons without disease) (27). Prostate 
specific antigen (PSA), which is currently the most 

effective serum (protein) biomarker for prostate can-
cer, has high sensitivity (more than 90%), but low 
specificity (~ 25%), which leads to many unnecessary 
biopsies (as the cancer is not detectable) (28). Cur-
rently, there are a few commonly used biological 
markers in oncology, and some biomarkers have been 
identified, including: epidermal growth factor recep-
tor (EGFRmut) (29), V-Ki-ras2 kirsten rat sarcoma 
viral oncogene homolog (KRAS) (30), echinoderm 

microtubule-associated protein-like 4/ anaplastic 

lymphoma kinase (EML4/ALK) (31) and ser-
ine/threonine-protein kinase B-Raf (BRAF) (32). Re-
grettably, over the past two decades fewer than 12 
biomarkers have been approved by the US Food and 
Drug Administration (FDA) for cancer detection, in-
cluding only five ‘major’ biomarkers, namely: carci-
noembryonic antigen (CEA) for gastrointestinal ma-
lignancies, prostate-specific antigen (PSA) for prostate 

cancer, cancer antigen 125 (CA125) for ovarian cancer, 

cancer antigen 19-9 (CA19-9) for pancreatic cancer, 
and carcinoma antigen 15-3 (CA 15-3) for breast can-
cer. Cancer, being a heterogeneous disease (compris-
ing different biological phenotypes), results in com-
plications for the development of biomarkers, because 
a marker which is initially used for one cell type 
might not be compatible with several different cell 
types. If two markers therefore originate from the 
same pathways, factors which contribute to their in-
crease or decrease in cancerous cells will also (most 
likely) be the same. The challenge then remains to 
identify onco-markers that have very few, or no me-
tabolites, in common across all cancers. The National 
Cancer Institute’s Early Detection Research Network 
(NCI-EDRN) has developed a five-stage process to-
wards discovery and evaluation of onco-markers (33) 
(Figure 1). Recent commentary by Diamandis also 
addresses some of the important current issues (34). 
For instance, Diamandis observes that many initially 
promising biomarkers have not been validated for 
clinical use in cancer biomarker development, and 
thus there is a need for rigorous validation and con-
firmation of the causal link to the cancer (34). Design 
of experiment (DOE) in cancer biomarker validation 
research must include the use of high quality tumor 
samples from patients enrolled in controlled clinical 
studies, as well as sufficient sample number in order 
to assess the specificity, sensitivity and predictive 
values (positive and negative) (35). In addition, the 
relationship between absence/presence or low-
er/higher levels of biomarkers and the survival times 
or response rates should also be scrutinized. 
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Figure 1. The five different phases of onco-marker development and validation as described by the NCI-EDRN (reproduced with 

permission from (33)) 

 

Metabolic changes in tumors 

In the early 1920s, Warburg first reported an al-
tered metabolism that is defined by increased levels of 
glucose and an elevated glycolytic rate, through the 
comparison of liver cancer cells to normal liver cells 
(36). This phenomenon which converts large amounts 
of glucose to lactate, even in the presence of oxygen, is 
known as the Warburg effect (aerobic glycolysis). In 
normal cells the presence of oxygen inhibits glycolysis 
as described by Pasteur (the Pasteur effect) (37). Gly-

colysis is the process by which glucose is metabolized 
to form two molecules of pyruvate with a gain of two 
ATP molecules from one glucose molecule. In ‘nor-
mal’ conditions, pyruvate converts to ace-
tyl-coenzyme A (acetyl-CoA), which provides the 
basis for the citric acid cycle (TCA cycle) and oxida-
tive phosphorylation, and this process nets about 38 
ATP molecules from the glucose molecule. Although 
tumor cells do not use glucose efficiently, they often 
convert pyruvate to lactate (Figure 2). Warburg hy-
pothesized that this inefficient use of energy in tumor 
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cells was a defect in mitochondrial respiration, and as 
shown in the last few decades, mutations present in 
mitochondrial DNA and alterations in mitochondrial 
enzyme activities have been described (38, 39). How-
ever, other recent reports have also shown that in 
certain metabolic circumstances, tumor cells are able 
to switch back to mitochondrial respiration, thus mi-
tochondrial respiration cannot be permanently defec-
tive in tumor cells (40). Tumor cells require energy 
and cell building blocks such as amino acids, nucleic 
acids and phospholipids, with cell proliferation only 
occurring when tumor metabolism is able to provide 
these ‘budget metabolic intermediates’, which has 
been defined as the ‘metabolic budget system’ (41).  

The regulation of the metabolic system is very 
complex, but can generally be attributed to certain 
‘key players’, such as pyruvate kinase type 2 (M2-PK), 
hypoxia inducible factor (HIF), serine/threonine pro-
tein kinase (Akt), tumor protein 53 (p53) and lactate 
dehydrogenase (LDH), which are discussed below 
(however, their influence on cell metabolism has yet 
to be deduced). Other less well-known influences in-
clude oncogenes such as phosphoinositide-3-kinase 
(PI3K) (ovarian and gastrointestinal cancer), human 
epidermal growth factor receptor 2 (Her2) (mammary 

carcinoma) and tumor suppressors including von 
Hippel-Lindau disease (VHL) (clear cell renal carci-
noma), tuberous sclerosis complex -1 and -2 (TSC -1 
and -2)and phosphatase and tensin homolog (PTEN) 
(prostate cancer) (42).  

Pyruvate kinase is known to play a major role in 
nutrient supply and general cell proliferation. Differ-
ing isozymes of pyruvate kinase are expressed in dif-
ferent tissues; PK type L (L-PK) is expressed in the 
liver, kidney and intestine; PK type M1 in the brain 
and muscle; and PK type M2 in differentiated tissue 
such as fat tissue, lung, pancreatic islets, retina, and in 
all normal cells (proliferating, adult stem and em-
bryonic) and more importantly in tumor cells (43). In 
normal proliferating cells M2-PK is found mainly in 
its tetrameric form, but tumor cells generally have 
large amounts of the dimeric form of M2-PK. The ratio 
of tetramer-to-dimer is maintained by energy pro-
duction molecules such as adenosine triphosphate 
(ATP), as well as other oncoproteins such as HPV-16 
E7 and pp60v-src (44). Several studies have also 
shown that M2-PK increases in the plasma of different 
types of tumors and in stool samples of patients with 
colorectal cancer (45). 

 

Figure 2. Degradation of glucose in differentiated tissues and tumor cells. PDH: pyruvate dehydrogenase, LDH: lactate dehydrogenase, 

CoA: co-enzyme A, NADH: nicotineamide adenine dinucleotide  
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Tumor hypoxia is also very important in the 
regulation of glycolytic metabolism, as no respiration 
is possible without the presence of oxygen. HIF acti-
vation plays a major role in angiogenesis and tu-
morgenesis as it targets the transcription of over 60 
genes, and by the loss of the von Hippel-Lindau tu-
mor suppressor. This normalizes HIF activity levels 
through the repression of c-Myc activity (c-Myc are 
cellular DNA-binding proteins encoded by the c-Myc 
genes, which are involved in nucleic acid metabolism 
and in mediating the cellular response to growth fac-
tors) or activation of receptor tyrosine kinase signal-
ing (46). Over-expression of HIF-1 has been linked 
with breast, cervical, endometrial stomach and ovar-
ian cancers (47). 

The serine/threonine kinase Akt regulates gly-
colysis by affecting many molecules involved in the 
glycolytic process while maintaining the survival of 
the cell. Akt induces aerobic glycolysis without af-
fecting respiration, through an activated mutant of 
Akt1 (Akt 1 – cell survival pathways, Akt2 – insulin 
signal pathway, Akt3 – expression mainly in the 
brain). Akt1 (namely Myr-Akt1) triggers the accumu-
lation of nicotinamide adenine dinucleotide (NADH) 
and lactate, and accelerates the consumption of glu-
cose (Figure 2) (48).  

Tumor protein 53 (Tp53) is generally known as 
the ‘protector’ of the genome, due to its role in cell 
cycle regulation, and is often mutated in tumors (49). 
The role of Tp53 in creating a metabolic checkpoint for 
cell cycle progression in not as well-known (50). In 
addition, the loss of Tp53 results in increased glycol-
ysis, through the loss of the protein SCO2 homolog 
(SCO2) expression, impairing respiration and leaving 
glycolysis as the main source of ATP production (49). 

Lactate dehydrogenase (LDH) mediates the 
conversion of pyruvate to lactate, which usually oc-
curs under circumstances where there is limited oxy-
gen. In tumor cells, lactate accumulates which is in-
dicative of a change in the balance between glycolysis 
and oxidative phosphorylation. The over-expression 
of LDH in tumor cells can be a vital part of the meta-
bolic changes which occur during tumorgenesis, as 
previous studies have shown that the expression of 
LDH can be induced directly by oncogenes (c-Myc) 
(51) or indirectly through the activation of HIF-1 (52). 

Since all the above processes involve exquisite 
changes to cell activity (and cells - by definition – are 
the progenitor of metabolites) then it is sensible to 
integrate the products of metabolites within cells for 
evidence of the overproduction or repression of spe-
cific metabolites to evaluate cancer activity. The as-
sessment of volatile and semi-volatile compounds for 

their role in cancer identification using GC is re-
viewed below. 

Overview of gas chromatographic methods 
in diagnosis, prognosis and monitoring 
treatment protocols of cancer  

In this section the important role that GC can 
play in metabolic profiling, and recent developments 
in technology through the analysis of differing sam-
ple-types, including blood, urine, tissues, cell lines, 
saliva, tears and exhaled air, will be highlighted. 
Primarily key studies that have been highly cited will 
be included in this review, as indications of the pri-
mary types of cancer they are relevant to.  

Exhaled air 

The analysis of breath has recently generated 
considerable interest as a promising non-invasive 
approach, allowing for the detection of oxidative 
stress biomarkers, and in the pathogenesis of different 
cancers and other types of diseases (53-55). Different 
classes of VOCs can be measured in exhaled breath, 
including substances derived from fatty acid lipid 
peroxidation of cell membranes (saturated hydrocar-
bons and oxygen-containing compounds). The first 
study of this type, was performed by Linus Pauling in 
1971, who detected about 250 VOCs in a sample of 
breath by gas-liquid partition chromatography (56).  

Phillips and co-workers, brilliantly developed 
novel methods for the detection of volatile organic 
compounds (VOC) in breath of patients suffering 
from different types of cancer (16-24, 57). A recent 
example of their work is the detection of lung cancer 
through the use of weighted digital analysis (WDA) of 
breath biomarkers, in which breath samples were 
collected from 404 patients (193 with untreated pri-
mary lung cancer and 211 controls with no lung can-
cer), and a number of biomarkers were employed in a 
multivariate model which was able to predict disease 
with 84.5% sensitivity and 81.0% specificity (17). This 
model used 30 breath VOCs (Table 2) (mainly al-
kanes, alkane derivatives and benzene derivatives), 
and was an improvement on the multilinear regres-
sion analysis of the same data which yielded sensitiv-
ity of 68.4% and specificity of 73.5%. This logic was 
based on the work of Schneider et al. who showed 
that a new marker tumor M2-PK improved sensitivity 
to the detection of progression of lung cancer (58). The 
authors also noted the importance of compromising 
between the additions of more variables (with the 
possibility of obtaining improved accuracy) the in-
clusion of variables with poorer correlations can de-
grade predictive accuracy.  
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Table 2. Major VOC identifiers of primary lung cancer in 

breath (reproduced from (17)) 

Metabo-
lite num-
ber 

Breath VOC 

1 Isopropyl alcohol 

2 4-penten-ol 

3 Ethane, 1,1,2-trichloro-1,2,2-trifluoro 

4 Propane, 2-methoxy-2-methyl 

5 1-propene, 1-(methylthio)-, (E)- 

6 2,3-hexanedione 

7 5,5-dimethyl-1,3-hexadiene 

8 3-hexanone, 2-methyl- 

9 1H-indene, 2,3-dihydro-4-methyl 

10 Camphor 

11 Bicyclo[2,2,1]heptan-2-one, 1,7,7-trimethyl-,(IS)- 

12 3-cyclohexane-1-methanol, 4-trimethyl- 

13 p-menth-1-en-8-ol 

14 5-isopropenyl-2-methyl-7-oxabicyclo[4,1,0]heptan-2-ol 

15 Isomethyl ionone 

16 2,2,7,7-tetramethyltricyclo[6,2,1,0(1,6)]undec-4-en-3-one 

17 2,2,4-trimethyl-1,3-pentanediol diisobutyrate 

18 Benzoic acid, 4-ethoxy-, ethyl ester 

19 Bicyclo[3,2,2]nonane-1,5-dicarboxylic acid, 5-ethyl ester 

20 Pentanoic acid, 2,2,4-trimethyl-3-carboxyisopropyl, 
isobutyl easter 

21 Propanoic acid, 2-methyl-, 
1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester 

22 1,2,4,5-tetroxane, 3,3,6,6-tetraphenyl- 

23 Benzophenone 

24 2,5-cyclohexadien-1-one, 
2,6-bis(1,1-dimethylethyl)-4-ethyllidene 

25 Furan, 
2-[(2-ethoxy-3,4-dimethyl-2-cyclohexen-1-ylidene)meth
yl]- 

26 Benzene, 1,1-(1,2-cyclobutanediyl)bis-, cis- 

27 Benzene, 1,1-[1-(ethylthio)propylidene]bis- 

28 Anthracene, 1,2,3,4-tetrahydro-9-propyl- 

29 9,10-anthracenediol, 2-ethyl- 

30 Benzene, 1,1-ethylidenebis[4-ethyl- 

* metabolites listed exactly as they appear in the original paper 

 
 
A recent study by Poli and co-workers dealt with 

the determination of aldehydes in breath of patients 
with lung cancer by on-fiber derivatization sol-
id-phase microextraction (SPME)-GC-MS (59). Lung 
cancer is the leading cause of cancer death in the 
world, and the 5-year survival rate is less than 20%. 
On-fiber SPME offers many advantages over ‘con-
ventional’ breath sampling methods, including sam-
ple extraction and concentration in one step and the 
stated improvement of aldehyde stability (59). The 
method was then applied to 40 patients with 

non-small cell lung cancer (NSCLC) and a 38 cohort 
‘normal’ control group who showed no symptoms, 
with 90% of NSCLC and 92.1% of controls being cor-
rectly identified. Discriminant (multivariate) analysis 
was performed to confirm initial univariate results, 
with a good discriminant capability (90%) being con-
firmed.  

Song and co-workers also performed quantita-
tive breath analysis of VOCs on lung cancer patients 
using GC-MS. They identified 1-butanol and 
3-hydroxy-2-butanone as possible markers, since 
these compounds were found at significantly higher 
concentrations in the breath of lung cancer patients 
(60). Exhaled breath was collected from 43 patients 
with NSCLC and 41 healthy controls, with the num-
ber of compounds detected in samples ranging from 
68 to 114. The quantitative values of the VOCs de-
tected were evaluated typically by receiver operating 
characteristic (ROC) curve. Points on the ROC curve 
represent a sensitivity/specificity pair corresponding 
to a particular decision threshold, with the area under 
the ROC curve being a measure of how well a pa-
rameter can distinguish between diseased vs. normal 
states (61). Tests which predict disease with area un-
der curve (AUC) > 0.9 are usually considered accu-
rate, with the AUC for 1-butanol and 
3-hydroxy-2-butanone being 0.940 and 0.964 respec-
tively (60).  

Another recent study by Kischkel et al. high-
lighted the need for potential breath onco-markers to 
undergo more rigorous standardized methods of 
sampling, analysis and data processing, and to also 
take into account the effects of environmental con-
taminants (62). Endogenous and exogenous breath 
biomarkers were determined in exhaled breath of 31 
lung cancer patients, 31 smokers and 31 controls by 
SPME-GC-MS. Compounds such as 
2,5-dimethylfuran, toluene and o-xylene were de-
tected in smokers but not in non-smokers or 
ex-smokers (62). The results obtained showed that 
concentrations of VOCs may depend on a range of 
parameters, including environmental conditions or 
patient medical history, and that all statistical algo-
rithms will fail if these variables are not taken into 
account.  

The automated needle trap heart-cut GC-MS and 
needle trap GCxGC-ToFMS methods reported for 
breath gas analysis in the clinical environment was 
another significant study, and needle trap devices 
(NTD) were shown to be a promising alternative to 
SPME (63). The main advantages found were sensi-
tivity, stability of sorbed substance, speed, small 
sample volumes, and potential on-site applicability. 
The sample study included 11 patients undergoing 
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cardiac surgery, in which propofol, 
1,2-dichloroethane and 2,2,4,6,6-pentamethylheptane 
were shown to be at higher concentrations, however 
1,2-dichloroethane and 2-propanol could be due to 
environmental contaminants.  

VOCs secreted to the headspace from cancer 
tissues and bacterial cultures were analyzed by 
SPME-GC-MS by Buszewski and co-workers, who 
found that 18 compounds were identified in cancer-
ous stomach tissue, with 7 of them present in both 
cancerous and normal tissue (55). A similar approach 
was used by the same group (64) to monitor expired 
air arising from the presence of Helicobacter pylori in 
the stomach. Previous attempts have been made to 
identify compounds secreted from cancer tissue by 
Ligor et al. (65). The acetone ratio (AR) (ratio between 
acetone peak area and peak area of other compounds) 
was calculated for ethanol, butane, carbon disulfide, 
1-propanol, 2-butanone and 2-pentanone, in order to 
characterize the physiological meaning and the di-
agnostic potential of the compounds. Acetone has 
previously been identified as an important biomarker 
in diabetes and ketoacidosis (66). Concentrations of 
aliphatic hydrocarbons ranged between 4.5-136.0 ppb 
and 3.0-97.3 ppb for oxygen-containing molecules. 
The method proposed might be used as a rapid 
screening method for the detection of early carcino-
genic processes in the stomach. 

Tissue 

Careful sample preparation is needed for the 
analysis of tissue, as tumor tissue can also be con-
taminated by cells on the periphery of the tissue and 
stroma. Sample microdissection or fine needle aspi-
rate is able to limit the contamination; however this 
requires expert sample collection and more expensive 
resources. Important work in the identification of 
biomarkers in cancer from tissue by GC is discussed 
below. 

Wu and co-workers identified possible tissue 
onco-markers for oesophageal cancer by the use of 
GC-MS (67). Biopsied specimens of matched tumor 
and normal mucosae were obtained from each of 20 
patients with oesophageal cancer, comprising 18 with 
esophageal squamous cell carcinoma (ESCC) and 2 
with adenocarcinoma. A two-sample t-test was fol-
lowed by a diagnostic model (principal components 
analysis (PCA) and ROC curves) and was used to 
discriminate normal from cancerous samples, and to 
detect 84 metabolites with identification of 20 poten-
tial onco-markers. The 20 possible biomarkers were 
found to be different, with a statistical significance of 
P<0.05, and tumors could be differentiated from 
normal mucosae with an AUC value of 1 (67). Possible 

biomarkers included the chemical classes amino acids 
(L-valine, isoleucine, serine), carbohydrates (L-altrose, 
D-galactofuranoside, arabinose), nucleosides (purine, 
pyrimidine), fatty acids (tetradecanoic acid), inorganic 
acids (phosphoric acid) and others. 

Metabolite profiling of human colon carcinoma 
by using GC-ToFMS was reported by Denkert and 
co-workers, who detected a total of 206 metabolites by 
performing a liquid-liquid extraction procedure (68). 
Of this number, 107 could be identified, with 84 being 
registered in the Kyoto encyclopedia of genes and 
genomes (KEGG) database and 71 being main reac-
tion partners in at least one of the reactions annotated 
in KEGG reaction (69).The identified metabolites were 
believed to be related to abnormalities in biochemical 
pathways, according to a new method that calculates 
the distance of each pair of metabolites in the KEGG 
database interaction lattice. Paired samples of normal 
colon tissue and colorectal cancer tissue were differ-
entiated at a bonferroni corrected significance level of 
p = 0.00170 and p = 0.00005 in unsupervised PCA 
analysis (for the first two components). Supervised 
analysis was performed thereafter, and found 82 me-
tabolites to be significantly different at values of 
p<0.01.  

Chen et al. identified metabolomic markers of 
gastric cancer metastasis using 100 mg tissue sample 
with GC-MS (70). Gastric tumors of both metastatic 
and non-metastatic origin were studied. PCA analysis 
and the AUC of ROC curves (AUC value of 1) were 
used to confirm the differentiation performance, with 
29 different metabolites being differentially expressed 
(20 were up-regulated and 9 down-regulated in the 
metastasis group compared to the non-metastasis 
group). These metabolites were involved in many 
biochemical pathways, including glycolysis (lactic 
acid, alanine), serine metabolism (serine, phos-
phoserine), proline metabolism (proline), glutamic 
acid metabolism, tricarboxylic acid cycle (succinate, 
malic acid), nucleotide metabolism (pyrimidine), fatty 
acid metabolism (docosanoic acid, octadecanoic acid) 
and methylation (glycine), with serine and proline 
metabolisms being highlighted during the progres-
sion of metastasis.  

Reichenbach and co-workers recently developed 
an important approach which avoids the problem of 
comprehensive peak matching, through the use of 
some reliable peaks for alignment and peak-based 
retention-plane windows to define important features 
which can then be appropriately matched for 
cross-sample analysis (71). A cohort of 18 samples 
from breast-cancer tumors (from different individu-
als) was analysed by GCxGC-HRMS. The features 
defined allowed classification that was useful in dis-
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criminating between samples of different grades (as 
labelled by a cancer pathologist) and can provide in-
formation to identify potential biomarkers. In addi-
tion, the approach described could benefit by using 
soft ionization with GCxGC, which would provide 
more direct characterization of the molecular compo-
sition. 

Mal et al. used GCxGC-ToFMS to perform tis-
sue-based global metabolic profiling of 63 samples 
from both normal and colorectal cancer (CRC) (72). 
PCA was performed on all samples, and showed that 
the QC samples clustered in greater proximity when 
compared to the control and cancer groups. The 
OPLS-DA (orthogonal partial least-squares discrimi-
nate analysis) model was also used, which concluded 
to 44 marker metabolites being selected using two 
latent variables (R2Y 0.979, Q2 (cum) 0.932) and a cor-
responding ROC curve value of AUC 1.000. The 44 
significantly altered metabolites were involved in 
carbohydrate, lipid, amino acid and nucleotide me-
tabolism and were linked to their respective bio-
chemical pathways and biological relevance in CRC 
(colorectal cancer). 

Buckendahl and co-workers investigated AMPK 
expression in 70 ovarian carcinomas, 14 ‘borderline’ 
tumors and 5 normal ovaries by brilliantly linking 
protein expression data to GC-ToFMS metabolomic 
data (73). Overall, a higher expression was observed 
in ovarian carcinomas, compared to borderline tu-
mours and normal ovaries. In addition, a decrease in 
AMPK expression correlated significantly with higher 
tumour grade and was of adverse prognosis in sub-
jects with late tumour stages. A higher concentration 
of glucose was seen in AMPK-negative carcinomas, as 
well as overexpression of other metabolites involved 
in carbohydrate metabolism. The results of this study 
show a role of AMPK in the progression of ovarian 
tumours, and a prognostic impact of AMPK expres-
sion for overall patient survival.  

Recently, Lv et al. analysed fatty acid profiles 
determined by GC-MS and multivariate analysis for 
the identification of possible biomarkers (74). A total 
of 114 patients (40 breast cancer patients, 40 benign 
patients and 34 normal patients) were studied by us-
ing a specific extraction method which yielded free 
fatty acids profiles. Three saturated fatty acids (C14:0, 
C16:0 and C18:0) and three unsaturated fatty acids 
(C18:2, C18:3 and C20:5) in breast cancer were differ-
ent than the controls, with C16:0, C18:0, C18:2 and 
total fatty acid having the greatest potential to act as 
biomarkers of breast cancer. However, the results of 
this study should be validated in another study with a 
larger sample size, as tertiary ‘training sets’. 

An excellent example of the use of metabolic flux 

analysis (MFA) on human breast cancer cells was 
provided by Yang et al. who used 2D NMR and 
GC-MS after in vivo labelling with [U-13C] glucose 
(75). Using this method, each metabolite deriving 
from glucose catabolism was present as a variety of 
isotopomers, differing by percentage and position of 
13C atoms. They were able to view changes in fluxes 
through: [i] the pentose phosphate pathway (PPP) 
and amino acid biosynthesis in MCF10 cell lines, [ii] 
the TCA cycle and anaplerotic pathway in hypox-
ia-resistant MCF-7 mammary carcinoma cells and [iii] 
the fatty acid metabolism in MDA-MB-435 breast 
cancer cells (75) treated with Orlistat (an inhibitor of 
FAS) (76).  

Blood 

There are certain advantages in choosing bio-
fluid (blood, urine) for analyses, mainly the simpler 
sample preparation involved and the ease of sample 
acquisition (77). However, sample handling is critical 
as temperature, changes in pH, metabolite pK, and 
ionic content can all alter the metabolic profile ob-
tained. There are established pre-collection guidelines 
for diet, medication and exertion, sample extraction 
methods and post-collection regulation of tempera-
ture and handling. 

Li et al. developed a GC-MS approach for the 
analysis of volatiles including hexanal and heptanal in 
human blood using headspace single-drop microex-
traction (HS-SDME) with droplet derivatization (78). 
Hexanal and heptanal have been regarded as likely 
possible biomarkers for lung cancer detection, and 
have been found at elevated levels both in breath (21, 
79) and blood analysis (66). Aldehydes were head-
space extracted, concentrated and derivatized by us-
ing O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine 
hydrochloride (PFBHA) reagent with aldehyde ox-
imes formed and then analyzed by GC-MS. Optimal 
HS-SDME with droplet derivatization parameters 
included a sample temperature of 40 oC, an extraction 
time of 6 min, a stirring rate of 1100 rpm and a solvent 

volume of 2.0 L. Hexanal and heptanal concentra-
tions were found to be approximately 100 times 
higher than the concentration levels observed in the 
controls.  

Qiu and co-workers competently demonstrated 
the applicability of GC-ToFMS and UPLC/QToFMS 
for serum metabolite profiling of human colorectal 
cancer, in which 64 CRC patients and 65 healthy con-
trols were analyzed (80). OPLS-DA was used to 
clearly discriminate healthy controls from CRC pa-
tients. Overall, 33 different metabolites were identi-
fied using both analytical technologies (22 by 
GC-ToFMS and 16 by UPLC/QToFMS), with five 
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(pyruvate, lactate, tryptophan, tyrosine and uridine) 
being common to both platforms. The metabolites 
were linked to their biochemical pathways, affecting 
glycolysis, arginine and proline metabolism and fatty 
acid metabolism, which are associated with CRC 
morbidity. Table 3 shows the 22 different metabolites 
identified by GC-ToFMS, and Figure 3 presents the 
total ion chromatogram (TIC) from a CRC patient and 
a healthy control (A) with the corresponding 
OPLS-DA score plot (B).  

 

Table 3. Different metabolites obtained by OPLS-DA using 

GC/ToFMS (reproduced from (66)) 

Metabolite 
number 

Retention 
time 

Metabolite 

1 5.343 pyruvate 

2 5.497 lactate 

3 6.452 2-hydroxybutanoic acid 

4 6.956 3-hydroxybutanoic acid 

5 7.231 urea 

6 7.762 valine 

7 8.563 leucine 

8 8.948 proline 

9 10.110 threonine 

10 10.727 threonic acid 

11 11.442 malic acid 

12 11.928 4-hydroxyproline 

13 13.059 citrulline 

14 15.261 2-piperdinecarcarboxylic acid 

15 16.028 ornithine 

16 16.32 hippurate 

17 17.551 lysine 

18 17.807 tyrosine 

19 22.225 tryptophan 

20 22.495 oleic acid 

21 25.135 oleamide 

22 25.392 uridine 

 

Urine 

A recent study showed that well-trained dogs 
can detect the presence of cancer in a cancer patient’s 
urine samples based on urine odour (81). The causa-
tive link between odour and the dog’s response must 
clearly be due to small volatile molecules arising from 
the cancer. Using this knowledge, Pasikanti and 
co-workers undertook a noninvasive urinary 
metabonomic diagnosis of human bladder cancer 
(BC) using GC-ToFMS, by profiling the urinary me-
tabolites of 24 BC subjects and 51 healthy controls 
(82). The data obtained were analyzed by multivariate 
principal component analysis followed by OPLS-DA, 

in which PC patients were clearly differentiated from 
non-BC subjects (OPLS-DA, 4 latent variables, R2X = 
0.420, R2Y = 0.912 and Q2 = (cumulative) = 0.245, ROC 
AUC of 0.90) (Figure 4). Fifteen biomarkers were 
identified according to their ability to differentiate BC 
and non-BC subjects (Table 4). The OPLS-DA model 
showed 100% specificity and sensitivity in distin-
guishing BC from non-BC regardless of stage and 
grade, and when applied to an independent set of 
samples, 92% sensitivity and 80% specificity were 
obtained.  

 

Table 4. Biomarkers differentiating bladder cancer (BC) 

from non-BC subjects by OPLS-DA using GC/ToFMS (re-

produced from (81)) 

Metabolite 
number 

Metabolite identity Ratio of change in concen-
tration (BC compared to 
non-BC) 

1 senecioic acid 0.39 

2 2-butenedioic acid 0.37 

3 ribonic acid 0.54 

4 2,5-furandicarboxylic acid 0.28 

5 melibiose 1.70 

6 sumiki’s acid 0.22 

7 uridine 1.81 

8 2-propenoic acid 0.79 

9 glycerol 0.75 

10 gluconic acid 0.65 

11 valerate 0.72 

12 fructose 0.67 

13 L-valine 1.52 

14 citric acid 0.77 

15 ribitol 0.74 

 

 
Woo et al. used metabolomic approaches for 

biomarker identification across three cancers specific 
to women’s health for metabolites expressed in urine 
(15). This included 10 breast, 9 ovarian and 12 cervical 
cancer patients and 22 healthy controls, with analysis 
of completed by using a combination of GC-MS and 
LC-MS technologies. Two previously known bi-
omarkers (5-hydroxymethyl-2-deoxyurdine and 
8-hydroxy-2-deoxyguanosine) in breast cancer were 
confirmed, and an additional three potential markers 
for ovarian cancer (1-methyladenosine, 
3-methyluridine and 4-androstene-3,17-dione) were 
significantly increased in the sample. Among the 
three potential biomarkers however, 
1-methyladenosine and 3-methyluridine were not 
specific to ovarian cancer.  

Kind and co-workers reported a comprehensive 
urinary metabolomic approach in the identification of 
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kidney cancer (renal cell carcinoma (RCC)) by hy-
drophilic interaction chromatography 
(HILIC-LC-MS), UPLC-MS and GC-ToFMS (83). A 
very large part of the urine metabolome was covered 
by using the three techniques mentioned, with more 
than 2000 “mass spectral features” detected in the 
urine. ANOVA and PLS approaches were used to 
discriminate between RCC patients and healthy con-
trols, regardless of the smaller sample cohort (6 RCC 
and 6 controls), with the important features being 
reduced to less than 30 metabolites in each data set. 
The analyses by GC-ToFMS using two different 
alignment procedures (optimized MZmine and 
XCMS) yielded a total number of identified compo-
nents of 326 by MZmine (28 significant p<0.05) and 
417 by XCMS (29 significant p<0.05). 

Recently, the metabolic profiling of human urine 
was applied in hepatocellular carcinoma (HCC) pa-
tients using GC-MS (67). A total of 20 male HCC pa-
tients and 20 healthy male subjects were used in the 
study, and 103 metabolites were detected with 66 be-
ing identified as known metabolites. A two-sample 
t-test was performed with p<0.05, and 18 metabolites 
were shown to be significantly different between the 
HCC and ‘normal’ male patients. Key metabolites 
identified which are known to contribute to the pro-
cess of urine metabolism associated with HCC include 
glycine (higher levels in HCC), hypoxanthine, primi-
dine, xylitol, glucose and glycogen (all lower levels in 
HCC). PCA and ROC curves yielded a separation 
between the two groups with an AUC value of 0.9275.

 
 

 

Figure 3. GC-ToFMS analysis of colorectal cancer (CRC) patient and healthy control: (A) TIC of CRC patient (top) and healthy control 

(bottom) and (B) OPLS-DA scores plot differentiating CRC patients and healthy controls (reproduced with permission from (80)) 
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Figure 4. GC-ToFMS analysis of bladder cancer (BC) patient and healthy control (H): (A) TIC of BC patient (top) and healthy control 

(bottom), (B) OPLS-DA scores plot differentiating BC patients and healthy controls, (C) validation plot from 100 permutation tests and 

(D) receiver operating characteristic (ROC) calculated from validated Y-predicted values of PLS-DA model (reproduced with permission 

from (82)) 

 

Extracellular fluid 

The extracellular compartment (EC) contains low 
molecular metabolites as well as proteins and pep-
tides in the extracellular fluid (ECF). Chemical ana-
lytical methods may be used to detect specific bi-
omarkers as well as metabolomic or proteomic pro-
files harbouring prognostic or predictive information. 
The ECF may be assessed using microdialysis, a 
method developed for the assessment of ECF in var-
ious compartments. In microdialysis, a catheter with a 
semi-permeable membrane at the tip is inserted into 

the tissue of interest and the catheter is perfused with 
dialysis fluid. Due to the equilibration of metabolites 
of the membrane the dialysis fluid may be collected 
and analysed. The method thereby provides a way to 
analyse metabolites in the ECF - not only in absolute 
values - but to also follow temporal changes such as 
changes of metabolites. The methods have gained 
clinical interest in the monitoring of brain-injuries in 
the intensive care unit setting (84, 85). The dialysate 
may be analysed with various methods including 
basic photometric methods as well as MS or NMR. In 
the neuro-oncological setting, the method has been 
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developed to monitor metabolic changes in the ECF 
on ambulatory glioma patients (86). In this study, 
lower glucose levels were detected intratumourally 
compared to in the brain adjacent to tumour (BAT) 
region. The microdialysis method may also be utilised 
for pharmacokinetic studies to monitor drug uptake 
and changes in the metabolic profile during treat-
ment. In a study of boron-phenylalanin distribution 
during boron neutron capture therapy (BNCT) 
changes in glycerol levels were detected indicating an 
acute cytotoxic effect of BNCT on glioma cells (87). 
Microdialysis may be used to monitor temporal 
changes of metabolic profiles during treatments such 
as radiotherapy and may also be utilized to deliver 
cytotoxic compounds and monitor metabolic treat-
ment effect concomitantly (88). The development of 
modern metabolomics methods and multivariate sta-
tistics offers a new way to analyse changes in micro-
dialysis samples. Distinct metabolic profiles were de-
tected in brain tumour tissue using GC-ToFMS, as 
compared to the BAT region and interestingly the 
metabolite patterns changed during radiotherapy 
treatment of ambulatory glioma patients (89). 

The scope and outlook – the future of gas 
chromatographic methods in oncology  

The use of GC methods for the detection, diag-
nosis, and to monitor treatment of cancer have over 
the past decade become more common through the 
use of a variety of sample matrices, as described 
above (mainly exhaled air, tissue, blood and urine but 
also extracellular fluid). Future studies can also con-
centrate on different types of bodily fluids such as 
ascitic fluid in ovarian cancer, secretions in pancreatic 
cancer, or pleural fluid in lung cancer. Thus far, two 
multidimensional (MD) analytical tools have been 
predominantly used in cancer studies i.e. GC-MS in-
cluding GC-ToFMS. Continuing advances in HRGC 
(high-resolution GC) with MS developments now 
allow a range of newer techniques such as GC-MS-MS 
(GC-Tandem MS), MDGC-MS (multi-dimensional GC 

with MS) and GCGC-ToFMS (comprehensive 
two-dimensional GC-ToFMS) to be used to monitor 
changes in metabolite screening of complex biochem-
ical processes that occur in the presence of cancerous 
cells. The use of these MDGC separation techniques, 
which are based on improvements in the separation 
domain (coupled GC column methods) should logi-
cally allow for the detection and identification of more 
metabolites, due to the improved separation offered 
by the coupled column technology, as discussed by 
Mitrevski et al. (90) and Almstetter et al. (91). This 
should therefore contribute to discovery of new can-
cer bio-markers. It is apparent that these 

three-dimensional instrumental methods have not 
been widely applied to cancer bio-marker studies, but 
are increasingly used for plant metabolite studies, and 
for an increasing array of similarly complex samples.  

Kouremenos and co-workers recently presented 
a newly developed GC microwave derivatization 
method for the analysis of compounds of relevance to 
metabolite profiling, with GC-MS and 
GCxGC-ToFMS techniques used to monitor the deri-
vatized products (92). This was subsequently applied 
to the screening of in-born errors of metabolism 
(IEMs) in infant urine (93). The method significantly 
decreased the time taken for derivatization, was more 
sensitive, and produced fewer side reactions (a more 
complete derivatization reaction) when compared to 
conventional derivatization techniques. Based on 
GCxGC-ToFMS data, a potentially new short-chain 
acid bio-marker for the IEM screen was reported. By 
extension, this rapid derivatization method could also 
be applied to the analysis of cancerous urine, blood 
and tissue samples, with GCxGC an obvious instru-
mental finish for these studies.  

By the use of such technology, an improved 
ability to diagnose cancer earlier in the progression of 
the disease may become possible. By finding new 
biomarkers chemical analytical methods may con-
tribute to clinical decision-making by providing new 
prognostic- as well as predictive information. This 
however, depends on several factors, such as the cre-
ation of spectral databases of metabolites, correlating 
identities with biochemical pathways and 
cross-validation of MS-identified metabolites with 
other quantitative assays. It is reported that 60-90% of 
the total metabolites which are detected in a biological 
matrix are unidentifiable, even with the use of 
fast-scanning mass spectrometers such as ToFMS with 
deconvolution (94). The challenge remains to develop 
approaches which allow the rapid identification of 
‘general unknowns’ are needed - currently this low 
rate of compound identification is attributed to the 
lack of absolute structural information offered by 
mass spectrometers (i.e. isomers cannot be fully 
characterized; MS spectral matching is imprecise). 
GC×GC may assist in this through the 3-dimensional 
correlation of 1tR, 2tR and MS data, along the lines of 
present retention index/MS spectral matching in 
1DGC-MS.  

The studies outlined in this review demonstrate 
that the sufficiently robust and non-invasive meta-
bolic profiling approaches described can be promising 
screening tools in the early diagnosis of cancer (com-
plementary to existing clinical procedures). A better 
understanding of molecular routes correlated with 
metabolism in cancer cells should offer the effective 
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classification of patients in various differentially re-
sponding classes, and provide personalized effective 
drug treatments. 
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