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Abstract 

Non-small cell lung cancer (NSCLC) is one of the most common types of aggressive cancer. The 
tumor tissue, which shows an active angiogenesis, is composed of neoplastic and stromal cells, and 
an abundant inflammatory infiltrate. Angiogenesis is important to support tumor growth, while 
infiltrating cells contribute to the tumor microenvironment through the secretion of growth 
factors, cytokines and chemokines, important molecules in the progression of the disease. 
Chemokines are important in development, activation of the immune response, and physiological 
angiogenesis. Chemokines have emerged as important regulators in the pathophysiology of cancer. 
These molecules are involved in the angiogenesis/angiostasis balance and in the recruitment of 
tumor infiltrating hematopoietic cells. In addition, chemokines promote tumor cell survival, as well 
as the directing and establishment of tumor cells to metastasis sites. The findings summarized here 
emphasize the central role of chemokines as modulators of tumor angiogenesis and their potential 
role as therapeutic targets in the inflammatory process of NSCLC angiogenesis. 

Key words: Chemokines, cytokines, angiogenesis, inflammation, non-small cell lung cancer. 

1. Introduction 
Lung cancer is the main cancer-related cause of 

death worldwide in both men and women [1]. It is 
classified into two types according to the size of the 
transformed cells: small-cell lung cancer (SCLC) and 
non-small cell lung cancer (NSCLC). The latter is the 
most common type, accounting for 85 to 90% of di-
agnosed cases, and although NSCLC spreads more 
slowly than SCLC, both have a poor prognosis [2]. 

 NSCLC is a cancer of epithelial origin that 
groups together various histological subtypes that 
differ in their cytology, embryonic origin, anatomical 
location, and associated oncogenes [3]. The most 
common subtypes of NSCLC are adenocarcinoma 
(40% of all forms of lung cancer), squamous-cell car-
cinoma (25-to 30%) and large-cell carcinoma (10 to 

15%) [2]. 
 In NSCLC, the tumor stroma is characterized by 

active angiogenesis and abundant inflammatory in-
filtrate, which is mainly composed of tu-
mor-associated macrophages (TAM). It is also char-
acterized by the presence of tumor-infiltrating lym-
phocytes (TIL), including T, B and NK cells, and tu-
mor-associated neutrophils (TAN) [4, 5]. The differ-
ences in the inflammatory infiltrate are attributable to 
the local production of chemokines, which are also 
important regulators of the angiogenesis that accom-
panies tumor growth [6]. 

2. Chemokines 
Chemokines are a family of soluble proteins that 
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direct the migration of leukocytes under physiological 
conditions and during inflammation [7]. They are 
important in embryonic development, activation of 
the immune response, and in driving both physiolog-
ical and pathological angiogenesis. Chemokines exert 
their biological effects on leukocytes through the ac-
tivation of seven transmembrane domain receptors 
coupled to heterotrimeric G proteins [8]. The activa-
tion of the classical chemokine receptors initiates 
protein phosphorylation events, including PI3K, and 
the generation of second messengers such as IP3 and 
DAG, along with increased intracellular calcium 
concentration ([Ca2+]i) and activation of transcription 
factors such as NF-κB, which regulates the expression 
of various inflammatory response-related genes 
[8-10]. About fifty chemokines and twenty chemokine 
receptors are currently known [11]. Some chemokines 
can bind with high affinity to more than one receptor, 
and some receptors can be activated by more than one 
chemokine [12] (Table 1). The biological significance 
of this promiscuity of ligands and receptors may be 
related to the diversity of functions of these proteins 
[13]. Furthermore, some chemokine receptors have 
been described that, after binding to ligands, do not 
contribute to cell migration or to cell functions related 
to cell activation; these receptors are called atypical 
receptors, and are negative regulators of the activity 
of chemokines [14, 15]. Atypical chemoattractant re-
ceptors (Table 1), such as ACKR1 (DARC), ACKR2 
(D6), ACKR3 (CXCR7) and ACKR4 (CCRL1), limit the 
amount of available ligands in the microenvironment 
due to their ability to internalize and degrade them; 
for this reason they are also known as "decoy recep-
tors" [14, 15]. Chemokines are currently classified ac-
cording to a systematic nomenclature based on the 
position of the cysteines located nearest to the 
N-terminal end of the protein. These are usually two 
cysteines that are together, or separated by 1 or 3 
amino acid residues (X). Four types of arrangements 
of cysteines have been described so far, according to 
which chemokines are divided into four sub-families: 

CC, CXC, CX3C and XC [16]. The CXC subfamily is 
divided into two groups, CXC (ELR+) and CXC 
(ELR-), according to the presence or absence of the 
amino acid motif consisting of glutamic acid, leucine 
and arginine (ELR motif)[7, 16]. 

 Chemokines and their receptors are expressed in 
immune system cells, endothelial and epithelial cells, 
fibroblasts and keratinocytes, among others [17]. 
Some chemokines and their receptors have a consti-
tutive expression, while others are affected by chang-
es in the cellular microenvironment and therefore are 
categorized as inducible [18]. For example, stimula-
tion with tumor necrosis factor (TNF-α) increases the 
expression of the chemokine CCL5 and its receptor 
CCR5 in the central nervous system [15], whilst in-
terferon gamma (INF-γ) is a potent inducer of the 
expression of CXC-ELR- chemokines [19-21]. 

3. Chemokines and their receptors in the 
cancer process. 

For the past 20 years, there have been studies 
aimed at understanding the role of chemokines in the 
pathophysiology of cancer. It is currently accepted 
that the system of chemokines and their receptors has 
direct and indirect effects on the pathophysiology of 
cancer and that these molecules are important in the 
development and progression of the disease. Chemo-
kines and their receptors are regulators of angiogene-
sis, which allows tumor growth and metastasis [22]. 
Furthermore, chemokines and their receptors mediate 
the recruitment of cells of the immune system to the 
tumor microenvironment. These cells actively modify 
the microenvironment; for example, macrophages are 
recruited by a pro-inflammatory environment and 
contribute to perpetuate inflammation through the 
production of angiogenic factors such as VEGF-A [23]. 
Finally, it has been shown that chemokines induce the 
proliferation of cancer cells and promote the metasta-
sis of tumor cells by inducing a more motile pheno-
type [24, 25]. 

Table 1. Complexity of the ligand-receptor system in the chemokine family. There are 4 subfamilies of chemokines, classified according to the 
position of the N-terminal cystein residues: CC, CXC, CX3C and XC. The chemokine-chemokine receptor system is quite complex, since some 
chemokines can activate several receptors, and a single receptor can have several ligands (bold text). To date, 5 atypical receptors have been characterized, 
which do not induce activation after ligand binding (last column). 

CC CXC CX3C XC ATYPICAL CHEMOKINE  RECEPTOR 
CCR1 (CCL3,5,7,8,14,15,16, 23) CXCR1 (CXCL1,6,7,8)  CX3CR1 (CX3CL1) XCR1(XCL1,2) ACKR1 
CCR2 (CCL2,7,8,12,13) CXCR2(CXCL1,2,3,5,6,7,8)   ACKR2 
CCR3 (CCL5,7,8,11,13,15,24,26) CXCR3 (CXCL4, CXCL4L1, CXCL9,10,11)   ACKR3 
CCR4 (CCL17,22) CXCR4 (CXCL12)    ACKR4 
CCR5 (CCL3,4,5) CXCR5 (CXCL13)   ACKR5 
CCR6 (CCL20) CXCR6 (CXCL16)    
CCR7 (CCL19,21) CXCR7 (CXCL12)    
CCR8 (CCL1,4,17)     
CCR9 (CCL25)     
CCR10 (CCL27, 28)     
CCR11 (CCL8,13)     
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4. Angiogenesis, chemokines and cancer 
Angiogenesis is a key process in cancer devel-

opment. It is a multi-step process coordinated by 
several types of molecules (including the chemo-
kines), most of them soluble and secreted by immune, 
stromal and neoplastic cells, as well as by activated 
endothelium [26]. In the adult, physiological angio-
genesis is involved in wound repair and formation of 
the endometrium [26, 27]. Aberrant angiogenesis oc-
curs in cancer as a result of alterations in the expres-
sion of molecules controlling the process, such as the 
chemokines [28-30]. At the cellular level, angiogenesis 
is a complex process involving several stages. It be-
gins with the activation of endothelial cells and the 
destabilization of capillary structures. Activated en-
dothelial cells produce matrix metalloproteinases 
(MMPs); initiate cell proliferation programs and ac-
quire migratory properties [28, 30]. Angiogenesis is 
coordinated by many types of molecules, which to-
gether are called angiogenic and angiostatic factors, 
according to whether they promote or inhibit angio-
genesis [31-33].  

 CXC chemokines have a dual role in angiogene-
sis, since some members of this subfamily are angio-
genic and others are angiostatic [34, 35] (Table 2). In 
1995, Strieter et al showed that CXC-ELR+ chemokines 
have angiogenic properties, can induce in vitro the 
chemotaxis of endothelial cells, and neovasculariza-
tion in the rat cornea model; while CXC-ELR- chemo-
kines have angiostatic properties, and inhibit neo-
vascularization even in the presence of angiogenic 
chemokines and FGF-2[34, 36]. Furthermore, the use 
of chemokines with mutations on the ELR motif, or 
the addition of an ELR sequence to CXC-ELR- chem-
okines, showed that the ELR motif is central to the 
angiogenic/angiostatic activity of CXC chemokines 
[36]. The only known exception is CXCL12, which 
lacks the ELR motif but has angiogenic activity medi-
ated through its receptors CXCR4 and CXCR7 [37, 38] 
(Table 3). The expression of CXC-ELR- chemokines is 
finely regulated by INF-γ, produced mainly by lym-
phoid cells during both innate and adaptive immune 
responses [26].  

 

Table 2. Major angiogenic and angiostatic molecules. The table shows the major angiogenic and angiostatic molecules and their receptors, and their 
participation in the angiogenic process. One of the most important angiogenic factors are VEGF-A, FGF-2, Ang-2, MMP2 & MMP9, TNF-α, TGF-β, and the 
CXC-ELR+ chemokines. On the other hand, the major angiostatic factors are IFN-γ, Angiostatin, Thrombospondin-2, TIMP, (mainly TIMP-2 and TIMP-3), 
and the CXC-ELR- chemokines.  

TYPE OF MOLECULES MOLECULES RECEPTOR FUNCTION 

ANGIOGENIC MOLECULES    

VEGF Family VEGF-A VEGFR-1 
VEGFR-2 

↑ Proliferation (EC, P) 
↑ Migration (EC) 
↑ Formation of tubular structures 

FGF Family 
 

FGF-2 
 

FGFR-1 
FGFR-2 
FGFR-3 
FGFR-4 
 

↑ Proliferación (EC, F) 
↑ Migration (EC)  
↑ VEGF Expression 
↑ Formation of capillary structure 
↑ Inflammation- related genes 

Angiopoietin (Ang) 
 

Ang-1* 
Ang-2 

Tie-1 
Tie-2 

↑ Sprouting*, proliferation, migration,  vessel stabilization* (EC) 
↑ Recruitment and activation  of mural cells 

Metalloproteinases (MMP) 
 
 

MMP-2 
MMP-9 
 

None 
 Substrate: 
 Basement 
 Membrane (BM) 
 Extracellular Matrix 
 (ECM) 

 
↑ Degradation of BM  and ECM  
↑ Migration (EC)  

Cytokines 
 

TNF-α 
TGF-β 

TNFR 
TβRI 
TβRII 
 
 

↑ Migration (EC) 
↑ Tube formation 
↑ Vessel stabilization 
↑ Inflammation  
↑ Tube formation 
 

CXC Chemokines 
 
 

CXC-ELR + 
 

CXCR2 
CXCR4 
CXCR7 
 

↑ Proliferation, migration, inflammation (EC) 
↑ Secretion and activation of MMPs 

Transcription factors 
 
  

HIF-1α* 
NF-κB** 
AP-1*** 
 
 

 ↑ *Expression of VEGF, VEGFR, CXCL8 
↑ bFGF 
↑ **Expression of CXCR2, CCL5, CXCL8 
↑ ***CXCL8 

ANGIOSTATIC MOLECULES    
Angiostatin --- None. ↓ Proliferación (EC) 



 Journal of Cancer 2015, Vol. 6 

 
http://www.jcancer.org 

941 

  Angiosotatin binds several 
proteins: 
Angiomotin 
ATP synthase 
Integrins 
Annexin II 
NG2 proteoglycan 

↓ Migration (EC)  
↓ Formation of capillary structure 
↓ VEGF Expression 
  
  

Endostatin  ---  None 
Endostatin binds several 
proteins 

↓ Proliferación (EC) 
↑ Apoptosis  
↓ Migration (EC)  
 Inhibition MMPs Acivation 
↓ VEGF Expression 

CXC Chemokines 
  

CXC-ELR- 
  

CXCR3B 
  

 ↓ Migratory form 
 ↓ Proliferation 
 ↓ Formation of  capillary structures  

Cytokines 
  

INF-γ 
  

INFgammaRI 
INFgammaRII  

↑ *Expression of angiostatic chemokines 
↓ Angiogenesis 

MMPs Inhibitors: TIMP 
 

TIMP-2 
TIMP-3 
 

Inhibition of MMPs 
 

↓ Migratory form 
↓ Proliferation 
↓ Formation of capillary structures  

Abbreviations: AP-1, Activator Protein 1;BM, Basement Membrane; EC, Endothelial Cells; EpC Ephitelial Cells, ECM, Extracellular Matrix; FGF, Fibroblast Growth Factor; F, 
Fibroblasts; HIF-1, Hypoxia-Inducible Factor 1;MMP, Matrix Metalloproteinase; NF-κB, Nuclear Factor κB; TIMP, Tissue Inhibitors of Metalloproteinases; VEGF, Vascular 
Endothelial Growth Factor. 

Table 3. Chemokines and chemokine receptors involved in angiogenesis and associated inflammation. The main chemokines and chemo-
kine receptors that play a dual role in angiogenesis and the recruitment of immune cells into tissues were classified according to the major receptors, 
cellular source and target cells.  

Sub- Family Systematic Name Classic Name Major Receptors Cell  Source Target Cell Effect 

CXC 
ELR+ 

CXCL1 Gro-α CXCR1, CXCR2 Ne, Ma, EpC Ne, Mo, EC Angiogenic 
CXCL2 Gro-β CXCR2 Ne, Ma NK, Mo, DC, Ba, T  
CXCL3 Gro-γ CXCR2 Ne, EpC, Ma EpC  
CXCL5 ENA-78 CXCR2 Ne   
CXCL6 GCP-2 CXCR1, CXCR2 Ne, Ma   
CXCL7 NAP-2 CXCR1, CXCR2 Ne, Ma   
CXCL8 IL-8 CXCR1, CXCR2 Ne, Ma, T, EC, EpC, T, F   

       
CXC 
ELR- 
 

CXCL4 PF4 CXCR3A, CXCR3B P F, Ne, Mo Angiostatic 
CXCL4L1 PF4alt CXCR3A, CXCR3B EC F, Ne, Mo  
CXCL9 MIG CXCR3A, CXCR3B EC, Th1, NK Th1, NK  
CXCL10 IP-10 CXCR3A, CXCR3B EC, Th1, NK, Mo, F Th1, NK  
CXCL11 I-TAC CXCR3A, CXCR3B Th1, NK Th1, NK  
CXCL14 BRAK Unknown  Mo, Ma, iDC, NK  
      
CXCL12 SDF-1 CXCR4, CXCR7  Leukocytes Angiogenic 

       
CC CCL2 MCP-1 CCR2,4 Mo, Ma, T, NK, iDC, B, Ba, EpC Mo, Ma, T, NK, iDC, B, Ba, Ne Angiogenic 

CCL5 RANTES CCR5,1,3, 4 EC, Mo, Ma, T, NK, iDC, Ba, Eo EC, Mo,  Ma, T, NK, iDC, Ba, Eo  
Abbreviations: B, B cells; Ba, basophils; ENA-78, Epithelial cell-derived Neutrophil-Activating peptide; EC, endothelial cells; Eo, eosinophils; EpC, epithelial cells; F, fibro-
blasts; Granulocyte Chemotactic Protein 2,GCP; Gro-α, Growth-Regulated Oncogene; Interferon-inducible T-cell Alpha-Chemoattractant, iDC, immature dendritic cells; 
I-TAC;IL-8, Interleukin 8; Interferon-gamma-inducible Protein 10, IP-10; Ma, Macrophages;MCP-1, Monocyte Chemoattractant Protein; MIG, Monokine Induced by Gamma 
interferon; NAP-2, Neutrophil Activating Protein; Ne, neutrophils; NK, Natural killer cells; P, platelets; PF-4, Platelet Factor 4; RANTES, Regulated upon Activation Normal 
T cell Expressed and Secreted; T, T cells; Th1, T helper 1. 

 
 
 In some diseases such as cancer, hypoxic condi-

tions can alter angiogenesis, since the expression of 
several angiogenic molecules, including VEGF, 
VEGFR and the chemokine CXCL8, are under tran-
scriptional regulation of Hypoxia Inducible Factor 
(HIF-1) [30, 39], which, as its name suggests, activates 
the transcription of various genes in response to low 
oxygen levels. In addition, there are reports that HIF-1 
can be activated independently of hypoxia; this acti-
vation is related to the expression of oncogenes, 
growth factors and chemokines [40, 41]. 

 In the neoplastic process, alterations in angio-
genesis have important implications. It has been 

shown that the growth of tumors larger than 2-3 mm3 
is dependent on angiogenesis [42]. In addition, angi-
ogenesis facilitates the invasion of malignant cells into 
the circulation and is also important in the establish-
ment of these cells at the site of metastasis [22, 29, 43].  

 In turn, chemokines regulate and are also regu-
lated by other angiogenic factors. For example, the 
metastatic potential of some tumors correlates with 
the expression levels of some MMPs [44], and CXCL8 
induces the secretion and activation of MMP-2 in en-
dothelial cells [45, 46]. Furthermore, CCL7 is cleaved 
by MMP-2, and thus loses the capacity to induce 
chemotaxis and calcium fluxes, but retains its ability 
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to bind to CCR1, CCR2 and CCR4 receptors. Thus, 
CCL7, digested by MMP-2, acts as a chemokine an-
tagonist [47, 48]. In short, the relationship between 
chemokines and MMPs may have important implica-
tions in the development of angiogenesis and in-
flammation, and have an indirect impact on the evo-
lution of the neoplastic process [45]. 

5. Inflammation, chemokines and cancer  
The composition of cell subpopulations in the 

tumor microenvironment is important for the evolu-
tion of the neoplastic process. The tumor tissue is 
composed of tumor cells, stromal cells and infiltrating 
leukocytes [49]. These cells secrete chemokines that 
orchestrate the recruitment of cells of the immune 
system to the tumor microenvironment. In prostate 
cancer, CCL2 is important for infiltration of TAM into 
the neoplastic tissue [50]. These cells have high plas-
ticity and are often polarized in the tumor towards a 
phenotype known as M2, which favors angiogenesis, 
because it is associated with the secretion of TGF-β, 
FGF, VEGF and CXC-ELR+ chemokines [51]. In addi-
tion, TAM M2 produces IL-10, a cytokine that re-
presses the cytotoxic immune response and can con-
tribute to tumor escape mechanisms [51, 52]. TAM 
produce the CXCL1, CXCL3, CXCL5, and CXCL8 
chemokines, which are chemoattractant for neutro-
phils and could be responsible for the infiltration of 
TAN; meanwhile CXCL17 is a chemoattractant for 
immature myeloid cells and macrophages [53, 54]. 

 Although it is not clear yet how important is the 
infiltration of TAN for the prognosis of the neoplastic 
process [5, 55], it is known that some of the com-
pounds released by neutrophils, such as hypo-
chlorous acid (HOCl), are genotoxic[56]. In vitro tests 
have shown that HOCl is mutagenic in lung adeno-
carcinoma cells A549 [56]. In addition, the local pro-
duction of HOCl actives MMP- 2, 7, 8 and 9, and in-
activates the metalloprotease inhibitor TIMP-1, which 
may favor the invasion process [57, 58]. 

 Another cell type that is frequently found in the 
transformed tissue is composed by regulatory T cells, 
which are increased in several types of cancer, in-
cluding esophageal squamous cell carcinoma and 
gastric cancer [59-61]. In the murine model of Lewis 
lung carcinoma, CCL22 was identified as a chemokine 
involved in the recruitment of regulatory T cells; this 
chemokine is produced by NK cells and TAM [62]. 

6. Chemokines in non-small cell lung 
cancer 

In the last decade, several clinicopathological 
studies have focused on establishing whether there 
are associations between the expression level of 
chemokines and/or their receptors in tumor tissue, 

patient survival or development of NSCLC. In this 
regard, it has been reported that the increased ex-
pression of the chemokine CCL5 in grade I lung ade-
nocarcinoma correlates with an increase in the sur-
vival rate [63], but, as will be discussed later, these 
results are controversial. On the other hand, the high 
expression of CXCL8 is related to a worse outcome of 
the disease [64]. In the studies mentioned above, the 
pro-angiogenic effect of CXCL8 could stimulate the 
neoplastic process through increased tumor cell sur-
vival and tumor growth, while the higher expression 
of CCL5 could be related to a more efficient an-
ti-tumor response through an augmented recruitment 
of T lymphocytes [65]. There seems to be significant 
differences in the expression of chemokine receptors 
in the stromal region and in the tumor foci of neo-
plastic tissue. Ohri and colleagues analyzed the ex-
pression of CXCR2-5 and CCR1 receptors, and their 
correlation with the survival, in a cohort of 20 patients 
with NSCLC (mainly squamous cell carcinoma). The 
increased expression of CXCR2, CXCR3 and CCR1 in 
the foci of tumor cells was associated with greater 
survival, while the increased expression in stromal 
cells of CXCR2, CXCR3 and CXCR4 was associated 
with a lower survival [66]. Further studies are needed 
to understand the significance of this phenomenon. 

7. Relevant CC chemokines in NSCLC 
CCL2 

The CCL2/CCR2 axis is important in several 
aspects of tumorigenesis and one of the most relevant 
is the generation of new vascular structures that allow 
tumor growth [67]. Treatment with 
CCL2-neutralizing antibodies showed that this 
chemokine is important in tumor vascularization and 
growth [68]. At least two mechanisms are involved in 
angiogenesis mediated by CCL2. First, CCL2 directly 
activates endothelial cells and induces their migration 
and the formation of capillary structures [68, 69]. 
Second, CCL2 indirectly promotes angiogenesis by 
recruiting TAM precursor cells (which are a major 
source of angiogenic molecules) and/or influencing 
their polarization [50, 70]. In NSCLC, the chemokine 
CCL2 is expressed by tumor and stromal cells [71, 72]. 
It has been demonstrated that tumor tissue homoge-
nates are monocyte chemoattractant, and that the use 
of neutralizing antibodies against CCL2 significantly 
reduces this effect [71]. These results strongly suggest 
that CCL2 is crucial in the infiltration of monocytes, 
which are TAM precursor cells. However, in vivo mu-
rine models of tumorigenesis showed that the neu-
tralization of CCL2 did not alter the number of TAM, 
although it promoted the polarization of TAM to-
wards the M1 phenotype (associated with an an-
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ti-tumor response mediated by CD8+T cells)[73], 
while the presence of CCL2 favored the polarization 
towards the M2 phenotype, which produces angio-
genic molecules. In addition, CCL2 induces the re-
cruitment of myeloid suppressor cells (MDSC) [74], 
which are associated with tumor progression and 
promotion due to their immunosuppressive activities 
and are also a source of angiogenic factors. Further-
more, it has been reported that the recruitment of 
these cells through CCL2/CCR2, is important in the 
metastasis of colorectal cancer [75]. It is also known 
that in breast and prostate cancer, the CCL2/CCR2 
axis mediates metastasis to bone and lung tissue [76]. 
In addition, the use of CCL2-/- mice in a model of 
breast cancer (4T1 cell line) showed that stromal CCL2 
favors metastasis of transformed cells to the lung [72]. 
Although in vitro studies and humanized animal 
models indicate that the presence of CCL2 favors the 
progression of the neoplastic process, a recent clini-
copathological study of 65 patients with advanced 
NSCLC concluded that the expression of CCL2 in 
tumor tissue is related to greater survival [77]. 

CCL5 
This chemokine is an important biomarker due 

to its ability to distinguish patients with NSCLC from 
healthy controls when measured in serum [78]. The 
role of this chemokine in tumor progression is un-
clear, as there is contradictory evidence as to whether 
or not it favors the progression of cancer [63, 79-82]. 
The overexpression of chemokine CCL5 in breast and 
cervical-uterine cancer correlates with a poor progno-
sis, while low plasma levels of CCL5 in patients with 
late stages of NSCLC correlated with long-term sur-
vival [80]. Some evidence suggests that CCL5 might 
contribute to the progression of NSCLC. For example, 
it was observed that in a TIMP2 -/- murine model there 
is more metastasis of lung carcinoma cell lines. TIMP2 
is a metalloprotease inhibitor that also inhibits the 
transcription of cytokines and chemokines (including 
CCL5) necessary for the growth of myeloid-derived 
suppressor cells (MDSCs) [83]. Since there is more 
expression of CCL5 in TIMP 2-/- mice, there is more 
recruitment of MDSCs [83]. Furthermore, it is known 
that the expression level of TbRII, a TGF-β receptor, is 
decreased in different NSCLC cell lines [84], and this 
reduction is reflected in an increase in the invasive 
capacity of these cells. There is greater expression of 
CCL5 in invasive tumors and in cells with decreased 
expression of TbRII and inhibiting CCL5-mediated 
signaling abrogates the invasion of these cells [81]. 

 Contradictorily, it seems that the expression of 
CCL5 also has a protective effect due to its ability to 
chemoattract immune effector cells to the tumor [63]. 
In fact, it has been reported that in response to the 

CCL5 secreted by tumor cells, CD8+ T cells migrate to 
the tumor, where they can perform their effector 
functions. Patients with an active lymphocytic re-
sponse (ALR) have better prognosis, and, among pa-
tients with ALR, CCL5 is a good predictor of survival 
[63]. This chemokine is released in the lung in re-
sponse to many noxious stimuli and it has been re-
ported that it might have antitumor activity [63]. Re-
cently, Skachkova et al. found that patients with 
NSCLC who had no relapse after surgical resection, 
had a significant increase in the CCL5 mRNA com-
pared to patients with relapse [79]. Finally, it is worth 
mentioning that 4T1 cells constitutively produces 
CCL5 and spontaneously metastasize to the lungs 
[85]. The expression of CCL5 could favor the for-
mation of premetastatic niches since CCL5 induces 
the release of members of the family of chemoat-
tractant molecules S100 [82]. In particular, tumor cells 
expressing CCL5 had a significant decrease in lung 
metastasis in S100A4-/- mice, indicating that metasta-
sis to this organ is strongly dependent on the interac-
tion between CCL5 and S100A4 [86]. 

CCL19 and CCL21 
CCL19 and CCL21 are homeostatic chemokines 

that regulate lymphocyte migration and bind to the 
receptor CCR7, which is expressed by naïve T cells 
and dendritic cells [87]. These chemokines are im-
portant in the activation of the local immune re-
sponse, which comprises the activation of dendritic 
cells, the recruitment and activation of naïve T cells, 
and the formation of lymphoid structures [87]. Simi-
larly to other neoplasms, in NSCLC the expression of 
chemokines CCL19 and CCL21 is important for the 
formation of lymph node-like structures associated 
with tumor tissue [88-90]. In these structures T and B 
lymphocytes are segregated into two adjacent regions, 
T zone and follicles, respectively, that are surrounded 
by specialized blood vessels called high endothelial 
venules [90]. CCL19 is located in the extra-follicular 
area, which is the concentration site of mature den-
dritic cells, while CCL21 is restricted to the lymphatic 
vessels [88]. Lymphoid structures associated to the 
tumor have been related to an increase in the anti-
tumor response and with improved survival of pa-
tients [88, 89]. In murine models of lung cancer, the 
presence of lymphatic structures causes a reduction of 
the tumor [91]. Ex vivo studies with cells from cancer 
patients showed that the antitumor response associ-
ated with overexpression of CCL21, depends partly 
on the activation and recruitment of dendritic cells 
and the release of chemokines CXCL9 and 
CXCL10[91, 92], which are induced by IFN-γ and in-
hibit angiogenesis[93]. In addition, these chemokines 
bind to CXCR3 on T cells, increasing the secretion of 
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IFN-γ (establishing a positive feedback loop in angio-
stasis) and decreasing TGF-β; the latter is related to 
invasion processes [94]. Clinicopathological studies in 
patients with pulmonary adenocarcinoma have re-
ported that the increased expression of CCR7 or 
CCL19 is associated with a higher life expectancy after 
surgical resection [95]. Immunotherapy strategies 
with CCL21 have been tested in NSCLC. These strat-
egies involve the transfer of dendritic cells that over-
express this chemokine, obtaining a promising anti-
tumor response through the activation of local den-
dritic cells [96-98]. In addition, nanocapsules carrying 
CCL21 have been injected intra-tumorally, inhibiting 
the growth of lung cancer [99]. However, it is worth 
noting that CCL21 has also been implicated in the 
metastasis and inhibition of apoptosis of tumor cells 
[100]. In this regard, microarray approaches in 
NSCLC showed that CCL19 could be a prognostic 
marker of the course of the disease associated with 
better survival [101]. 

CCL25 
This chemokine specifically binds the CCR9 re-

ceptor, forming a non-promiscuous chemo-
kine/chemokine receptor axis [11]. Recent studies 
show that the CCL25/CCR9 axis plays an important 
role on the pathophysiology of lung cancer [102, 103]. 
On different types of cancer (colorectal, prostatic, 
ovarian and breast) [104-106], the CCL25/CCR9 axis 
is related to the severity of the disease. In NSCLC, 
human neoplastic adenocarcinoma cancer and squa-
mous cancer cells have a robust and equivalent CCR9 
expression [102]. However, these two cancer subsets 
show differential plasma levels of CCL25, with 
squamous cell carcinoma having higher levels of the 
chemokine. In vitro studies with NSCLC cell lines 
show that these cells increase their migration and in-
vasive capacity when stimulated by CCL25, with the 
invasion process mediated by MMPs. In squamous 
cell carcinoma, MMP mediates invasion, while in 
adenocarcinoma, both MMP2 and MMP9 play a role 
in this process [102]. On the other side, it has been 
reported that the activation of the CCL25/CCR9 axis 
decreases apoptosis through the positive regulation of 
antiapoptotic signals, and the negative regulation of 
proapoptotic molecules [107]. In an in vivo model, 
silencing of this axis with small interfering RNAs di-
minished the size of the tumor. This data shows that 
in NSCLC, like in other types of cancer, the activation 
of the CCL25/CCR9 axis increases the neoplastic 
process [107]. 

8. Relevant CXC chemokines in NSCLC 
Strieter et al. showed that the angiogen-

ic/angiostatic activity of CXC chemokines is deter-

mined in most cases by the presence of the ELR amino 
acid motif. Thus, CXC-ELR+ chemokines are angio-
genic, while CXC-ELR- chemokines are angiostatic 
[36]. It is worth noting, however, that the chemokine 
CXCL12, which is an ELR- chemokine, has angiogenic 
activity. The CXC-ELR+ group includes the chemo-
kines CXCL1-3 and CXCL5-8 while the CXC-ELR- 
group includes CXCL4, CXCL9-11 and CXCL14 [29, 
108] (table 3).  

8.1 ELR+ Chemokines 

CXCL8 
This chemokine has angiogenic and 

pro-inflammatory activity; it induces the prolifera-
tion, survival and migration of endothelial cells 
through its binding to CXCR1 and CXCR2 receptors, 
and the recruitment of neutrophils during inflamma-
tory processes [46, 109, 110]. In contrast to SCLC cells, 
NSCLC cells produce substantial amounts of CXCL8 
[111]. In human lung tumor tissue, the increased ex-
pression of CXCL8 is accompanied by increased vas-
cularization and tumor growth, as well as metastasis 
to lymph nodes [112]. Furthermore, it has been re-
ported that CXCL8 also has an effect on tumor cells, 
inducing the proliferation of lung cancer cells through 
CXCR1 [111] in human cells and through CXCR2 in 
animal models of tumor cell transfer [113]. It was re-
cently reported that cell proliferation induced by 
CXCL8 involves the transactivation of the Epidermal 
Growth Factor Receptor (EGFR)[24], a protein over-
expressed in 40-80% of NSCLC and associated with 
poor prognosis [2], as is also the increased expression 
of CXCL8 [114]. In addition, a recent report focused 
on grade IV lung adenocarcinoma, found that the 
expression of CXCL8 was associated with nutritional 
deterioration in patients [115]. The expression of 
CXCL8 is regulated by inflammatory cytokines such 
as TNF-α and IL-1 [116, 117], angiogenic molecules 
such as EGF [118], hypoxia [119] and the KRAS on-
cogene [120]. Cell lines with mutations in KRAS and 
EGFR have an increased expression of CXCL8, while 
the silencing of these molecules and treatment with 
tyrosine kinase inhibitors, decreases its expression 
[120]. Furthermore, studies on a model of human 
NSCLC carcinoma (H460) in immunodeficient rats 
suggested that the increase in serum levels of CXCL8 
was associated with a decrease in the survival of an-
imals [121]. 

CXCL5 
This pro-inflammatory chemokine with angio-

genic properties, induces neutrophil chemotaxis and 
is produced by epithelial cells [122]. It has been shown 
that density of blood vessels is greater in tumors ex-
pressing CXCL5 [123]. Arenberg et al found that 
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CXCL5 is an important angiogenic factor for NSCLC 
and that its expression is correlated with an increase 
in tumor mass [124]. By immunohistochemical analy-
sis of fresh human biopsy samples of NSCLC it was 
found that CXCL5 was increased. In other cancers, 
such as in gastric hepatocellular carcinoma cell lines, 
an upregulated expression of CXCL5 is associated 
with a high metastatic potential [125].  

 It is important to mention that CXCL5 has a 
central role in the recruitment of leukocytes in lung 
inflammation induced by tobacco smoke, which is the 
most important risk factor for developing lung cancer 
[126]. In this regard, it has been described that CXCL5 
(along with other ligands of CXCR2) promotes the 
migration of pro-tumor neutrophils and induces an-
giogenesis [127]. In this sense, the infiltration of neu-
trophils promoted by CXCL5 could have some cyto-
toxic activity. Unfortunately, this activity is especially 
effective in cells with low metastatic activity [128]. It 
has been recently shown that HB-EGF (hepa-
rin-binding EGF-like growth factor), in combination 
with CXCL5, has a synergistic effect on the prolifera-
tion, migration and invasion of lung cancer [129] and 
in some cases, this effect is dependent on the 
PI3K-Akt and ERK1/2 pathway [127].  

 Interestingly, a study on tumor tissue obtained 
from patients with stage I and II NSCLC found that 
out of 23 genes assessed by real time PCR, only 
CXCL5 showed a statistically significant difference, 
which led to propose it as a prognostic element in 
these patients [130].  

Other CXCR2 ligands 
It is important to note that CXCL8 and CXCL5 

share the receptor CXCR2 with the chemokines 
CXCL1-3, 6-7[11]. Little is known about the implica-
tion of these chemokines in the pathophysiology of 
NSCLC, even though CXCR2 is a very important re-
ceptor in NSCLC [131]. Studies using tumorigenesis 
models in CXCR2-/- mice showed that this receptor 
has a central role in tumor growth, since 
CXCR2-deficient mice showed a significant decrease 
in tumor mass (associated with an increase in necrotic 
tissue), compared to wild type mice, while levels of 
the chemokines CXCL1-3 were increased [131].  

8.2 ELR- Chemokines 
CXCL9, CXCL10 and CXCL11, and their recep-

tor CXCR3, are negative regulators of angiogenesis 
and are also involved in recruiting activated T cells 
and NK cells [132, 133]. There are reports that show 
differences in the expression of CXCL10 in different 
types of NSCLC. For example, the expression of this 
chemokine in adenocarcinoma is equivalent to normal 
tissue, while in lung squamous cell carcinoma the 

expression of CXCL10 is increased compared to nor-
mal tissue [113], and this chemokine is expressed 
mainly by tumor cells. It has been reported that the 
neutralization of CXCL10 augments vascularization in 
lung squamous cell carcinoma [134]. In addition, it 
was shown that plasma levels of CXCL10 are in-
versely proportional to the size of the tumor in pa-
tients and in tumorigenesis models of NSCLC in SCID 
mice [134]. In animal models, the intra-tumoral ad-
ministration of CXCL10 for 8 weeks has an antineo-
plastic effect in which the size of the tumor decreases 
through a reduction in vascularization [113]. The 
metastatic activity is also partially abated, while there 
is an increase in apoptosis in the primary tumor. This 
effect appears to be dependent on the stage of the 
disease; if the treatment is prolonged for 10 weeks, the 
size of the tumor increases [134]. Interestingly, the 
antineoplastic effect of CXCL10 results in an increase 
in the survival of animals [135]. 

 Recent studies in Lewis lung carcinoma, colon 
carcinoma (CT26) and breast carcinoma (4T1) murine 
models, tested the antitumor effect of a chimeric pro-
tein with CXCL10 and CXCL11 domains [136]. The 
CXCL10-CXCL11 chimeric protein was more effective 
than CXCL10 or CXCL11 separately in reducing the 
size of the tumor and inhibiting the recruitment of 
immune cells to the tumor infiltrate [136]. An im-
portant aspect is that in some cancers, such as colo-
rectal carcinoma, CXCL10 has been reported to pro-
mote the invasion process through an increase in cell 
motility, although this does not seem to occur in pri-
mary cultures [137]. Furthermore, the chemokine 
CXCL9 is another ligand for the receptor CXCR3 with 
angiostatic function, and responsible for the recruit-
ment of CD4+ and CD8+ T lymphocytes [138]. Ap-
parently, there are no differences in the expression of 
CXCL9 in NSCLC compared with healthy lung tissue. 
However, in experimental models the expression of 
CXCL9 is associated with a decrease in vasculariza-
tion and tumor size [138, 139].  

CXCL14  
This chemokine has angiostatic properties and a 

strong chemotactic activity for monocytes, macro-
phages and immature DCs [140]. CXCL14 differs from 
other chemokines in that it is ubiquitously distributed 
on normal tissue, and rarely expressed by cell lines or 
primary carcinomas [141, 142]. To date no receptor for 
this chemokine has been found [11], however recent 
results suggest that CXCL14 can bind glycoproteins 
with heparan sulfate or sialic acid, and induce prolif-
eration and migration of NCI-H460 human lung can-
cer cells [143] Recently CXCL14 has appeared as an 
important tumor suppressing gene. The gene that 
codes for CXCL14 is silenced (by DNA hypermetila-
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tion) in up to 80% of colorectal carcinomas in human, 
and its silencing seems to contribute towards an ag-
gressive phenotype of neoplastic cells (i.e. increased 
motility and invasiveness) [144]. Furthermore, a re-
cent study showed that transgenic mice overexpress-
ing CXCL14 had a diminished increase in the size of 
transplanted tumor and number of metastases, an 
effect probably due to NK cells since the depletion of 
these cells with GM1 antibodies attenuates these ef-
fects and partially restores the phenotype of wild type 
mice [145]. In lung cancer, the forced expression of 
CXCL14 in the H23 lung adenocarcinoma cell line 
through Decitabine (an inhibitor of DNA methylation) 
treatment, stimulates necrosis and tumor size, and 
alters the expression pattern of pro-apoptotic genes 
and genes related to inhibition of cell cycle and, such 
as caspase 4 and RBP7, respectively [108] 

CXCL12 
This is one of the most studied chemokines in 

cancer and has been shown to be important in the 
angiogenesis, survival and metastasis of the tumor 
[25, 146, 147]. It is strongly expressed in several types 
of tumor, including breast, pancreas and lung cancer 
[148]. CXCL12 binds mainly to the CXCR4 receptor, 
which is up-regulated by hypoxia in various cell 
types, such as tumor-associated macrophages [149], 
endothelial cells and cancer cells [149-151]. It is also 
regulated by inflammatory stimuli which converge 
into the activation of NF-κB [152]. Recent studies have 
shown that CXCL12 also binds with high affinity to 
CXCR7 [153]. In breast cancer, both receptors are 
overexpressed in the primary tumor and the metas-
tases [154]. In vitro studies of breast cancer showed 
that the activation of the CXCL12/CXCR7 axis mainly 
induces angiogenesis and a moderate chemotactic and 
invasive response, suggesting an important role of 
these molecules in metastasis [38]. However, in stud-
ies on murine models, only the pharmacological inhi-
bition of the CXCL12/CXCR4 axis was effective in 
reducing metastasis to lymph nodes and lung, indi-
cating that the metastasis is mainly mediated by the 
CXCL12/CXCR4 axis [25]. 

 A high expression of CXCR4 in cancer cells was 
reported in NSCLC, while the chemokine CXCL12 
was strongly expressed in the organs affected by me-
tastasis such as bone marrow, adrenal glands, and 
liver [155]. Thus, it would be possible to form chem-
otactic gradients of CXCL12 that direct the migration 
of tumor cells to metastatic sites [25]. It has been 
shown in vitro that CXCL12 induces chemotaxis in 
lung cancer cell lines, while the neutralization of 
CXCL12 with antibodies in animal models reduces 
primary tumor metastasis [155]. Furthermore, human 
lung adenocarcinoma A549 cells transfected with 

CXCL12 have greater motility and increased expres-
sion of MMP-2 and MMP-9, which are associated with 
the invasion process [156]. In addition, it has been 
reported that the activation of CXCR4 by CXCL12 
induces cancer cell survival [147].  

Clinical studies in patients with grade IV pul-
monary adenocarcinoma indicate that the increased 
expression of CXCR4 correlates with a decrease in 
survival of approximately 50% [157]. Furthermore, in 
patients with NSCLC who underwent surgical resec-
tion, increased levels of CXCR4 were associated with 
brain metastasis [158], denoting the metastatic role of 
this chemokine. 

9. Relevant CX3C chemokines in NSCLC 
CX3CL1 is the only known member of the CX3C 

subfamily. In contrast to other chemokines, CX3CL1 
can be found in two forms: tethered to the cell mem-
brane by a mucin-like stalk, or soluble [159] after di-
gestion of the complete protein by metalloproteases 
such as ADAM7 and ADAM10 [160, 161]. Each form 
exhibits different properties: while soluble CX3CL1 is 
mainly a chemotactic molecule (attracting predomi-
nantly NK cells, monocytes and CD8+ T cells), mem-
brane bound CX3CL1 is able to mediate the binding of 
monocytes and NK cells to the endothelium [162-164], 
since CX3CL1 is expressed on the surface of activated 
endothelial cells [165]. CX3CR1 is the only known re-
ceptor for CX3CL1 [11]. The CX3CL1/CX3CR1 axis 
plays a role in the recruitment of immune cells in in-
flammation, angiogenesis, proliferation and survival 
of endothelial and smooth muscle cells [166-168]. The 
role of the CX3CL1/CX3CR1 axis in the neoplastic 
process is controversial. On the one hand, its activa-
tion has been related to pro-tumoral processes such as 
an increase of migration of clear cell renal cell carci-
noma and proliferation in breast cancer [169, 170], 
while high levels of CX3CR1 or CX3CL1 expression 
has been associated with the metastatic status and a 
reduced patient survival [169, 171]; on the other hand 
it has also been reported that a high expression of 
CX3CL1 in human breast cancer cells correlates with 
the infiltration of cytotoxic cells (CD8+ T cells and NK 
cells) and DCs, and with higher overall patient sur-
vival [172]. The antitumor effect of the 
CX3CL1/CX3CR1 axis is supported by studies in 
CX3CR1-/- mice inoculated with B16 metastatic mela-
noma cells [173]. In this model, the lack of CX3CR1 
was associated with larger tumors, neoplastic pro-
cess-associated cachexia, and a significant reduction 
of recruitment of NK cells to the lungs of these mice 
[173]. Several studies show that, in NSCLC, the acti-
vation of the CX3CL1/CX3CR1 axis has an important 
antitumor effect. Using the Lewis Lung Carcinoma 
(LCC) transfer model with cells expressing CX3CL1 
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(3LL-FK) or mock transfected cells (3LL-mock) in-
jected into the lung of C57BL/6, it was found that 
mice that received 3LL-FK cells had smaller tumors, 
less metastasis (up to 10 times less), and prolonged 
survival compared with mice inoculated with 
3LL-mock cells [174, 175]. In vivo depletion of certain 
cell subtypes indicate that CD8+ T cells and NK cells 
have a role in the inhibition of the growth of the tu-
mor in mice that received 3LL-FK cells [176]. Re-
garding the antitumoral mechanisms induced by the 
transfer of 3LL-FK cells, it was found that the cyto-
toxic activity of CTL was increased against LCC, due 
to DCs and NK cells. Mice that received 3LL-FK cells 
had an augmented number of infiltrating DCs and NK 
cells in the tumor. These cells were potentially re-
cruited through the CX3CL1/CX3CR1 axis, since con-
ditioned media from 3LL-FK cells induced an in vitro 
migration of these cells that could be blocked with a 
neutralizing antibody against CX3CL1, and it has been 
found that membrane bound CX3CL1 mediates the 
binding of NK cells [176]. Coculture of DCs with 
3LL-FK induces the maturation of DCs [174], while 
coculture of NK cells with 3LL-FK increases cytotoxic 
activity against 3LL and the production of IL-12 [176].  

According to a recent publication by Savai et al., 
coexpression of CX3CR1 and CCR2 by tumor associ-
ated macrophages could have important therapeutic 
roles in NSCLC [177]. The authors explore in vitro, in 
vivo and ex vivo the role of TAM in the growth and 
metastasis of NSCLC mediated by these receptors. 
Macrophages from Lewis lung carcinoma infected 
mice were cocultured with several human NSCLC 
lines, resulting in an upregulation of the 
CX3CL1/CX3CR1 and CCL2/CCR2 axis both in neo-
plastic cell lines and in macrophages. This upregula-
tion correlated with an increase in carcinogenesis, 
particularly related to the proliferation and migration 
of the neoplastic cell lines. In vivo assays showed that 
higher expression of the CX3CL1/CX3CR1 and 
CCL2/CCR2 axis increases the polarization of TAMs 
toward an M2 phenotype. When macrophages were 
depleted using clodronate liposomes or FAS-induced 
apoptosis, or when concurrently blocking the expres-
sion of CCR2 and CX3CR1, tumor growth and metas-
tasis were inhibited; this effect was accompanied by a 
polarization toward the M1 phenotype, and an in-
crease in survival of the mice [177], and the switch 
toward an M1 phenotype inhibited tumor growth, an 
effect probably related to the profile of cytokines, 
chemokines and growth factors secreted by macro-
phages. 

10. Relevant XC chemokines in NSCLC 
Chemokines belonging to this family have only 

two of the four conserved cysteine residues present in 

other chemokines. In humans there are only two 
members in this subfamily: XCL1 (Lymphotactin) and 
XCL2 (SCM1-β); both proteins have a very similar 
structure, differing in only two residues, and they 
have a slightly different affinity for heparin [178]. 
XCL1 is expressed by different lymphoid cells, in-
cluding activated CD8+ T cells, CD4+ T cells and NK 
cells [179, 180]; while XCL2 is expressed by macro-
phages, NK cells and CD8+ T Cells. Both chemokines 
activate the same receptor, XCR1, with virtually iden-
tical functional profiles in vitro, leading to calcium 
mobilization and chemotaxis [178]. In humans, the 
mRNA for this receptor has been detected in placenta, 
spleen, thymus and neutrophils [181, 182]. It is known 
that the activation of XCR1 by XCL1/2 induces the 
migration and proliferation of cells from human epi-
thelial ovarian carcinoma [183]. However, the evi-
dence about the role of XCL1/2 or XCR1 on NSCLC is 
scarce or non-existent. XCL1 seems to have natural 
adjuvant properties that might help antitumor re-
sponses by both adaptive and innate immune re-
sponse, and therefore could be important in immu-
notherapies directed against cancer [184, 185]. For 
example, Cairns et al. transfected the SP2/0 myeloma 
cell line with the XCL1 gen before testing their ability 
to form tumors in mice. In this model, XCL1 express-
ing SP2/0 tumors regressed and became infiltrated 
with lymphocytes and neutrophils [185]. On the other 
hand Zhang et al. showed that DCs transduced with 
the XCL1 gene are better than WT DCs at inducing 
protective and therapeutic antitumor immunity 
through improved chemotaxis of T cells towards DCs 
in the tumor model of 3LL lung carcinoma [184]. 
These findings mean that XCL1 could play a role in 
the gene therapy of NSCLC.  

11. Regulation of the chemokine system 
through the expression of atypical recep-
tors in NSCLC  

Accumulating evidence indicates that the atypi-
cal chemokine receptors may be relevant in cancer. 
For example, the chemokine receptor ACKR2 (also 
known as the Duffy antigen) inhibits growth and 
metastatic potential in breast cancer [186]. In vitro, the 
overexpression of ACKR2 in breast cancer cells 
(MDA-MB-231 and MDA-MB-435) inhibits prolifera-
tion and invasion; while the chemokine ligands for 
ACKR2 (CCL2, CCL4, CCL13 and CCL22) decreased 
in conditioned culture media. In vivo, D6 overexpres-
sion inhibits vessel density, tumor growth, metastasis, 
angiogenesis and TAM infiltration [186]. Moreover, 
recent studies showed that the expression of CCX-CK 
is involved in the metastasis of mammary carcinoma, 
promoting a more aggressive and motile phenotype 
through an increase in the expression of TGF-β in the 
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transformed cells [187]. 
In NSCLC studies on the A549 lung cancer line, 

it was shown that the overexpression of ACKR2 leads 
to a moderate but significant decrease in cellular pro-
liferation [188]. In addition, the authors found a de-
crease in the concentration of CCL2, CCL4 and CCL5 
in the conditioned culture medium, while no changes 
were found in the messenger RNA levels of these 
chemokines. Importantly, although the chemokines 
CCL3 and CXCL12 were tested in this study, no 
changes were observed in the level of these proteins 
as a result of the overexpression of ACKR2 [188]. Ad-
ditionally, studies on a tumor transfer model using 
BALB/c mice showed that the overexpression of 
ACKR2 is accompanied by a decrease in tumor size 
[188]. Together, these studies indicate that the ACKR2 
receptor controls the local availability of chemokines 
through the specific sequestration of CCL2, CCL4 and 
CCL5, suggesting that deregulation of the expression 
of this receptor could lead to changes in the tumor 
microenvironment, with important consequences. 

12. Concluding remarks 
In cancer, the involvement of chemokines and 

their receptors comprises several aspects. First, 
chemokines regulate, through the activation of endo-
thelial cells, the angiogenesis that supports tumor 
growth. Furthermore, chemokines and their receptors 

contribute actively to the formation of the tumor mi-
croenvironment through the recruitment of infiltrat-
ing tumor cells such as tumor-associated macro-
phages. Infiltrating tumor cells change the tumor mi-
croenvironment by secreting cytokines, chemokines, 
growth factors, and other effector proteins (Figure 1). 
These molecules also contribute to the recruitment of 
other cell types, such as regulatory T cells, and are 
also important in the recruitment of TAN, which can 
contribute to genomic instability, thereby promoting 
the process of carcinogenesis. Moreover, it has been 
shown that many chemokines have direct effects on 
tumor cells and are able to regulate their proliferation, 
survival and migration. The role of angiogenesis in 
solid tumor growth has attracted a great deal of at-
tention as a potential therapeutic target. Lung cancer 
is the main cancer-related cause of death worldwide 
in both men and women. Although much is still un-
known about the role of chemokines in NSCLC, the 
evidence shown here indicates that these molecules 
and their receptors play a major role in the patho-
physiology of this disease. Additional studies that 
examine the role of specific chemokine/receptor axes 
at different stages of lung cancer would be of great 
importance to understand the role of these molecules 
in the course of the disease and to establish the dif-
ferences in the activation of chemokine receptors 
through different ligands.  

 
Figure 1: Chemokine ligand/receptor axis involved in the pathophysiology of NSCLC. The pathophysiology of NSCLC involves several 
processes, including tumor growth, angiogenesis, cell proliferation, recruitment of immune cells, invasion, metastasis, and occasionally antitumoral immune 
response. The figure shows the main Chemokine ligand/receptor axes involved in these processes. 
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