

Figure S2. NETs related genes with differential expressions in PRAD and survival analysis of NETs related subtype. (A) Venn diagram about the number of differential-expressed NETs related genes between tumor (T) and adjacent normal tissue(N) in TCGA-PRAD dataset. (B) Protein-protein interaction analysis of the 19 differential-expressed NETs-related genes by GENEMANIA. (C) Overall survival (OS) analysis, Biochemical Recurrence Free survival (BCR-Free survival) and Disease-Free survival (DFS) analyses of the two PRAD subtypes.

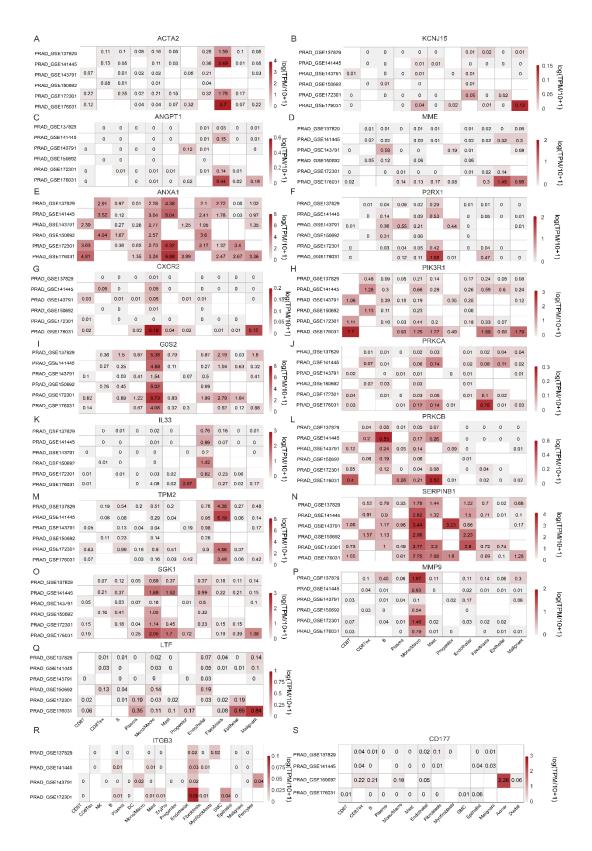
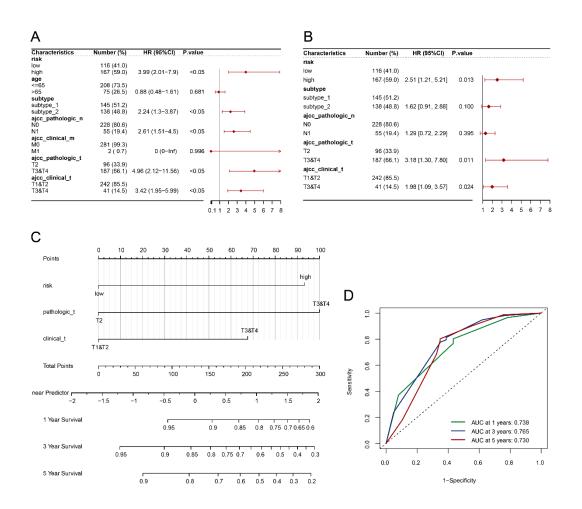
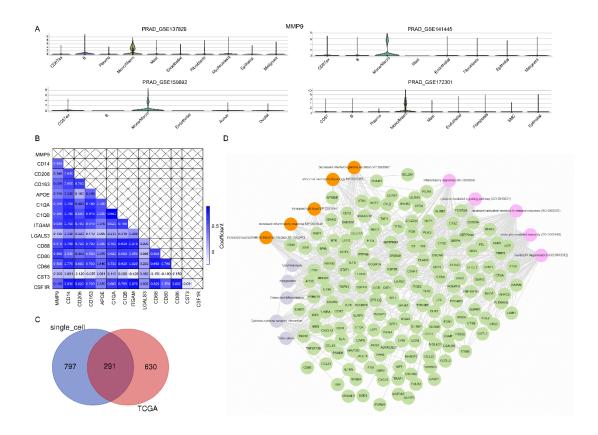




Figure S3 Heatmaps showing the expression levels of the 19 differential-expressed NETs related genes

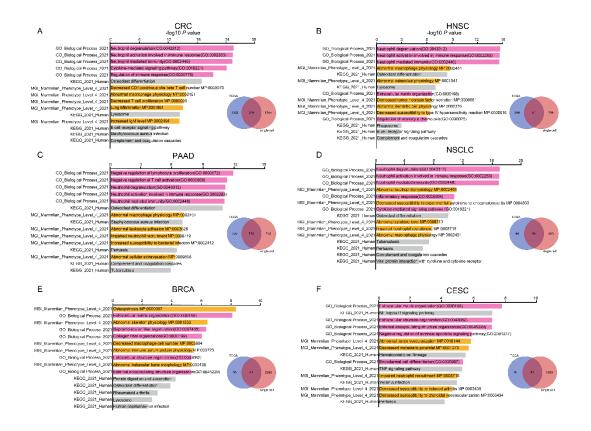
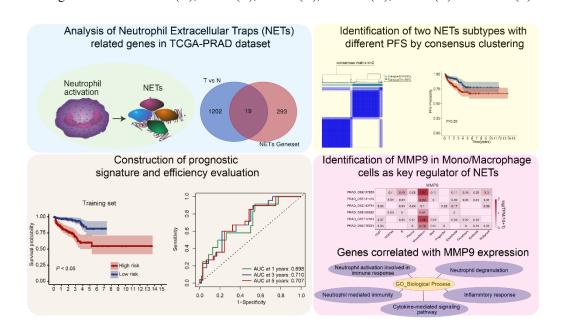

in PRAD single-cell RNA-seq datasets from TISCH database (A-S).

Figure S4. Development of a nomogram based on NETs-related risk score. (**A-B**) Univariate and multivariate cox regression analysis of clinical parameters and NETs-risk score. (**C**) A nomogram model for predicting the 1-year, 3-year, 5-year PFS of PRAD patients. (**D**) ROC curves of the nomogram for predicting 1-year, 3-year, and 5-year PFS.



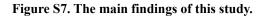

Figure S5. Identification of MMP9 as a NETs regulator in PRAD. (A) Violin plots showing the distribution of MMP9 across different cell clusters in tumor tissue in multiple PRAD single-cell datasets. (B) Correlation among MMP9 and classic Mono/Macrophage cell markers in TCGA-PRAD dataset. (C) 291 genes correlated with MMP9 were identified by both TCGA-PRAD dataset from ULCAN resource and PRAD single-cell datasets from TISCH database. (D) Network analysis of the 291 MMP9 related genes from Enrichr web resource.

Figure S6 Functional annotation of the MMP9 correlated genes in other cancers.

Functional annotation of MMP9 correlated genes which indicated by both TCGA bulk RNA-seq data and single cell data for CRC (**A**), HNSC(**B**), PAAD (**C**), NSCLC (**D**), BRCA (**E**) and CESC (**F**).

Neutrophil extracellular traps (NETs) are extracellular structures formed by neutrophil, consists of DNA,

histones and cytotoxic granule-derived proteins. In this study, we identified 19 NETs related genes with differential expressions between PRAD and adjacent normal tissue. Two significant subtypes were identified based on these 19 genes by consensus cluster analysis, namely subtype 1 and subtype 2. Significant differences in prognosis were observed in these subtypes. LASSO Cox regression analysis identified a NETs-associated prognostic signature including 13 genes, and this signature had a good performance in predicting the progress-free survival of PRAD patients. Further analysis indicated that MMP9 mostly expressed in Mono/Macrophage cells might be key regulator of NETs formation via the neutrophil activation in PRAD.

Table 51	INE IS g	eneset.							
PIK3	PIK3	FPR1	AKT	SYK	FCGR3	MTO	TLR2	HDA	VDAC3
CA	R3					R		C3	
PIK3	PRK	FPRL	RELA	PLCB	ITGB2	RAC	TLR4	HDA	HDAC1
CB	CA					2		C8	0
PIK3	VWF	RAF1	CLC	PLCG2	FCGR2	CYB	TLR8	HDA	PRKCB
CD			N3		А	А		C4	
PLC	FGA	MAP	CLC	VDAC1	ITGA2	NCF2	MPO	HDA	PRKCG
G1		2K1	N4		В			C5	
CTS	FGB	MAP	CLC	SLC25A	ITGB3	NCF1	HMGB	HDA	AGER
G		2K2	N5	4S			1	C6	
ELA	FGG	ERK	TLR7	SAP	SELP	NCF4	H2A	HDA	GSDM
NE								C7	D
CASP	C3	RAC1	ACT	HDAC1	FCGR1	ATG7	H2B	HDA	NOX2
1			В		А			С9	
NFK	C5	CASP	ACT	HDAC2	SELPL	PPIF	H3	HDA	AZU1
B1		4	G1		G			C11	
PIK3	C5A	MAP	SRC	GP1BA	SIGLEC	AQP9	H4	CAM	SIGLEC
R1	R1	3K7			9			Р	14
PIK3	CR1	P38	ITGA	ITGAM	IGH	CLE	HAT1	VDA	SIGLEC
R2			L			C7A		C2	5
CLE	CTS	MAP	GAP	ACTN4	HIST1H	HSPA	BST1	CPPE	PDE4B
C6A	С	K1	DH		2AB	8		D1	
IRAK	DEK	MAP	LDH	MSN	HIST1H	HSPA	CD93	FPR2	SLC22
4		K3	В		2BC	1A			A4
RIPK	PSG	TNF	LDH	ACTR3	HIST1H	HSPA	CEAC	G0S2	SLC25
1	L1		А		3A	1L	AM3		A37

RIPK	SIRL	TAL	COR	CAPZA	LTF	MMP	CREB5	HPSE	TECPR
3	1	DO1	OIA	1	211	9	enabe		2
PIK3	IL10	ТКТ	ACTA	HIST1H	SERPIN	CAT	CRISP	CXCR	TNFRS
R5	RA		2	4A	B1		LD2	1	F10C
AKT	IL10	GPI	ACT	HIST1H	LCN2	PRD	CSF3R	CXCR	VNN3
1	RB		N1	2BA		X2		2	
AKT	CSF1	ALD	PFN1	HIST1H	LYZ	UBA	CYP4F	KCNJ	DNASE
2		OA		2BB		52	3	15	1
AKT	CSF2	TPI1	MYL	HIST3H	ANXA1	S100	DYSF	LILR	ENTPD
3			6B	3		A12		B2	4
PAD4	CSF3	ENO1	ARPC	HIST1H	ANXA3	RET	FCAR	MGA	F3
			1B	2AA		Ν		М	
PADI	CYB	PGK1	GSN	HIST1H	PPIA	ALPL	FCGR3	MME	IL17A
4	В			2BJ			В		
IL1B	CCL	CXC	HIF1	KLF2	MIR146	NOX	S100A	WASL	HMGB2
	2	L1	А		А	4	9		
IL6	CCL	CXC	HRG	KRT10	MIR21	OPA1	S1PR2	XIST	TPM2
	3	L2							
IL8	CCL	CXC	IL12	LCP1	MIR223	ORAI	SOCS3	CXCL	SH3BG
	4	R4	А			1		8	RL3
KCN	CCL	DEFA	IL1R	LDLR	MNDA	P2RX	SPP1	CXCL	HMGN
N3	5	3	L1			1		12	2
PTAF	CD17	DNAJ	IL33	LPAR3	MYD88	PARV	STAT3	ARG1	HP1BP3
R	7	B1				В			
SGK1	CD27	F2RL	IL36R	MAPK1	MYH9	PF4	SUCN	HGF	ANGPT
	4	2	Ν	4			R1		1
ARPI	CD44	FCG	IL5	MAPK7	NFE2L2	РКМ	TICA	H2BC	ANGPT
Ν		R2B					M1	18	2
C3A	CEB	FGL2	ILK	MCOL	NFIL3	PRO	TIMP1	VIM	CGAS
R1	PB			N3		CR			
CAR	CFT	GPB	IRF1	MFN1	NFKBI	PRTN	TLR9	TMSB	STAT1
D11	R	AR1			А	3		4X	
CCD	CLE	H2A	ITGB	MFN2	NLRP3	S100	TNFAI	PGD	KRAS
C25	C4E	Х	1			A8	P3		
CDC	YAP1	VST	MAP	PRRT2	MOK	LTB4	FCGR3	SULT	LTB4R
42		M1	2K7			R2	А	2A1	
TCE	CCL								
TGF BR1	17								

 Table S2 13 NETs related genes used in prognostic model construction

CYBA	CORO1A	LTF	LCN2	MMP9	IL1B	IL6	CCL2	CD177	CFTR
CXCL2	S100A9	SOCS3							