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Abstract 

Background: Lung cancer and oesophageal cancer are prevalent malignancies with rising incidence and 
mortality worldwide. While some environmental and behavioural risk factors for these cancers are established, 
the contribution of genetic factors to their pathogenesis remains incompletely defined. This study aimed to 
interrogate the intricate genetic relationship between lung cancer and oesophageal cancer and their potential 
comorbidity.  
Methods: We utilised linkage disequilibrium score regression (LDSC) to analyse the genetic correlation 
between oesophageal carcinoma and lung carcinoma. We then employed several approaches, including 
pleiotropic analysis under the composite null hypothesis (PLACO), multi-marker analysis of genomic 
annotation (MAGMA), cis-expression quantitative trait loci (eQTL) analysis, and a pan-cancer assessment to 
identify pleiotropic loci and genes. Finally, we performed bidirectional Mendelian randomisation (MR) to 
evaluate the causal relationship between these malignancies.  
Results: LDSC revealed a significant genetic correlation between oesophageal carcinoma and lung carcinoma. 
Further analysis identified shared gene loci including PGBD1, ZNF323, and WNK1 using PLACO. MAGMA 
identified enriched pathways and 9 pleiotropic genes including HIST1H1B, HIST1H4L, and HIST1H2BL. eQTL 
analysis integrating oesophageal, lung, and blood tissues revealed 26 shared genes including TERT, NKAPL, 
RAD52, BTN3A2, GABBR1, CLPTM1L, and TRIM27. A pan-cancer exploration of the identified genes was 
undertaken. MR analysis showed no evidence for a bidirectional causal relationship between oesophageal 
carcinoma and lung carcinoma.  
Conclusions: This study provides salient insights into the intricate genetic links between lung carcinoma and 
oesophageal carcinoma. Utilising multiple approaches for genetic correlation, locus and gene analysis, and 
causal assessment, we identify shared genetic susceptibilities and regulatory mechanisms. These findings reveal 
new leads and targets to further elucidate the genetic basis of lung and oesophageal carcinoma, aiding 
development of preventive and therapeutic strategies. 
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1. Introduction 
Esophageal cancer, one of the most prevalent 

malignancies, has shown an alarming upward trend 
in recent years and is becoming more prevalent 
among younger populations. It ranks as the eighth 
most common cancer worldwide and the sixth 
leading cause of cancer-related deaths[1, 2]. Despite 

advancements in treatments like surgery combined 
with radiotherapy and chemotherapy, the prognosis 
for esophageal cancer patients remains generally 
poor. In most countries, the 5-year survival rate after 
diagnosis of esophageal cancer still ranges between 
10% and 30%[3]. On the other hand, lung cancer 
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stands as a primary cause of cancer-related mortality, 
accounting for over 20% of all cancer deaths[1]. 
Approximately 80% of lung cancer deaths are 
attributed to smoking, and the majority of patients 
present with signs of metastasis by the time 
symptoms manifest, which is a major factor 
contributing to the high mortality rate[4, 5]. Each year, 
millions of people are diagnosed with either 
esophageal cancer or lung cancer, and the death toll is 
also strikingly substantial[1, 6]. Despite significant 
progress in research on lung and esophageal cancers 
over the past decades, the exact mechanisms 
underlying their development remain incompletely 
understood. 

Genetic factors play a crucial role in the 
development of cancer. Early familial studies have 
indicated a clustering of lung cancer and esophageal 
cancer within families, suggesting the potential 
importance of genetic factors in their susceptibility[7–
10]. Previous research has found underlying 
mechanistic links between smoking status and the 
prognosis of lung and esophageal cancer patients, 
supporting the clinical use of mithramycin to inhibit 
ABCG2 and suppress tumor stem cell signaling[11]. 
Additionally, there are shared molecular 
pathophysiological factors between the two cancers 
that may promote tumor development, such as 
ECRG4, microRNA-93, ACTL6A, and FOXA1[12–15]. 
Furthermore, patients with esophageal cancer have an 
increased risk of developing lung cancer[16, 17], and 
vice versa, patients with lung cancer face an elevated 
risk of esophageal cancer recurrence[18]. These 
associations suggest the possibility of common 
genetic or environmental risk factors between 
esophageal and lung cancers, an area that remains 
insufficiently explored. Therefore, a systematic 
analysis is necessary to elucidate whether there are 
shared pleiotropic risk variants between esophageal 
and lung cancers, and whether specific molecular 
pathways are involved in these interactions. 

In recent years, Genome-Wide Association 
Studies (GWAS) have emerged as a powerful tool for 
unraveling the genetic basis of complex diseases[19]. 
The LDSC method is a robust technique used to assess 
the genetic correlation between diseases and complex 
traits[20]. This study will begin by utilizing the LDSC 
method, combined with extensive population-based 
GWAS data, to assess the genetic correlation between 
lung cancer and esophageal cancer. Subsequently, we 
will identify pleiotropic loci and genes using different 
approaches. In the PLACO analysis[21], we will 
identify three shared gene loci: PGBD1, ZNF323, and 
WNK1. In the MAGMA analysis, we will uncover 
significantly enriched relevant pathways and further 
pinpoint nine pleiotropic genes, including HIST1H1B, 

HIST1H4L, and HIST1H2BL. Next, using data from 
esophageal tissues, lung tissues, and whole blood, we 
will identify eQTL genes associated with these 
pleiotropic risk loci, which will include 26 genes such 
as TERT, ZKSCAN3, NKAPL, ZNF165, RAD52, 
BTN3A2, GABBR1, HIST1H2BK, CLPTM1 and 
TRIM27. Subsequently, we will conduct a pan-cancer 
analysis on all the relevant genes obtained through 
these three methods. Finally, employing the MR 
analysis method, we will assess the causal 
relationship between esophageal cancer and lung 
cancer, and the results will demonstrate that there is 
no mutual causal relationship between the two types 
of cancer. Through this study's approach and 
methodology, we seek to understand the complex 
genetic interplay between lung cancer and esophageal 
cancer. It will lay a strong foundation for future 
research, driving new insights and goals in 
prevention, early diagnosis, and personalized 
treatments. 

2. Methods 
2.1 GWAS summary statistics 

2.1.1 Lung cancer data 
The lung cancer data was derived from a GWAS 

meta-analysis[22] that encompassed 14,803 cases and 
12,262 controls from the European OncoArray 
consortium. The GWAS analysis was performed using 
a fixed-effects model (online methods) to combine 
OncoArray results with previously published lung 
cancer GWAS data, totaling 29,266 cases and 56,450 
controls. In total, 18 susceptibility loci were identified 
with genome-wide significance, including 10 novel 
loci. 

2.1.2 Esophageal cancer data 
The esophageal cancer data was collected 

through a GWAS meta-analysis[23] conducted across 
four independent studies in Europe, North America, 
and Australia. All patients in the study had European 
ancestry and were confirmed to have the disease 
through histopathological examination. The meta- 
analysis employed a fixed-effects inverse-variance 
weighted method and included a total of 4,112 
esophageal adenocarcinoma patients. Additionally, 
17,159 representative controls were selected from four 
whole-genome association studies conducted in 
Europe, North America, and Australia. 

2.2 TCGA statistics 
The gene expression profiles and clinical data 

can be found at the GDC portal (https:// 
portal.gdc.cancer.gov/). In order to gain insights into 
potential protein-protein interactions among the 34 
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genes, a protein-protein interaction (PPI) network was 
constructed using the Search Tool for the Retrueval of 
Interacting Genes (STRING) database.  

2.3 Statistical analyses 

2.3.1 Genetic correlation analysis 
In GWAS studies, both polygenicity and 

confounding factors (such as cryptic relatedness and 
population stratification) can lead to inflated test 
statistics. However, we cannot distinguish whether 
the inflation is due to polygenicity or confounding. 
Through linkage disequilibrium score regression 
(LDSC), we can quantify the contribution of each by 
studying the relationship between test statistics and 
linkage disequilibrium. Using the linkage 
disequilibrium score regression (LDSC)[24] and 
high-definition likelihood (HDL)[25] methods, we 
assessed the shared polygenic architecture among 
traits. The LD scores in LDSC were computed from 
European ancestry samples in the 1000 Genomes 
Project as the reference panel[26]. The reference set for 
HDL comprised 1,029,876 quality-controlled 
HapMap3 SNPs. We applied stringent quality control 
measures for SNP selection: (i) exclusion of 
non-biallelic SNPs and those with ambiguous strand 
information; (ii) removal of SNPs without rs tags; (iii) 
deletion of duplicate SNPs or those not present in the 
1000 Genomes Project, as well as SNPs with 
mismatched alleles; (iv) exclusion of SNPs within the 
major histocompatibility complex region (chr6: 28.5–
33.5Mb) due to its complex LD structure; (v) retention 
of SNPs with minor allele frequency (MAF) > 0.01. 

2.3.2 Pleiotropic analysis under composite null 
hypothesis (PLACO) 

SNP-Level PLACO is a novel method that 
enables the study of pleiotropic loci between complex 
traits using only summary-level genotype-phenotype 
association statistics[21, 27]. To detect pleiotropic loci, 
we initially computed the square of the Z-scores for 
each variant and removed SNPs with extremely high 
Z^2 (>80). Additionally, considering the potential 
correlation between lung cancer and esophageal 
cancer, we estimated the correlation matrix of 
Z-scores. We then employed the Level α Intersecting 
Union Test (IUT) method to test the hypothesis of no 
pleiotropy. The final p-value from the IUT test 
represents the maximum p-value obtained from 
testing H0 against H1. 

2.3.3 Enrichment analysis for identified pleiotropic 
genes 

Based on the PLACO results, we further mapped 
the identified loci to nearby genes to explore the 
shared biological mechanisms of these pleiotropic 

loci. We performed Generalized Gene-Set Analysis of 
GWAS Data (MAGMA) analysis[28] on genes based 
on the PLACO output and single-trait GWAS at 
pleiotropic loci or overlapping with them.  

MAGMA integrates gene information and 
pathway analysis of complex diseases in a biologically 
meaningful way, serving as an effective supplement 
to single-variant GWAS. This analysis aimed to 
identify candidate pathways and tissue enrichments 
for pleiotropic genes. Functional maps and 
annotations from the Functional Mapping and 
Annotation of Genome-Wide Association Studies 
(FUMA) were utilized to determine the biological 
functions of the pleiotropic loci[29]. Additionally, we 
employed FUMA for differential expression analysis 
and gene-set enrichment analysis of the pleiotropic 
genes identified by PLACO. To assess the biological 
significance of gene-set enrichment analysis, we 
investigated the detected pleiotropic genes against 
gene sets obtained from MsigDB (such as hallmark 
gene sets, positional gene sets, curated gene sets, 
motif gene sets, computational gene sets, and Gene 
Ontology sets), utilizing a series of pathway 
enrichment analyses based on the Molecular 
Signatures Database (MSigDB) to determine the 
functional roles of the mapped genes[30]. 
Incorporating SNP-gene association data, eQTL 
analysis was conducted, encompassing esophageal 
tissue, lung tissue, and whole-blood tissue. 

2.3.4 Mendelian randomization analysis 
Mendelian randomization (MR) is a commonly 

used tool for causal inference, employing SNPs 
associated with the exposure to study its impact on 
the outcome[31]. It is important to highlight that MR 
not only provides insights into causal relationships 
between diseases but also offers meaningful genetic 
explanations for the nature of disease comorbidities 
by addressing horizontal or vertical pleiotropy 
issues[32]. To achieve this goal, we conducted 
bidirectional MR analyses as follows: We utilized the 
clumping program in PLINK software[33] to select all 
independently associated significant genetic loci (P < 
5×10^-8) with the disease as instrumental variables 
(IVs), with an r^2 threshold of 0.001 and a window set 
at 10,000kb. To ensure the strength of the IVs, we 
calculated the r^2 and F statistics for each 
instrumental variable[34]. The formula for the F 
statistic is as follows: F = (r^2 × (n - 2)) / (1 - r^2) 
where r^2 represents the proportion of variance 
explained by the instrumental variable, n is the 
sample size, and k is the number of SNPs. The 
primary method employed for Mendelian randomi-
zation is the inverse-variance weighted (IVW) 
method, which requires the IVs to satisfy three 
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assumptions: (1) the IVs should be correlated with the 
exposure; (2) the IVs should not be associated with 
confounding factors related to both exposure and 
outcome; and (3) the IVs' effects on the outcome 
should be entirely mediated through the exposure. 
Several sensitivity analyses were conducted. Firstly, 
the IVW and MR-Egger's Q test were used to detect 
potential violations of the assumptions by assessing 
heterogeneity among individual IVs[35]. Secondly, 
we applied MR-Egger to estimate horizontal 
pleiotropy based on its intercept to ensure the genetic 
variation is independent of exposure and 
outcome[36]. Additional analyses using MR methods 
with different modeling assumptions and strengths 
(e.g., weighted median and weighted mode) were 
performed to enhance the stability and robustness of 
the results. All statistical analyses were conducted 
using R version 3.5.3, and MR analyses utilized the 
MendelianRandomization package[37]. 

The weighted median method is a robust causal 
effect estimation approach that is based on the 
assumption that at least half of the instrumental 
variables are valid (i.e., not associated with 
confounders and only affect the outcome through the 
exposure of interest). This method uses the effect 
estimates and precision of each instrument (typically 
the inverse of the standard error) as weights to 
calculate the median. The weighted mode method is 
based on the modal estimate and calculates the causal 
effect estimate for each instrument. Using methods 
like kernel density estimation (KDE), it estimates the 
distribution of the estimates, taking into account the 
weights for each estimate, and finds the peak of that 
distribution, i.e., the modal value. The weighted mode 
method is less sensitive to the influence of individual 
invalid instruments, especially when these invalid 
instruments are not clustered around the same 
estimate value. 

3. Results 
3.1 Genetic correlation 

The depiction of the schematic overview of the 
analytical workflow was shown (Fig. 1). To 
investigate the relationship between esophageal 
cancer and lung cancer, we initially assessed their 
genetic correlation. Through genetic correlation 

analysis, we found a significant genetic correlation 
between lung cancer and esophageal cancer, both in 
LDSC (rg = 0.234, P = 0.001) and in HDL (rg = 0.180, P 
= 0.032) (Additional file: Table S1). 

3.2 Estimation of pleiotropic enrichment 
Further, a PLACO analysis was conducted on 

both diseases, and the Manhattan plot is displayed 
(Fig. 2). The identified pleiotropic loci are presented, 
revealing three pleiotropic genes: PGBD1, ZNF323, 
and WNK1 (Table 1). The QQ plot did not show signs 
of genomic inflation (Additional file: Fig. S1). The 
presentation included essential details for each 
genome-wide risk locus, encompassing the risk locus 
size, SNP count, mapped gene count, and the number 
of genes within the locus (Additional file: Fig. S2). 
The functional impact of the pleiotropic SNPs on 
genes is illustrated (Additional file: Fig. S3). 
Additionally, regional plots for each risk locus can be 
found (Additional file: Fig. S4-S6). Multiple-effect 
results were subjected to gene-set enrichment analysis 
using MAGMA, which revealed the top 10 
significantly enriched gene sets (Additional file: 
Table S2). These sets encompassed pathways such as 
breast cancer 5p15 amplicon, DNA metabolic process, 
reactome highly calcium permeable postsynaptic 
nicotinic acetylcholine receptors, EHMT2 targets up, 
reactome highly calcium permeable nicotinic 
acetylcholine receptors, regulation of xenophagy, 
PPARA pathway, PTEN pathway, RNA binding and 
genomic pathway. Previous literature has provided 
substantial evidence linking these significantly 
enriched pathways to cancer initiation and 
progression, as observed in bladder cancer[38], gastric 
cancer[39], cervical cancer[40], lung cancer[41–43], 
and others associated with the amplification or 
alteration of 5p15; the close association between the 
PPARA pathway and various cancers[44–46]; as well 
as the role of the PTEN pathway in tumorigenesis[47–
49]. Tissue-specific MAGMA analysis indicated that 
the spleen exhibited the highest enrichment evidence 
for both diseases, suggesting a strong immune 
correlation (Fig. 3 and Additional file: Table S3). It is 
essential to note that this section of MAGMA gene-set 
and tissue-specific analysis utilized the complete 
distribution of SNP p-values for examination. 

 

Table 1: Information on the identified 3 pleiotropic loci. 

Genomic Locus uniqID chr start end LeadSNPs P-value Mapped genes 
1 5:1307910:A:G 5 1270983 1374233 rs186730568 1.30E-09  
2 6:28290328:G:T 6 27300310 29290172 rs56075693 1.98E-08 PGBD1, ZNF323 
3 12:1002857:C:T 12 861374 1077894 rs4619206 2.89E-09 WNK1 
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Figure 1: The analytical workflow's schematic overview. 

 
Figure 2: Manhattan plot showing pleiotropic loci between lung cancer and esophageal cancer. 

 
Figure 3: Genome-wide pleiotropy-based MAGMA tissue-specific analysis. 
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In genetic studies, Single Nucleotide Poly-
morphisms (SNPs) are common genomic variations. 
Among them, the "lead SNP" refers to the SNP that 
exhibits the strongest association in genetic 
association analyses. The role of the lead SNP is to aid 
in determining the correlation between specific genes 
or genomic regions and target traits or diseases in 
genetic association research. It can be considered a 
representative SNP and serves as a marker or 
reference point for other related SNPs. By utilizing the 
positional information of the lead SNP, we identified 
genes associated with these pleiotropic risk loci 
(Table 1). Further analysis using MAGMA identified 
9 pleiotropic genes: HIST1H1B, HIST1H4L, 
HIST1H2BL, OR2B2, HIST1H2BN, HIST1H2AL, 
RAD52, HIST1H2AJ, and HYKK (Additional file: Fig. 
S7 and Table S4). No genomic inflation was observed 
in the QQ plots, confirming the reliability of the 
results (Additional file: Fig. S8). The expression of 
pleiotropic genes in various tissues, including the 
thyroid, blood vessels, brain, cervix, tibial nerve, and 
ovary, showed differential expression (Additional 
file: Fig. S9). Pathway analysis reveals enrichment in 
pathways related to protein DNA complex subunit 
organization, chromatin assembly, nucleosome 
organization, and DNA packaging, among others 
(Additional file: Fig. S10-S13). 

3.3 eQTL analysis 
The eQTL analysis is a commonly used 

multi-omics integration analysis method that allows 
us to associate changes in gene expression levels with 
genotypes. It helps reveal the physiological and 
biochemical processes of living systems, discover 
genetic factors leading to certain diseases, and 
identify biological pathways affected by them. 
Therefore, we conducted expression quantitative trait 
locus (eQTL) analysis, which is a method employed to 
investigate the associations between genotypes and 
phenotypes[50]. This approach delves into how 
genetic variations influence gene expression levels by 
analyzing the relationship between single nucleotide 
polymorphisms (SNPs) and gene expression. In this 
current study, we further utilized eQTL information 
from esophageal tissue, lung tissue, and whole-blood 
data to identify eQTL genes associated with these 
pleiotropic risk loci (Additional file: Table S5). A 
total of 26 genes, including TERT, HIST1H2BN, 
ZSCAN23, OR2H2, SCAND3, PRSS16, ZSCAN31, 
ZNF391, ZSCAN12, ZKSCAN3, ZNF322, PGBD1, 
ZKSCAN4, ZNF184, NKAPL, ZNF165, ZNF311, 
RAD52, ZSCAN9, BTN3A2, ABT1, ZKSCAN8, 
GABBR1, HIST1H2BK, CLPTM1L, and TRIM27, were 
identified. The expression patterns of these 
pleiotropic eQTL genes are presented in different 

tissues (Additional file: Fig. S14). Notably, these 
genes exhibited significant enrichment in the uterus, 
brain, and skeletal muscle tissues (Additional file: 
Fig. S15). Pathway enrichment analysis involves six 
immune-related gene sets (UNSTIM VS 2H LPS AND 
R848 DC UP, CSF1 VS CSF1 IFNG IN MAC DN, 
HEALTHY VS TYPE 1 DIABETES PBMC 4MONTH 
POST DX DN, WT VS TCF1 KO DN3 THYMOCYTE 
UP, UNSTIM VS ANTI IGM AND CD40 STIM 6H 
FOLLICULAR BCELL DN, CD8A DC VS NK CELL 
MOUSE 3H POST POLYIC INJ DN) (Additional file: 
Fig. S16 and Table S6). Furthermore, the protein- 
protein interaction (PPI) results (Additional file: Fig. 
S17) include genes such as PGBD1, ZKSCAN3, 
ZKSCAN4, ZKSCAN8, and ZKSCAN23. This 
comprehensive analysis allows us to gain a deeper 
understanding of the interplay between genotypes 
and phenotypes, shedding light on the regulatory 
mechanisms of gene expression in different tissues. 

3.4 Pan cancer analysis 
In the preceding analysis, we obtained 3 Mapped 

genes, namely PGBD1, ZNF323, and WNK1, through 
PLACO analysis. Additionally, MAGMA analysis 
revealed nine genes, including HIST1H1B, HIST1H4L, 
HIST1H2BL, OR2B2, HIST1H2BN, HIST1H2AL, 
RAD52, HIST1H2AJ, and HYKK. Furthermore, eQTL 
analysis identified a total of 26 genes, which 
encompassed TERT, ZKSCAN3, NKAPL, ZNF165, 
RAD52, BTN3A2, GABBR1, HIST1H2BK, CLPTM1L, 
and TRIM27. The combined results from these three 
analytical approaches yielded 38 genes. After 
eliminating duplicate genes (note: PGBD1 and 
ZNF323 were replicated from PLACO and eQTL 
analysis, while HIST1H2BN and RAD52 were 
duplicated in MAGMA and eQTL analysis; ZNF323 is 
also recognized as ZSCAN31), the final count of 
unique genes was reduced to 34. The origin and Venn 
diagram representation of these genes are depicted 
(Fig. 4A). Subsequently, we performed an 
investigation of the chromosomal locations of these 
genes in the human genome. These genes were 
distributed across chromosomes 5, 6, 12, and 15, with 
a notable concentration of twenty-nine genes on 
chromosome 6, confined to a specific segment 
(Chromosomal Start and End Positions: 26365387… 
29556745) (Additional file: Fig. S18 and Table S7). 
Extensive research has linked chromosome 6 to 
tumorigenesis. For instance, numerous chromosomal 
aberrations are frequently observed in thymoma 
patients[51]. Similarly, colorectal cancer patients 
exhibit imbalanced allelic frequencies of the tumor 
necrosis factor-alpha gene and chromosome 6 allelic 
genes[52]. Furthermore, various gene alterations on 
chromosome 6 have been implicated in the promotion 
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and progression of breast cancer[53]. Collectively, 
these pieces of evidence suggest the significance of 
this chromosomal region in the coordinated regula-
tion of esophageal and lung cancer development. 

In addition to the positional information, we 
further explored whether these genes have similar 
functional or epigenetic connections. The 34 genes 
obtained from the previous analysis are considered to 
be involved in the comorbidity between lung and 
esophageal cancers. We were curious to investigate 
whether these genes also exhibit similar comorbidity 
in other cancers. Hence, we conducted a pan-cancer 
analysis to explore potential interconnections among 
them. Firstly, we generated a heatmap from the 
differential expression analysis of the pan-cancer data 
(Fig. 4B), which revealed that certain genes exhibit 
similar expression patterns across various cancer 
types. For instance, TERT displayed a ubiquitous 
upregulation, while NKAPL exhibited a universal 
downregulation. Prior research has suggested that 
TERT is typically expressed in human germ and stem 
cells but silenced in differentiated somatic cells. 
However, it undergoes transcriptional reactivation in 
up to 90% of human malignancies[54–56]. Notably, in 
thyroid cancer, TERT promoter mutations enhance 
telomerase activity, leading to immortalization of 
cancer cells[57]. Additionally, identifying TERT 
promoter mutations from urine or plasma cell-free 
DNA (liquid biopsy) can aid in early screening of 
bladder cancer[58]. In the context of liver cancer, the 
high methylation level and low expression of NKAPL 
are associated with poor prognosis[59]. These 
findings suggest that the identified genes may play 
crucial roles in various cancers and have potential 
implications in cancer diagnostics and treatment 
strategies. The pan-cancer analysis has unveiled 
shared expression patterns, highlighting the 
importance of exploring these genes as potential 
therapeutic targets or biomarkers across different 
cancer types. Further investigations are warranted to 
elucidate the underlying molecular mechanisms and 
functional significance of these genes in cancer 
development and progression. 

Next, utilizing the ssGSEA algorithm, we 
converted the comprehensive expression of each gene 
into a Z-score and conducted paired differential 
analysis between tumor and adjacent normal tissues 
across various cancers in TCGA. Remarkably, 
significant differences were observed in several 
cancers, including esophageal cancer and lung cancer 
(Fig. 4C). Then we conducted a Protein-Protein 
Interaction (PPI) network analysis to explore the 
interplay between proteins and discovered tight 

interconnections among them (Fig. 4D). This network 
analysis helped unveil the functional associations and 
mutual interactions between proteins, providing 
valuable insights into their collective behaviors in 
esophageal and lung cancer. Furthermore, single 
pathway Gene Set Enrichment Analysis (GSEA) was 
performed on each KEGG pathway (Additional file: 
Fig. S19). The DNA repair pathway, E2F signaling 
pathway, G2M checkpoint signaling pathway, mitotic 
spindle signaling pathway, and MYC signaling 
pathway exhibited positive correlations with various 
types of cancers. These findings provide additional 
insights into the potential roles of these genes in 
cancer development and progression. The 
identification of associations with survival, gene 
expression differences between tumor and normal 
tissues, and promoter methylation patterns enhances 
our understanding of the molecular mechanisms 
underlying cancer pathogenesis. The enrichment of 
specific pathways further supports the notion that 
these genes may be involved in critical cancer-related 
processes, warranting further investigation for their 
clinical significance and therapeutic potential. Gene 
promoter methylation is a common epigenetic event 
that occurs in the early stages of tumor development 
and holds immense potential as a diagnostic and 
prognostic biomarker for cancer[60]. Consequently, 
we conducted a pan-cancer analysis of gene promoter 
methylation and observed significant associations 
between several genes, including ZNF323, ZSCAN23, 
SCAND3, PRSS16, ZNF391, NKAPL, and ZNF311, 
and promoter methylation (Fig. 4E).  

The pan-cancer analysis looking across different 
cancer types reveals some interesting connections. 
Several of the genes we identified as being important 
in lung and esophageal cancers also seem to play roles 
in other cancers. For example, the TERT gene shows 
increased activity across almost all the cancers we 
looked at. Previous research has shown that TERT 
activity is increased in many cancer cells and helps the 
cells divide indefinitely. So our findings suggest this 
gene could be a useful target for cancer therapies. 
Another gene called NKAPL shows decreased activity 
in the cancers we studied. Other research found low 
NKAPL levels were linked with worse outcomes in 
liver cancer. Overall, our pan-cancer analysis suggests 
that some of the genes important in lung and 
esophageal cancer are also dysregulated in other 
cancer types. Targeting these shared genes could 
potentially lead to new diagnostic tests or treatments 
that apply to multiple cancers. We plan to explore 
these possibilities in future studies. 
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Figure 4: Pan-cancer analysis. (A)Venn diagram depicting the distribution of genes from three different sources. (B) Gene Expression Across 17 Types of Cancer. The heat map 
shows the fold changes, with red representing up-regulated genes, and blue representing down-regulated genes. (C) Expression landscape of genes in human cancer. Y-axis 
representing gene set score, which was calculated by ssGSEA based on the gene expression in the TCGA. In paired samples grouped by cancer from the TCGA. Each point 
representing one sample. p-values are based on two-tailed Student t-test. (D) PPI network showing the interactions of hub genes. (E) Pearson’s correlation of genes between 
transcriptional expression and promoter methylation. Red and blue represent positive and negative correlations, respectively. 
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3.5 Mendelian randomization analysis 
Mendelian Randomization (MR) is a commonly 

used causal inference tool that employs single 
nucleotide polymorphisms (SNPs) associated with the 
exposure of interest as instruments to study its impact 
on outcomes[31]. In order to explore whether there 
exists a causal relationship between esophageal 
cancer and lung cancer, we conducted causal 
inference using the two-sample MR approach. 
However, the results did not support a significant 
association between the two diseases. The 
instrumental variables (Additional file: Table S8), 
sensitivity analysis (Table 2 and Additional file: 
Table S9) and scatter plots and funnel plots (Fig. 5) 
are available for reference. The causal effect analysis 
of lung cancer on esophageal cancer revealed 
consistent results across all four MR methods (IVW, 
MR-Egger, Weighted mode, Weighted median), 
indicating the absence of a causal effect of lung cancer 
on esophageal cancer. The heterogeneity test yielded a 
P-value of 0.353, suggesting no significant hetero-
geneity, and the MR-Egger intercept had a P-value 
greater than 0.05, indicating the absence of horizontal 
pleiotropy. Scatter plots and funnel plots were 
employed to rule out the possibility of outlier 
interference. Similarly, there was no causal effect of 
esophageal cancer on lung cancer, as all four MR 

methods (IVW, MR-Egger, Weighted mode, Weighted 
median) yielded consistent results. The heterogeneity 
test resulted in a P-value of 0.075, indicating no 
significant heterogeneity, and the MR-Egger intercept 
had a P-value greater than 0.05, suggesting the 
absence of horizontal pleiotropy. Scatter plots and 
funnel plots were utilized to exclude the interference 
of outliers. 

Overall, while our MR analysis results suggest a 
lack of clear causal relationship between lung cancer 
and esophageal cancer, this helps focus on other 
potential mechanisms of carcinogenesis. Furthermore, 
given the limited sample size, the possibility of a 
weaker causal effect cannot be completely ruled out. 
Larger sample datasets will need to be tested in future 
studies to arrive at more robust causal conclusions. 

4. Discussion 
Our study findings hold significant implications 

from both statistical and scientific perspectives. 
Firstly, the extensive genetic overlap among tumors 
contributes to the identification of potential genetic 
connections that might remain concealed in 
single-phenotype studies. Furthermore, harnessing 
phenotypic correlations across tumor characteristics 
significantly enhances the statistical power and 
predictive accuracy in joint analyses.  

 

 
Figure 5: Scatter plot and funnel plot for MR analysis. (A) Scatter plot of causal effects of lung cancer on esophageal cancer. (B) Scatter plot of causal effects of esophageal 
cancer on lung cancer. (C) Funnel plot of causal effects of lung cancer on esophageal cancer. (D) Funnel plot of causal effects of esophageal cancer on lung cancer. The 
bidirectional MR results do not support any causal association among them. 
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Table 2: MR analysis results. 

Exposure Outcome Methods Estimate P Heterogeneity test 
Estimate P 

Lung cancer Esophageal cancer IVW (fixed) 1.031 (0.945, 1.124) 0.493  4.412 0.353    
MR-Egger (slope) 0.899 (0.438, 1.846) 0.670  

  
  

MR-Egger (intercept) 0.027 (-0.111, 0.165) 0.579  
  

  
Weighted mode 1.043 (0.907, 1.2) 0.555  

  
  

Weighted median 1.049 (0.937, 1.174) 0.405  
  

Esophageal cancer Lung cancer IVW (fixed) 1.048 (0.911, 1.205) 0.513  16.977 0.075   
MR-Egger (slope) 1.192 (0.916, 1.553) 0.192  

  
  

MR-Egger (intercept) 1.099 (0.901, 1.34) 0.352  
  

  
Weighted mode 1.815 (0.823, 4) 0.122  

  
  

Weighted median -0.083 (-0.198, 0.033) 0.139  
  

 
 
This signifies that the application of efficient 

pleiotropy-informed statistical methods to explore 
existing and future tumor datasets can yield more 
fruitful returns. Secondly, a comprehensive under-
standing of the shared genetic architecture of tumors 
is crucial for the development of novel gene-based 
therapeutic strategies. It is highly plausible that 
targeted treatment designed for one disease may exert 
broader therapeutic effects across other tumors, 
potentially benefiting a larger cohort of patients. 
Thirdly, within the domain of pleiotropic associations, 
we underscore the phenomenon known as 
"antagonistic effects," wherein a specific gene may 
exhibit robust associations with multiple tumors, but 
the direction of its genetic effects could be opposite in 
different tumor types. This finding holds particular 
importance in the discovery of molecular targets, 
especially for genome-editing techniques like the 
CRISPR-CAS system, as unforeseen genetic and 
consequent phenotypic side effects may arise. Lastly, 
the use of bioinformatics approaches helps reveal 
potential associations between diseases[61] [62]and 
the exploration of causal relationships between 
distinct tumors offers valuable insights into the 
development of preventive and therapeutic strategies 
in clinical settings. 

Our findings may have important clinical 
implications. The identified pleiotropic genes and 
pathways could represent novel targets for 
developing preventive and therapeutic strategies that 
concurrently address multiple cancer types. For 
example, the ubiquitously amplified TERT gene 
implicates telomerase inhibition as a possible broad- 
spectrum cancer treatment approach. Additionally, 
the proposed prognostic value of genes like NKAPL 
warrants further validation as clinical biomarkers to 
refine risk stratification, screening protocols, and 
treatment decisions. Our discovery of shared genetic 
mechanisms between lung and esophageal cancers 
provides a foundation for exploring combinatorial 
therapies, which may confer synergistic effects against 
both malignancies. Moreover, the elucidation of 

causal relationships aids in developing interventions 
that target key driver phenotypes to mitigate risk. 
Future drug development efforts could focus on 
agents that modulate the shared pathways uncovered 
in our study to generate wider anti-cancer benefits. 

However, it is important to acknowledge several 
limitations in our study. Firstly, our research 
primarily relied on GWAS data and statistical 
analyses, which means that we cannot directly 
ascertain the specific biological mechanisms by which 
genetic variations influence cancer. Further 
experimental research and functional validation are 
necessary to elucidate these mechanisms. Secondly, 
our study focused on the genetic relationships 
between lung cancer and esophageal cancer, which 
may limit the generalization of our findings to other 
types of cancers and genetic diseases. And there is 
currently no way to correct for covariates and other 
heterogeneities in wo-sample MR analysis. Future 
research could extend to include a broader spectrum 
of cancer types and diseases. Additionally, all the data 
used in our study were from European populations, 
and as such, our conclusions may not be entirely 
applicable to other ethnicities. Lastly, the data utilized 
were summary data, which precludes further 
population stratification analyses (such as different 
genders or age groups). 

5. Conclusion 
The identified pleiotropic genes and pathways 

between lung and esophageal cancers represent 
potential novel targets for developing preventive and 
therapeutic strategies that concurrently address 
multiple cancer types. For instance, the ubiquitously 
amplified TERT gene implicates telomerase inhibition 
as a possible broad-spectrum cancer treatment 
approach. Additionally, the proposed prognostic 
value of genes like NKAPL warrants further valida-
tion as clinical biomarkers to refine risk stratification, 
screening protocols, and treatment decisions. Our 
discovery of shared genetic mechanisms between 
lung and esophageal cancers lays the foundation for 
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exploring combinatorial therapies, which may confer 
synergistic effects against both malignancies. 
Moreover, the elucidation of causal relationships aids 
in developing interventions that target key driver 
phenotypes to mitigate risk. Future drug 
development efforts could concentrate on agents that 
modulate the shared pathways uncovered in our 
study to generate wider anti-cancer benefits. 

In conclusion, through the design and methods 
employed in this study, we have gained preliminary 
insights into the genetic relationship between lung 
cancer and esophageal cancer. These research findings 
hold the potential to contribute to a deeper 
understanding of the underlying mechanisms of these 
two cancers, aid in the development of personalized 
treatment approaches, and provide crucial scientific 
evidence for early prevention efforts. Future research 
endeavors should further explore the functional roles 
and mechanisms of these genetic risk factors and 
validate their clinical implications through clinical 
practice. 
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