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Abstract 

We discuss the hypothesis that ZEB1-Wnt-p300 signaling integrates epithelial to mesenchymal 
transition (EMT) and resistance to histone deacetylase inhibitors (HDACis) in colorectal cancer 
(CRC) cells. The HDACi butyrate, derived from dietary fiber, has been linked to CRC prevention, 
and other HDACis have been proposed as therapeutic agents against CRC. We have previously 
discussed that resistance to butyrate likely contributes to colonic carcinogenesis, and we have 
demonstrated that butyrate resistance leads to cross-resistance to cancer therapeutic HDACis. 
Deregulated Wnt signaling is the major initiating event in most CRC cases. One mechanism 
whereby butyrate and other HDACis exert their anti-CRC effects is via Wnt signaling 
hyperactivation, which promotes CRC cell apoptosis. The histone acetylases (HATs) CBP and 
p300 are mediators of Wnt transcriptional activity, and play divergent roles in the downstream 
consequences of Wnt signaling. CBP-mediated Wnt signaling is associated with cell proliferation 
and stem cell maintenance; whereas, p300-mediated Wnt activity is associated with differentiation. 
We have found that CBP and p300 differentially affect the ability of butyrate to influence Wnt 
signaling, apoptosis, and proliferation. ZEB1 is a Wnt signaling-targeted gene, whose product is a 
transcription factor expressed at the invasive front of carcinomas where it promotes malignant 
progression and EMT. ZEB1 is typically a transcriptional repressor; however, when associated with 
p300, ZEB1 enhances transcription. These changes in ZEB1 activity likely affect the cancer cell 
phenotype. ZEB1 has been shown to promote resistance to chemotherapeutic agents, and 
expression of ZEB1 is upregulated in butyrate-resistant CRC cells that lack p300 expression. Since 
the expression of ZEB1 correlates with poor outcomes in cancer, ZEB represents a relevant 
therapeutic target. Here we propose that targeting the signaling network established by ZEB1, 
Wnt signaling, and p300 signaling can reverse HDACi resistance and inhibit EMT. 
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Introduction 

Wnt signaling and histone deacetylase 
inhibitors 

The histone deacetylase inhibitor (HDACi) 
butyrate, derived from dietary fiber, exerts a strong 
preventive effect against colorectal cancer (CRC) 
[1-13], and other HDACis are possible cancer 
therapeutic agents [14-16]. Therefore, neoplastic cell 
resistance to the effects of butyrate likely contributes 

to CRC, as well as to cross-resistance to HDACis 
proposed for CRC therapy [2]. Mutations resulting in 
deregulated Wnt signaling are a major initiating event 
in most sporadic CRC cases [17-26]. One mechanism 
whereby butyrate and other HDACis exert their 
anti-CRC effects is via hyperactivation of the 
deregulated Wnt signaling in neoplastic colonic cells, 
promoting apoptosis and repressing cell proliferation 
[1, 2,16].  
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The histone acetylases (HATs) CBP and p300 
associate with the Wnt signaling factor beta-catenin 
and mediate the transcriptional activity of the Wnt 
pathway. Although CBP and p300 share considerable 
sequence homology, they play divergent roles in the 
downstream consequences of Wnt activity. 
CBP-mediated Wnt signaling is associated with cell 
proliferation and stem cell maintenance; whereas, 
p300-mediated Wnt activity is associated with 
differentiation [27-37]. CBP and p300 affect the ability 
of butyrate to influence Wnt signaling, apoptosis, and 
proliferation [38-41].  

To understand the phenomenon of butyrate 
resistance, we developed a HCT-116 CRC cell line 
(HCT-R) resistant to the effects of physiologically 
relevant concentrations of butyrate [2]. These cells are 
also cross-resistant to structurally distinct and 
clinically relevant HDACis [2, 42], and exhibit 
repressed expression of p300 [39]. HCT-R cells exhibit 
(a) increased expression of the epithelial to 
mesenchymal transition (EMT) factor ZEB1 and (b) 
modified expression of other characteristics of EMT, 
such as decreased expression of E-cadherin and 
increased expression of vimentin [3]. Coincidentally, 
p300 knockout cells, also derived from the HCT-116 
cell line, also exhibit physiological changes consistent 
with EMT, such as decreased cell-cell/matrix 
adhesion and increased migration [43]. 

ZEB1, CBP/p300, and EMT 
EMT, associated with cancer cell metastasis, 

results in altered gene expression and changes 
stationary and polarized epithelial cells into 
mesenchymal cells with enhanced motility and 
invasiveness. The reverse process, mesenchymal to 
epithelial transition (MET), occurs after the metastatic 
cells have settled into a new location. ZEB1 is 
expressed at the invasive front of carcinomas, where it 
affects gene expression to induce EMT [44,45] (and 
refs therein). ZEB1 upregulates expression of 
vimentin and downregulates expression of 
E-cadherin, which is a key event for EMT and 
metastasis [44]. Since ZEB1 promotes tumorigenesis 
and metastasis [44-52], its expression is correlated to 
poor outcomes in cancer, including resistance to 
chemotherapy [48 and refs. therein]. ZEB proteins 
most frequently repress transcription through both 
passive and active mechanisms [44]. Passively, ZEB1 
displaces transcriptional activators from promoters; 
actively, ZEB proteins recruit transcriptional 
corepressors. In addition, ZEB can associate with 
transcriptional coactivators to upregulate expression 
[44]. ZEB proteins can act through a variety of 
transcriptional cofactors; for example, ZEB1 binds to 
the HATs p300 and PCAF [45,46], and this complex 

activates transcriptional activity. Alternatively, ZEB1 
acts as a repressor when it interacts with BRG1, an 
ATPase that forms part of the SWI/SNF chromatin 
remodeling complex, or with CtBP, which forms a 
complex that may include HDACis [44 and refs. 
therein]. The expression levels of p300 and CtBP 
influence ZEB1 activity; in particular, high levels of 
CtBP result in an inverse relationship between ZEB1 
and E-cadherin expression [51], consistent with the 
role of ZEB1/CtBP in repressing E-cadherin 
expression. ZEB1 is a Wnt signaling-targeted gene, 
and its product can modulate gene expression in a 
Wnt activity-dependent manner [46-50].  

The miR-200 family of microRNAs (miRNAs) 
influence EMT and MET; these miRNAs are 
downregulated during EMT and upregulated during 
MET, likely reflecting their functional contribution to 
the cell phenotypes along the epithelial to 
mesenchymal continuum [46,47]. ZEB proteins and 
miR-200 members negatively modulate each other’s 
expression, consistent with the pro-EMT role of ZEB 
factors and the anti-EMT role of miR-200 family 
members [46,47]. The downregulation of ZEB 
expression is mediated by miR-200 binding to ZEB 
RNA 3’ UTR and blocking translation [46,47]. 
Complexes composed of ZEB1, p300, and PCAF can 
bind to the miR200c/141 promoter, resulting in 
acetylation of ZEB1 and reversal of ZEB1 repression of 
miR200c/141 expression [46]. This interaction 
decreases ZEB1 expression and therefore inhibits 
EMT. The HDACi trichostatin A (TSA), which 
synergizes with HAT activity, shifts cells toward a 
more epithelial phenotype, demonstrating the effect 
of net acetylation [46,47]. These reports are consistent 
with our observation that cells resistant to the HDACi 
butyrate downregulate p300 and exhibit an EMT-like 
profile that includes increased expression of ZEB1. 
Treatment of human airway epithelial cells with the 
CBP-Wnt inhibitor ICG-001, which enhances 
p300-Wnt activity [27-37], suppresses EMT induced 
by TGFbeta1 [53]. This is also consistent with findings 
that p300 knockout cells have an EMT-like phenotype 
[43], since CBP and p300 compete for binding to 
beta-catenin. In summary, decreased p300 favors 
CBP-Wnt activity and promotes EMT-type gene 
expression and phenotype. However, low expression 
of p300 is not sufficient for acquisition of an EMT-like 
phenotype. For example, HCT-15 cells that are 
naturally p300-deficient have an epithelial phenotype 
[55]; however, these cells exhibit low ZEB1 expression 
[56]. Thus, expression of ZEB1 and associated factors 
[46-58] might be essential for EMT following p300 
downregulation. 

Intriguing connections have also been drawn 
between ZEB1, EMT, dedifferentiation of cancer cells 
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to cancer stem cells (CSCs), resistance to therapy, and 
HDACis [59-65]. EMT likely promotes the emergence 
of a drug-resistant, relatively dedifferentiated 
mesenchymal cancer cell phenotype [59], which 
contributes to HDACi-resistance during colonic 
tumorigenesis. Therefore, the phenomenon of 
butyrate resistance [66-75] and resistance to other 
HDACis, may be in part mediated by ZEB1, possibly 
through altered gene expression and cell signaling 
[76-81]. A summary of the impact of ZEB1 on CRC [45, 
47-50, 58, 82-87] is shown in Table 1. 

 

Table 1. Summary of Functional impact of ZEB1 in CRC 
ZEB1 FUNCTION EXPERIMENTAL MODEL REFERENCE 
Represses stemness-inhibiting 
microRNAs 

CRC and pancreatic cancer 
cells 
  

82 

Inhibits senescence SW480 and SW620 CRC cells 83 
Promotes metastasis and loss 
of cell polarity  

SW480, HCT-116 84 

Not required for EMT LS174T CRC cells 85 
Regulates miR-200c in EMT 
 

human CRC sample analyses 86 

ZEB1-hTERT complex inhibits 
E-cadherin expression 

HCT-116 CRC cells 58 

ZEB1 and TCF4 reciprocally 
modulate each other's 
transcriptional activity 

SW480, SW620, and HCT-116 
CRC cells 

50 

Regulates the plasminogen 
proteolytic system by inducing 
uPA and inhibiting PAI-1 

SW480, HCT116, and Colo320 
CRC cells 

49 

Promotes vasculogenic 
mimicry through EMT 
induction 
 

HCT-116 CRC cells 87 

Promotes metastasis and loss 
of cell polarity 

HCT-116, SW480 CRC cells 84 

Represses E-cadherin 
expression, induces EMT  

SW480 CRC cells 47 

Promotes EMT HCT-116 CRC cells 45 
Promotes tumor invasiveness HCT-116 and SW480 CRC 

cells 
48 

 

Butyrate resistance, EMT, and colonic 
tumorigenesis 

Studies of butyrate resistance [66-75] provide 
more information on signaling crosstalk affecting 
CRC development and behavior. HCT15 cells, which 
are p300 negative, are more resistant to the effects of 
butyrate than other CRC cells such as SW480 [70], and 
this report is consistent with what we have observed 
when evaluating these cell lines, as well as other, 
p300-deficient, cells [39 and unpublished data]. 
HCT-15 cells, which have been further selected for 
resistance through chronic exposure to butyrate, 
exhibit an EMT phenotype (albeit one relatively more 
epithelial-like [55]), and show greater ability for 
tumor growth, angiogenesis, and metastasis in an in 
vivo nude mouse model [70]. These observations 
suggest that presence of butyrate in the colonic 

microenvironment may select for phenotypically 
more aggressive, therapy-resistant tumor types 
during neoplastic progression. However, the overall 
incidence of colon cancer is reduced with a high fiber 
dietary intake, which may indicate a major preventive 
effect of butyrate at the initiating stage of neoplastic 
development. Thus, on the one hand, butyrate likely 
reduces the incidence of CRC; however, on the other 
hand, if CRC does develop despite the presence of 
higher levels of butyrate in the colonic 
microenvironment, the resulting tumors may be more 
aggressive and therapy-resistant. 

Possible associations between HDACi resistance 
and EMT is also indicated by the finding that 
treatment of certain CRC cell lines with HDACis 
increases EMT-like phenotypes, as measured by 
changes in gene expression and cellular physiology 
[75]. Thus, there may be a connection between 
butyrate resistance developed as a result of chronic 
butyrate exposure, EMT, and the relative levels of 
CBP-Wnt activity vs. p300-Wnt activity. Of direct 
relevance to the connection between ZEB1 and 
HDACi resistance, a breast cancer cell line resistant to 
the HDACi phenylbutyrate exhibited increased 
expression of ZEB1, and ZEB1 inhibited the 
expression of genes (e.g., RAB25, ESRP1) that enhance 
phenylbutyrate sensitivity in these cells [76]. 

Hypothesis 
Our central hypothesis is that ZEB1 cooperates 

with the downregulation of p300 and p300-Wnt activity in 
promoting both resistance to therapeutics and EMT in 
CRC. This hypothesis can be divided into two parts. 
First, we hypothesize that ZEB1 upregulation promotes 
both EMT and HDACi resistance in CRC cells. This is 
based on the observation that butyrate-resistant cells 
exhibit changes in gene expression consistent with 
EMT, such as increased expression of ZEB1 and 
vimentin and downregulated expression of 
E-cadherin [3]. ZEB1 expression and EMT are also 
associated with cancer cell dedifferentiation, which 
promotes drug (e.g., HDACi) resistance. Second, we 
posit that ZEB1 is a downstream effector of CBP-Wnt 
signaling that controls HDACi resistance and EMT, and is 
repressed by p300-Wnt signaling partially through 
miR-200 activity. ZEB1 is upregulated in 
butyrate-resistant cells that exhibit repressed 
expression of p300. Further, the association of ZEB1 
with p300 changes ZEB1 function from that of a 
repressor to that of an activator of transcription 
[45,46]. Therefore, the relative levels of CBP- vs. 
p300-mediated Wnt signaling [28-31,38-41, 77] may 
affect both ZEB1 expression and function, influencing 
HDACi resistance and EMT [78] through altered gene 
expression in neoplastic colonic cells. In addition, we 
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propose that there is reciprocal repression between 
ZEB1 and the miR-200 family of miRNAs, particularly 
miR-200c, and this modulation of expression 
influences EMT [79]. Furthermore, miR-200 family 
members, particularly miR-200a, downregulate Wnt 
signaling [80,81]; therefore, miR-200a and miR-200c 
may contribute to the ability of ZEB1 to integrate Wnt 
signaling, resistance to HDACis, and EMT. This 
hypothetical interaction network is summarized in 
Fig. 1. 

 
 

 
Figure 1. Proposed ZEB1 interactions in CRC. Deregulated Wnt 
signaling modulates gene expression, thus promoting CRC. CBP-Wnt signaling 
(left) is linked to proliferation, neoplasia, and cancer stem cell maintenance; 
whereas, p300-Wnt signaling (right) is associated with differentiation. We 
hypothesize that ZEB1 is upregulated in p300-deficient CRC cells through 
CBP-Wnt signaling. This results in enhanced EMT and altered gene expression 
leading to resistance to HDACis. The end result of these interactions is an 
HDACi-resistant metastatic CRC phenotype. Members of the miR-200 family 
repress ZEB expression, and are in turn repressed by ZEB factors, and some 
miR-200 members can repress Wnt signaling. The exact relationship between 
miR-200 family members and p300-mediated Wnt activity is unknown. 

 

Testing the hypotheses 
The first experimental objective would be to 

establish how altered expression of ZEB1 integrates 
HDACi-resistance and EMT in CRC cells. In addition, 
we would need to ascertain whether altered ZEB1 
expression mediates effects of CBP-Wnt activity vs. 
p300-Wnt activity on HDACi-resistance and EMT, 
and the role of miRNA in these interactions. 

The role of ZEB1 in promoting resistance to 
HDACis and mediating the effects of altered 
CBP-Wnt vs. p300-Wnt activity, can be determined by 
ZEB1 knockout in p300-deficient butyrate-resistant 
cells by CRISPR. The reverse experiment, in which 
ZEB1 is overexpressed in butyrate-sensitive, 
p300-expressing HCT-116 cells, can be achieved 
through stable transfections with a ZEB1 expression 
vector. Cells with ZEB1 knockout or overexpression 
would be assayed in absence or presence of butyrate 
and the clinically relevant HDACis vorinostat and 
LBH589 for: (a) Wnt activity, measured by reporter 

assays and levels of active (dephosphorylated) 
beta-catenin; (b) proliferation; (c) apoptosis; (d) clonal 
cell growth; (e) expression of vimentin and E-cadherin 
via Western blot analysis; (f) matrigel growth [43]; 
and (g) invasiveness.. HDACi-resistance would be 
evaluated by metrics a,b,c,d and EMT by metrics 
e,f,g,h. 

To examine the role of p300 and relative levels of 
CBP-Wnt activity vs. p300-Wnt activity in affecting 
ZEB1 expression levels and activity, a number of 
methodologies can be used. One experimental model 
could be the p300 knockout CRC cells [43] that have 
EMT-like characteristics and that reverse their EMT 
phenotype by “rescue” transfection with a p300 
expression vector. In addition, specific inhibitors that 
repress CBP-Wnt [28-31] and p300-Wnt [77] activity 
could be employed. CRISPR could also be utilized to 
create CBP knockout cells analogous to the p300 
knockout lines. 

In addition, in cells with modified CBP-Wnt 
activity vs. p300-Wnt activity, coimmunoprecipitation 
followed by Western blot can be utilized to measure 
the degree of association of ZEB1 with its corepressive 
(CtBP, BRG1) or coactivating (p300, PCAF) cofactors, 
to correlate this association with cell phenotype. 
ZEB1-cofactor association may mediate the effects of 
ZEB1 expression on cell physiology. For example, in 
biliary tract cancer cells, SMAD4 mediates the ability 
of the HDACi vorinostat to suppress EMT and reduce 
chemoresistance to gemcitabine; in this experimental 
model, vorinostat inhibited the nuclear translocation 
of SMAD4 and its interaction with ZEB1 and other 
EMT factors [78].  

In this experimental approach, the levels of 
expression of relevant miR-200 family members 
would be measured in the relevant experimental cell 
models described above, and correlated to ZEB1 
levels and cell physiology. A ZEB1 3’ UTR expression 
vector, which is sensitive to translational control by 
miRNAs, can be utilized as a high throughput 
luciferase reporter to identify conditions (e.g., 
CBP-Wnt vs. p300-Wnt activity, HDACis) that affect 
the ability of miR200 family miRNAs to modulate 
ZEB1 expression. Thus, changes in ZEB1 expression 
that are mediated through interactions of miR-200 
members with ZEB1 mRNA would alter expression 
from the ZEB1 3’ UTR vector. If changes in 3’ UTR 
reporter activity suggestive of involvement of 
miR-200 family members are observed, miRNA 
expression vectors (e.g., miR-200a and miR-200c) can 
be used to downregulate ZEB1 expression. This 
approach is expected to reverse the 
butyrate/HDACi-resistance and EMT characteristics 
observed in HCT-R and p300 knockout CRC cells. 
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Figure 2. Expected results from proposed experiments. Cells deficient 
in p300 expression (e.g., HCT-R and p300 knockout HCT-116 cells) (top left) 
are expected to have relatively higher CBP-mediated Wnt activity, leading to 
higher levels of ZEB1 and association of ZEB1 with CtBP and BRG1. The 
resulting activity of ZEB1 as a transcription repressor would enhance EMT and 
resistance to HDACis. p300 rescue cells (top right) would exhibit the opposite 
pattern with increased p300-mediated Wnt signaling, decreased expression of 
ZEB1, and association of ZEB1 with p300 and PCAF. Lower levels of ZEB1, 
along with increased activity of ZEB1 as a transcription activator, would 
promote sensitivity to HDACis and repress EMT. We expect that the effects of 
p300-mediated Wnt signaling in repressing ZEB1 levels will be at least partially 
mediated by miR-200 family miRNAs. At bottom we show expected outcomes 
for knockdown or overexpression of ZEB1 in p300-deficient and p300 rescue 
cells, respectively. 

 

Expected results 
We expect (Fig. 2) ZEB1 knockout to decrease 

HDACi resistance and the EMT-like phenotype of 
butyrate-resistant cell lines; whereas, ZEB1 
overexpression may induce a degree of 
butyrate/HDACi-resistance in butyrate-sensitive 
cells, along with a more pronounced EMT-like 
phenotype. The ZEB1 knockout cells should also be 
more sensitive to the pro-apoptotic and growth 
suppressing effects of HDACis, and should exhibit 
increased expression of E-cadherin and decreased 
expression of vimentin. The opposite will be expected 
in butyrate-sensitive cells with stable overexpression 
of ZEB1. 

We expect that p300 rescue cells would exhibit 
increased sensitivity to HDACis, and decreased ZEB1 
expression coupled to a lesser degree of EMT-like 
phenotype (measured by changes in 
vimentin/E-cadherin expression, matrigel-growth 
and invasion). If this is observed, we would determine 
whether exogenous overexpression of ZEB1 at least 
partially reverses these effects of restored p300 
expression. This outcome would strongly suggest that 
ZEB1 is a major mediator of CBP-Wnt activity vs. 
p300-Wnt activity, and their downstream 
physiological outcomes.  

In summary, CBP-Wnt signaling would be 
associated with increased resistance to HDACis, EMT, 
and expression of ZEB1; p300-Wnt signaling is 
expected to promote the opposite: HDACi sensitivity, 
less pronounced EMT behavior, and decreased 
expression of ZEB1. Enhanced CBP-Wnt signaling is 
expected to increase ZEB1 association with repressors 
such as CtBP and BRG1 and promote EMT; whereas, 
enhanced p300-Wnt signaling is expected to increase 
ZEB1 association with p300 and PCAF. We expect that 
the effects of p300-Wnt signaling on ZEB1 expression, 
and, consequently, on EMT and HDACi-resistance, 
would be at least partially mediated by miR-200 
family miRNAs, particularly miR-200 and miR-200c.  

Conclusion 
This line of inquiry may lead to a comprehensive 

understanding of how ZEB1 modulates CBP- vs. 
p300-mediated Wnt signaling to influence EMT and 
resistance to HDACis. Expression of ZEB1 is 
correlated to poor outcomes in human cancer; thus 
ZEB represents a therapeutic target. The findings of 
the proposed studies can be utilized to design 
approaches that reverse HDACi resistance and inhibit 
EMT. 
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CSCs: cancer stem cells. 
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