Supplementary figure legends

Supplementary Figure 1 Statistical data of the effects of β -glucan derived from Orp on tumor growth and other organs in MMTV-PyMT transgenic breast cancer. (A) Tumor weight statistics for the five paired mammary glands in *Orp*-treated and control group. (B) The body weight of mice was measured every 5 days after Orp treatment. Statistical data for body weight of mice in the *Orp*-treated and control groups at different times. (C) Organ weight statistics (heart, liver, spleen, lung, and kidney) in the Orp-treated and control groups. Data are presented as means \pm SD, $n \ge 3$. **P* < 0.05.

Supplementary Figure 2 Impact of *Orp* on cell proliferation and apoptosis in tumor tissues. (A) HE staining and immunohistochemistry results of mammary tumors were used to detect the expression of proliferation-associated proteins using PCNA in the two groups (Scale bar:

50 μ m); TUNEL assay was also used to assess tumor cell apoptosis in the tumor tissues of the two groups (Scale bar: 50 μ m). **(B)** The expression of PCNA and PARP1 proteins in different groups, as analyzed by western blotting, and their semi-quantitative statistics (n=4). Data are presented as mean \pm SD, n \geq 3. ****P*<0.001.

Supplementary Figure 3 Role of the ubiquitin proteasome pathway in the Orp-mediated degradation of β -catenin. (A) The semi-quantitative expression statistics of β -catenin, c-Myc, and cyclin-D1 proteins, as analyzed by western blotting, in MCF-7 cells treated with MG132 and Orp in the presence of TNF- α . Data are shown as means +SD, n \geq 3. (B) Sub-cellular fractionation followed by immunoblot analysis and semi-quantitative statistics confirmed that β -catenin was enriched in the cytosolic fraction upon treatment with Orp and TNF- α than upon treatment with only TNF- α . PARP and HSP60 are used as nuclear and cytosolic markers, respectively.