
Journal of Cancer 2024, Vol. 15 
 

 
https://www.jcancer.org 

2431 

Journal of Cancer 
2024; 15(8): 2431-2441. doi: 10.7150/jca.93055 

Research Paper 

Uncovering Microbial Composition of the Tissue 
Microenvironment in Bladder Cancer using RNA 
Sequencing Data 
Ruiqian Yao1,2#, Bin Ai3,4#, Zeyi Wang5#, Bing Shen6,7, Geng Xue2, Dong Yu3,4 

1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. 
2. Department of Medical Genetics, Naval Medical University, Xiang-Yin Road, 800, Shanghai 200433, China. 
3. Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Xiang-Yin Road, 800, Shanghai 200433, China. 
4. Shanghai Key Laboratory of Cell Engineering, Shanghai, China. 

5. Department of Urology, Huadong Hospital, Fudan University, Shanghai, China. 
6. Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, 200080, China. 
7. Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China. 

# First author: Ruiqian Yao, Bin Ai, and Zeyi Wang contributed equally to this work.  

 Corresponding authors: E-mail: yudong615@126.com (Dong Yu) / xg_smmu@hotmail.com (Geng Xue) / urodrshenbing@shsmu.edu.cn (Bing Shen). Phone: 
+8615821637378 (Dong Yu) / +8615601634753 (Geng Xue) / +8618017181979 (Bing Shen). 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2023.12.08; Accepted: 2024.01.27; Published: 2024.03.04 

Abstract 

Purpose: Bladder cancer (BC) is one of the top 10 common tumors in the world. It has been reported 
that microbiota can colonize tissues and play important roles in tumorigenesis and progression. 
However, the current understanding of microorganisms in the BC tissue microenvironment remains 
unclear.  
Methods: In this study, we integrated the RNA-seq data of 479 BC tissue samples from seven datasets 
combined with a range of bioinformatics tools to explore the landscape of microbiome in the BC tissue 
microenvironment. 
Results: The pan-microbiome was estimated to surpass 1,400 genera. A total of seven core microbiota 
(Bacillus, Corynebacterium, Cutibacterium, Escherichia, Halomonas, Pasteurella, and Streptomyces) were 
identified. Among them, Bacillus was widely distributed in all datasets with a high relative abundance 
(10.11% of all samples on average). Moreover, some biological factors, including tissue source and tumor 
grade, were found significant effects on the microbial composition of the bladder tissue. Pseudomonas, 
Porphyrobacter, and Acinetobacter were enriched in tumor tissues, while Mycolicibacterium and 
Streptomyces were enriched in patients who showed durable response to BCG therapy. In addition, we 
established microbial co-occurrence networks and found that the BCG therapy may attenuate the 
microbiological interactions. 
Conclusions: This study clearly provided a microbial landscape of the BC tissue microenvironment, 
which was important for exploring the interactions between microorganisms and BC tissues. The 
identified specific taxa might be potential biomarkers for BC. 

Keywords: Bladder cancer; Cancer microbiome; Biological factors; Co-occurrence network analysis 

Introduction 
Bladder cancer (BC) is the 10th most common 

cancer among 36 cancers in 185 countries [1]. 
Although the prognosis of BC patients has 
significantly improved due to the development of 

diagnostic techniques and treatment strategies, the 
probability of recurrence and metastasis is still high. 
Many risk factors may increase the occurrence of BC, 
including smoking, host genetics, exposure to 

 
Ivyspring  

International Publisher 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

2432 

occupational chemicals, contaminated drinking water, 
and infectious schistosomiasis [2]. Apart from 
environmental and genetic risk factors, researchers 
have become increasingly aware that microorganisms 
inhabiting the human body play an important role in 
the maintenance of health and the development of 
diseases. The role of specific microorganisms in the 
pathogenesis of cancer has been extensively studied. 
For example, Fusobacterium nucleatum inhibited the 
killing of various tumors by natural killer (NK) cells 
[3]. The well-known Helicobacter pylori induced the 
degradation of the p53 in gastric epithelial cells, 
leading to gastric cancer [4]. 

Several studies have discovered that 
microorganisms might play a potential role in BC 
tumorigenesis and therapies. For instance, 
Acinetobacter may be related to BC and has been a 
potential microbial marker of BC [5]. The bacillus 
Calmette–Guérin (BCG) vaccine, developed from an 
isolated Mycobacterium bovis strain, has been the gold 
standard for the treatment of BC [6]. Intravesical 
injection of Lactobacillus rhamnosus strain GG has been 
found effective in inducing tumor regression [7]. 
Major studies exploring the microbial composition of 
BC focused on surrogate materials such as stool or 
urine, rather than directly from the tumor and 
surrounding tissue, leading to a weak understanding 
of microorganisms in the BC tissue micro-
environment. Liu has verified the occurrence of 
bladder microbiota dysbiosis in BC patients by 
analyzing tissue samples from bladder mucosa [8]. 
However, a comprehensive and systematic know-
ledge of the microbiome in the BC tissue environment 
is still lacking. Therefore, an emerging focus of BC 
research is now to understand how the tumor and 
surrounding microbiome can influence BC 
development.  

Various omics technologies such as 
transcriptomics, proteomics, metabolomics, and 
metagenomics, and their combinations provided new 
insights into the understanding of the human 
microbiome and its role in cancer development [9]. 
Among these techniques, our study focused on the 
whole transcriptome data which was demonstrated to 
be sensitive in bacterial genus detection [10]. Seven 
datasets derived from the NCBI database were 
integrated and applied to mine the microbial 
information hidden in the sequencing reads by a 
series of bioinformatic pipelines. Several biological 
factors were further explored to detect their influences 
on the microbial composition of BC tissues. Finally, 
we constructed co-occurrence networks to unravel the 
microbial interactions within and among different 
groups. These results would not only provide 
important implications for the subsequent tumor 

microbiome-related studies but also identify valuable 
biomarkers for BC. 

Methods 
Data collection 

We retrieved a database with the keywords 
“bladder cancer” and “expression profiling by high 
throughput sequencing” in the NCBI database. Seven 
datasets (PRJNA255416, PRJNA534108, PRJNA562 
495, PRJNA735225, PRJNA688091, PRJNA552055, and 
PRJNA186504) were screened out for further analysis. 
The raw fastq files were downloaded and processed 
for quality control using the software FastQC (version 
0.11.9) and Trim Galore (version 0.6.7).  

Identification and quantification of the 
microbiome 

The ultrafast Karen2 algorithm [11] was used to 
identify the microorganisms. The microbial reference 
database contains 83,212 genomes, which include 
almost all known fungal, bacterial, archaeal, and viral 
genomes. The microbial taxa with less than three 
reads were regarded as false positives and then 
discarded. Due to the sensitivity of detection 
techniques at the genus level and the experience of 
previous studies [10, 12], the following analyses were 
aggregated to taxa at the genus level. 

Microbial profile analysis 
Core taxa were identified using the microbiome 

R-package (version 1.16.0) with fixed thresholds: the 
positivity detection rate was set as 0.1%, and the 
prevalence was set as 20% [13]. Visualization of 
shared taxa was performed with the UpSet R-package 
(version 1.4.0). Stochastic cumulative biocurves were 
generated by the vegan R-package (version 2.6–2) and 
fitted equations were calculated to estimate the 
pan-microbiome. 

Diversity metrics and differential abundance 
analyses 

Alpha diversity (Shannon index) and beta 
divergence were calculated using vegan R-package 
(version 2.6–2). Differential analysis was determined 
in diversity using the Wilcoxon signed rank test. 
PERMANOVA was used to quantify multivariate 
community-level differences in microbial composition 
among groups. P-value < 0.05 was considered 
significant at the group level. Statistically significant 
differences in the relative abundance of taxa were 
performed using linear discriminant analysis (LDA) 
effect size (LEfSe, http://huttenhower.sph.harvard 
.edu/galaxy/). Only taxa with LDA greater than 3.5 
at a p-value < 0.05 were considered significantly 
enriched. 
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Co-occurrence network analysis 
Co-occurrence network analysis was conducted 

using igraph (version 1.3.1) and psych (version 2.2.5) 
R-packages. The Spearman's correlations at r > 0.4 and 
p-value < 0.05 were used for network construction. 
The network properties, clustering coefficient, 
modularity, average path length, average normalized 
degree, and betweenness centralization, were 
analyzed using the “igraph” package. Within-module 
connectivity (Zi), and among-module connectivity 
(Pi) of the seven networks were calculated and 
compared [14].  

Results 

Population characteristics 
To investigate the microbial composition of BC, 

seven RNA-seq datasets with 479 samples were 
screened out and downloaded from the NCBI 
database. Of the datasets, 87.34% of the samples were 
tumor tissue samples and the remainder were 
paracancerous tissue samples (Table 1). Except for 
some samples with missing information, this study 
predominantly consisted of male participants. The 
mean age of the participants was 67.68, which is the 
age range with a high incidence of BC. Notably, each 
dataset had its special focus beyond other common 
factors: tumor grade for PRJNA255416 and 
PRJNA534108, tissue source for PRJNA552055 and 
PRJNA186504, cancer subtype for PRJNA562495 and 
BCG therapy outcomes for PRJNA735225 and 
PRJNA688091. 

Microbial presence in BC transcriptome data 
The microbial reads and corresponding taxa 

information were identified using the kraken2 
algorithm. On average, 0.15% of the 3.99 × 107 
sequencing reads per sample were identified as 
microbes, including bacteria, viruses, and archaea. A 
total of 5503 microbial taxa at the species level were 
detected, of which bacteria, viruses, and archaea 
accounted for 90.62% (4987/5503), 5.23% (288/5503), 
and 4.14% (228/5503), respectively. The bacterial and 
viral reads accounted for the majority of microbial 
reads, while the archaeal reads took a negligible 
proportion (Figure 1). In a word, these results 
suggested that there indeed are microbial organisms, 
especially bacteria, located in the microenvironment 
of BC tissues. 

The characterization of microbial composition 
in BC tissues 

Next, we further investigated the microbial 
composition at different levels across the datasets. At 
the phylum level, a total of 40 phyla were identified, 
55% (22/40) of which were shared in seven datasets 
(Figure S1A). The top 10 phyla in the seven datasets 
are shown in Figure 2A. Proteobacteria, Actinobacteria, 
Firmicutes, and Bacteroidea were found to take the 
majority of microbial composition in each dataset, 
which was consistent with 16S sequencing data [15].  

Considering the resolution and reliability of the 
microbial identification method, we assigned all taxa 
at the genus level. 1313 genera were detected, of 
which the seven datasets contained 1183, 1306, 899, 
510, 832, 898, and 764 genera respectively (Figure 

 

 
Figure 1. Microbial abundance histogram of seven datasets. The proportion (%) of bacteria, viruses, and archaea in identified microbial reads in each dataset. 
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S1B). Among the top 10 genera, nine genera were 
detected in all datasets except Candidatus 
Promineofilum (Figure 2B). Bacillus displayed a higher 
relative abundance in most datasets, which has been 
reported to be a core genus in BC [5]. In addition, 
Porphyrobacter accounted for a higher proportion in 
PRJNA562495 and PRJNA735225 treated with BCG, 
which was also consistent with the high throughput 
16S rRNA amplicon sequencing data [16].  

To identify differences and commonalities 
among the datasets, core taxa were characterized. 17, 
112, 96, 86, 46, 93, and 91 genera were identified as 
core microbiota in each dataset, respectively. Among 
them, seven genera, including Bacillus, Corynebac-
terium, Cutibacterium, Escherichia, Halomonas, 
Pasteurella, and Streptomyces, were shared among all 
datasets (Figure 3A). The relative abundance of seven 
core genera was presented in Figure 3B, as 
anticipated, these seven core genera were detected in 
an average of 96.78% of the samples. Among them, 
Bacillus and Pasteurella were highly abundant in most 
samples, while Cutibacterium had a low abundance in 

the BCG-treated dataset. 
To estimate the overall number of microbial taxa 

colonized at the BC tissue, the concept of 
“Pan-genome” was referred to. With the inclusion of 
479 samples, the pan microbial profile in BC tissue 
appears not to have been reached, as depicted in the 
accumulation curve and fitting formula (Figure 3C). 
The size of the pan microbiome of BC probably 
surpassed 1400 taxa. Therefore, there were an 
incredible number of microbial taxa colonized in the 
BC tissue, which should get more attention to explore 
their roles in tumorigenesis.  

The biological factors affecting the microbial 
diversity and composition in BC 

Considering different biological factors 
associated with BC in each dataset, we further 
explored whether these factors had impacts on the 
microbial composition. Alpha diversity and beta 
divergence are two measures used to quantify the 
diversity of a particular microbial community. The 
LEfSe algorithm for groups with PERMANOVA test 

 

 
Figure 2. Different levels of the top ten microbial distributions. The relative abundances of the top 10 phyla(A) and top 10 genera (B) across the seven datasets.  
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p-value < 0.05 to identify the differential genus 
between groups. Genera with a threshold of LDA > 
3.5 were defined as significantly different genera 
(Table 2). In a previous study, Pederzoli reported that 
male and female patients of BC have different urinary 
microbiomes [17]. However, in our results, no 
significances were identified between male and 
female patients in PRJNA255416, PRJNA735225, and 
PRJNA186504 (PERMANOVA test, p-value = 0.130, 
0.305, and 0.239). It suggests that, unlike the tissue 
microenvironment, more factors may be influencing 
the genitourinary system leading to BC. In contrast, 
another four factors were identified to have 
significant effects on the tissue microbiome of BC. 

Tumor grade 
The samples were assigned with tumor grade 

(high-grade vs. low-grade) information in the datasets 
PRJNA255416 and PRJNA534108. The results showed 
that tumor grade did not have a significant effect on 
the microbial composition of PRJNA255416 
(PERMANOVA test, p-value = 0.45), including alpha 
and beta divergence analysis (Figure S2A), while a 
significant effect was found in PRJNA534108 
(PERMANOVA test, p-value = 0.002). As for diversity, 
the low-grade group showed significantly higher 
microbial richness than the high-grade group, while 

the opposite was true for heterogeneity (Wilcox test, 
p-value < 0.01, Figure S2B). 7 genera were then 
identified to be significantly different between groups 
(Table 2). Among them, Mycolicibacterium was 
significantly enriched in the high-grade group, while 
the other six genera, especially Pasteurella, were 
enriched in the low-grade group (Figure S3A). 

Tissue source 
Both PRJNA552055 and PRJNA186504 had 

tumor and paracancerous tissue samples, and the 
PERMANOVA test showed that there were 
significantly different microbial composition between 
tumor and paracancerous tissue samples in both 
datasets (PERMANOVA test, for PRJNA552055, 
p-value = 0.002; for PRJNA186504, p-value = 0.001). In 
the diversity analysis, the Shannon index of the tumor 
tissue samples was significantly higher than that of 
the paracancerous tissue samples in PRJNA552055 
(Wilcox test, p-value < 0.001, Figure S2C-D). 
Pseudomonas was significantly enriched in tumor 
samples in both datasets (Table 2, Figure S3B). Two 
species of this genus, P. aeruginosa and P. putida, have 
been reported to be significantly enriched in BC 
compared to normal tissues, which is consistent with 
our results [13]. 

 
 

 
Figure 3. Core and pan microbiome. (A) Frequency of shared core microbiota across 7 datasets. 7 taxa (blue highlight) were found to be shared across all 7 datasets. (B) 
Heatmap of the relative abundance distribution of the seven shared core microbiota in the datasets. (C) Statistic estimation of the size of pan-microbiome. The fitting formula and 
R2 value are labeled at the top. 
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Table 1. An overview of meta information of seven BC datasets. 

Study PRJNA255416 PRJNA534108 PRJNA562495 PRJNA735225 PRJNA688091 PRJNA552055 PRJNA186504 
(60)/CAN (119)/CAN (87)/ESP (40)/USA (32)/KOR (65)/CHN (76)/CHN 

Case Source Urothelial bladder 
cancer (UBC) 

Urothelial bladder 
cancer (UBC) 

Micropapillary bladder cancer 
(MPBC)/23 Urothelial 
bladder cancer (UBC)/63 

Urothelial bladder 
cancer (UBC) 

Urothelial bladder 
cancer (UBC) 

Urothelial bladder 
cancer (UBC) 

Urothelial 
bladder cancer 
(UBC) 

Sample Source 
       

FFPE 56 119 87 40 / / / 
Fresh Frozen 4 / / / 32 65 76 
Sex 

       

Male 28 / 75 31 26 / 66 
Female 14 / 12 9 6 / 10 
NULL 18 119 / / / 65 / 
Age 

       

Min~Max,median / / / 46~82,69 24~81,72 43~82,64 25~87,66 
Tumor stage 

       

pTa 35 34 / / / / / 
pT1 7 85 87 40 32 / / 
pT2 8 / / / / / / 
pTx 2 / / / / / / 
No-staging 8 / / / / / / 
Tumor Grade 
(WHO 2004) 

       

High 17 93 87 40 32 / / 
Low 19 26 / / / / / 
NULL 24 / / / / 65 76 
Tissue Source 

       

Tumor 60 119 87 40 32 36 44 
Paracancerous / / / / / 29 32 
BCG therapy No No Yes non_durable 23 Recurrence 9 No No 

durable 17 Non-relapse 15 
  Progression 8 

“/” means NA, which indicates that the dataset does not possess the characteristic. 
 
 

Table 2. Summary of LEfSe analysis results. 

Biological 
factors 

Datasets Differential genus 

Tumor 
high grade 

PRJNA534108 Mycolicibacterium[33]  Paenibacillus[37]    
Pasteurella[26]    
Brevibacillus[38]    
Rothia[39]    
Pseudomonas[13]    
Porphyrobacter[16]  

Tumor 
tissue 
source 

PRJNA552055 Pasteurella[26]  Mycolicibacterium[33]  
Porphyrobacter[16]  

  

Streptomyces[27]  
  

Pseudomonas[13]  
  

PRJNA186504 Psychrobacillus[40]  Chlamydia[23]  

Rhodoplanes[41]  Bartonella[21]  

Pseudolabrys[42]  Rummeliibacillus[43]  
Lysobacter[44]  Micrococcus[45]  

Comamonas[46]  Paenibacillus[37]  

Desulfarculus[47]  Bosea[48]  

Streptomonospora[49]  Oligotropha[50]  

Acinetobacter[5]  Afipia[51]  

Mycoplasma[52]  Erythrobacter[53]  

Delftia[54]  Alicycliphilus[55]  

Pseudomonas[13]  Brevibacillus[38]  

Methylorubrum[56]  
  

Chryseobacterium[46]  
  

BCG 
therapy by 
the 
response to 
durable 

PRJNA735225 Erythrobacter[53]  Pasteurella[26]  

Corynebacterium[5]  Simkania[57]  

Streptomyces[27]  
  

Mycolicibacterium[33]  
  

MPBC 
tissue 

PRJNA562495 Pasteurella[26]  Halomonas[19]  

Porphyrobacter[16]  Mycolicibacterium[33]  
Streptomyces[27]  Ralstonia  

  Enterobacter[58]  

  Bacillus[5]  

  Staphylococcus[59]  

  Kosakonia[60]  

The arrows indicate the up-regulation or down-regulation of this genus in this 
biological factor and studies correlating the genus with tumor or disease 
development are cited.  

 

BCG therapy 
Intravesical BCG is widely used in the 

management of BC [6], but the probability of 
recurrence remains high. In PRJJNA688091, we 
explored the difference between three clinical 
outcomes after BCG therapy. The results showed no 
significant differences in microbial composition 
among patients with non-relapse, recurrence, and 
progression (PERMANOVA test, p-value = 0.556, 
0.641, 0.548). Interestingly, we found that the progres-
sion group had significantly higher heterogeneity 
than the non-relapse group (Wilcox test, p-value < 
0.05, Figure S2E). In PRJNA735225, we investigated 
the difference between whether patients responded to 
BCG therapy or not. A significant effect on the 
microbial composition between durable and 
non-durable responders (PERMANOVA test, p-value 
= 0.005) was found. But there were no significant 
differences in alpha diversity and beta divergence 
(Figure S2F). Four genera, including Erythrobacter, 
Corynebacterium, Streptomyces, and Mycolicibacterium, 
were found to be significantly enriched in the durable 
responder samples, while Pasteurella and Simkania 
were enriched in the non-durable responder samples 
(Table 2). 
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Table 3. Key characteristics of co-occurrence networks of seven groups. 

Dataset Clustering coefficient Random Network clustering coefficient Modularity Average normalized degree  Betweenness centralization 
PRJNA255416 0.72  0.41  0.25  0.42  0.24  
PRJNA534108 0.88  0.46  0.11  0.46  0.07  
PRJNA552055 0.69  0.24  0.15  0.24  0.06  
PRJNA562495 0.56  0.10  0.42  0.10  0.13  
PRJNA688091 0.79  0.50  0.11  0.50  0.06  
PRJNA735225 0.24  0.05  0.52  0.05  0.19  
PRJNA186504 0.64  0.29  0.28  0.29  0.05  

 

Cancer subtype 
The samples of dataset PRJNA562495 contain 

two BC subtypes, including MPBC and UBC. MPBC is 
a very rare and aggressive variant of BC [18], and was 
found to have significant effects on the overall 
microbial composition (PERMANOVA test, p-value = 
0.001). We found that the Shannon index in the UBC 
group was significantly higher than that in the MPBC 
group, while inter-individual divergence was higher 
in the MPBC group (Wilcox test, p-value < 0.001, 
Figure S2G). 10 genera showed significant difference 
between the two groups by LEfSe (Table 2). 
Pasterurella was the most enriched genus in the MPBC 
group, while Halomonas was the most enriched in 
UBC. Halomonas has been reported as a biomarker 
both in perihepatic cholangiocarcinoma (pCCA) and 
distal cholangiocarcinoma (dCCA) with cholelithiasis 
(CH) controls [19], suggesting that Halomonas may be 
dysregulated among different cancer subtypes. 

Co-occurrence network analysis 
To understand the potential interactions among 

core genera, we constructed co-occurrence networks 
of the genera in each dataset based on the clustering 
patterns using significant correlations (Spearman 
correlation coefficient r > 0.4, p-value < 0.05).  

The microbial genera constituting each network 
dominantly belonged to the phylum Proteobacteria, 
and the network characteristics of each dataset were 
different (Figure S4, Table 3). It is well acknowledged 
that a higher clustering coefficient corresponds to 
more active community and stronger interactions 
among microorganisms. The PRJNA534108 network 
showed the highest clustering coefficient (0.88). The 
PRJNA735225 and PRJNA562495, both treated with 
BCG, had the lowest clustering coefficient, implying 
BCG treatment might influence the interaction of 
microorganisms in BC.  

To assess possible topological roles of taxa in the 
networks, the nodes were classified into four 
categories based on Zi and Pi values (Figure 4). Most 
of the nodes in each network were peripherals. The 
PRJNA552055, PRJNA562495, and PRJNA735225 
networks showed a few connectors. These genera may 
not simply function as keystone taxa but play 
important roles in maintaining communication, 

integrity, and function of tumor microbial 
communities to the other taxa in the network [20]. 
Three genera, containing Bartonella, Desulfomonile, and 
Pasteurella, were shared among PRJNA562495 and 
PRJNA735225. Interestingly, Bartonella and Pasteurella 
are both important zoonotic agents, in which 
Bartonella infection can mimic a variety of 
malignancies [21] and Pasteurella has been reported to 
cause urinary tract infections [22]. Moreover, 
Chlamydia, not only acted as the connectors in 
PRJNA552055 but also acted as the module hubs in 
PRJNA735225. Chlamydia was the cause of common 
bacterial sexually transmitted infections, including 
cervicitis and urethritis, and Chlamydia trachomatis has 
been reported as an independent predictor of cervical 
cancer risk [23].  

Comparison with TCGA cancer microbiome  
Rob Knight's team analyzed the whole-genome 

and whole-transcriptome sequencing studies in The 
Cancer Genome Atlas (TCGA) involving 33 cancer 
types for microbial reads, including 605 samples from 
BC [12]. Comparing our results with their data 
revealed some similarities. 61.68% (927/1503) of the 
genera we found were presented in their results 
(Figure 5A), and four genera (Bacillus, Escherichia, 
Corynebacterium, and Streptomyces) were also defined 
as core genera in their dataset (Figure 5B). Seven core 
genera (Pseudomonas, Psychrobacillus, Pseudolabrys, 
Lysobacter, Acinetobacter, Chryseobacterium, and Afipia), 
showed significant difference between tumor and 
paracancerous tissues in our results, were also 
represented in TCGA (t-test, p-value < 0.05, Figure 
5C). These consistent results indicated the reliability 
and validity of our analysis. 

Discussion 
A growing body of research now suggests that 

the microbial in tumor and adjacent tissues can inform 
disease progression and bacterial roles in cancer 
pathogenesis [13]. Most studies have focused on the 
urine microbiome. However, the composition of the 
microbiome in the BC tissue microenvironment 
remains unclear. Based on this, we integrated seven 
datasets to demonstrate the microbial landscape of BC 
tissue, including the influencing biological factors and 
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the network of microbial interactions. Novel insights 
may facilitate the understanding of the role of 

microbiome in BC tumorigenesis and enable the 
development of novel therapeutic strategies. 

 

 
Figure 4. Zi-Pi plot of the individual genera from seven groups.     

 

 
Figure 5. Comparison between the results of this study and TCGA data. (A) Overlap of the microbial profiles between this study and TCGA data at the genus level. 
(B) The relative abundances of seven genera are also significantly different in the TCGA data (tumor vs. paracancerous). 
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Seven core genera were identified that have been 
reported to be associated with bladder and other 
cancers. Among them, Bacillus and Corynebacterium 
have been confirmed as the core genera of BC in a 16s 
RNA sequencing study (direct sequencing) [5]. The 
abundance of Cutibacterium was decreased after BCG 
treatment, and it was found to be associated with BCG 
effectiveness [24]. Escherichia has been validated to 
promote BC through epithelial-mesenchymal 
transition, stemness, and metabolic reprogramming 
[25]. Pasteurella has been reported to cause urinary 
tract infections [22]. A 146 kDa protein toxin produced 
by Pasteurella has been considered carcinogenic due to 
its high mitogenic activity [26]. In addition, two new 
findings, Streptomyces and Halomonas, were reported 
to be associated with cholangiocarcinoma and 
colorectal cancer respectively [24, 27]. These evidences 
suggested that these core genera might play a 
potentially important role in BC and other cancers, 
implying that more attention should be paid to 
exploring the function and mechanism of these core 
genera on the development of BC. 

Further, we identified a series of significantly 
differential genera in different biological factor 
groups. Pseudomonas were more enriched in 
low-grade tumor tissues than in high-grade tumor 
tissues, which implied that Pseudomonas might be a 
potential biomarker to predict the malignant degree 
of the tumor. Meanwhile, two species Pseudomonas 
aeruginosa and Pseudomonas putida, belong to 
Pseudomonas, have been reported to be significantly 
enriched in tumor tissues compared with 
paracancerous tissues, which is consistent with our 
results [13]. Antibiotics are known to have 
antibacterial effects to a certain extent [28]. However, 
a recent study found that the use of fluoroquinolone 
antibiotics was significantly associated with high 
recurrence rates of BC (HR 3.28, 95% CI 1.12–9.60; p = 
0.03) [29], which may be due to the resistance of 
Pseudomonas aeruginosa to fluoroquinolones [30]. It has 
been reported that Pseudomonas aeruginosa is resistant 
to a variety of antibiotics [31], whereas meropenem- 
levofloxacin combination therapy has been found to 
have a better inhibitory effect on Pseudomonas 
aeruginosa, suggesting that this may be a new idea for 
the treatment of BC [32]. Interestingly, not only was 
Porphyrobacter significantly enriched in tumor tissues, 
but it was also considerably more abundant in the 
MPBC group compared to the UBC group. It has been 
reported to be significantly enriched in the higher risk 
of progression group with BC during treatment [16], 
which suggested that Porphyrobacter might participate 
in tumor recurrence of BC. Acinetobacter, significantly 
enriched in tumor tissue samples in our results, has 
been reported to be considered as a potential 

microbiological marker for BC [5]. Meanwhile, 
Mycolicibacterium significantly enriched in the durable 
response to BCG therapy group, has been reported 
decreased as the progress of lymph node metastasis in 
the pancreatic adenocarcinoma [33]. This suggests 
that Mycolicibacterium are associated with cancer 
development and may provide clues for future 
treatment of BC. In a word, the key genera presented 
in the microenvironment of BC tissue may provide 
insight into the molecular mechanisms of BC. Alfano 
et al. have proposed that it is important to understand 
the roles of extracellular matrix (ECM) and microbiota 
in the development and progression of urothelial 
carcinomas [34]. For example, the outer membrane 
protein A of Pasteurella multocida induces changes in 
the transcriptome of alveolar macrophages, which are 
associated with the ECM [35]. Pseudomonas aeruginosa 
can infiltrate the ECM by secreting alkaline proteases 
under anaerobic conditions in vitro (e.g., tumor 
tissue) [34]. InvL, an adhesin required for the 
uropathogenic process of Acinetobacter baumannii, has 
been reported to bind ECM components and mediate 
adhesion to urinary tract cell lines [36]. These studies 
indicate that investigating the interaction between 
bacteria and the ECM may reveal new or 
dysregulated pathways associated with BC. 

Moreover, the co-occurrence of microorganisms 
can be modeled using network analysis to illustrate 
microbial relationships and responses to variations of 
operational factors, like predicting the potential 
effects of chemotherapy in patients with colorectal 
cancer [20]. Our study used co-occurrence network 
analysis to find that the BCG therapy may attenuate 
the microbiological interactions. The co-occurrence 
network can also observe different topological 
characteristics of the individual microorganisms, 
which may imply their biological roles and functions. 
Some zoonotic agents (Bartonella and Pasteurella) were 
defined as connecters, strongly correlated with other 
genera, suggesting that they may be important 
functional performers in communities. Furthermore, 
Chlamydia displayed a dual network function and has 
been recognized as an independent predictor of the 
risk of cervical cancer [23]. This necessitates further 
investigation and consideration. 

However, this study has a few limitations. One is 
the limited sample size. Therefore, the study 
examined the between-group variation in a single 
dataset and then explored commonalities and 
differences between different datasets to reduce the 
impact of individual heterogeneity on the results. 
Another is that contamination is an issue in this type 
of study. This study mainly focused on the analysis of 
core microbiota to minimize the impact of potential 
contaminants on the study.  
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Conclusion 
In this study, the landscape of microbial 

composition of BC tissue through integrating seven 
public datasets is presented for the first time. Seven 
core microbiota (Bacillus, Pasteurella, Cutibacterium, 
Escherichia, Corynebacterium, Halomonas, and Strepto-
myces) were identified to be prevalent and abundant 
across the seven datasets, which should be paid more 
attention. Moreover, sample source, tumor grade, 
tissue source, BCG therapy, and cancer subtype 
showed significant effects on tumor microbiome. 
Microbial interactions were found to be weaker in the 
BC microenvironment with BCG therapy. The 
significantly differential genera (Acinetobacter, 
Pseudomonas, Pasteurella, Porphyrobacter, Mycolicibacte-
rium, and Streptomyces) may be involved in tumor 
progression as potential characteristic genera. These 
results will provide valuable data support for clinical 
translational applications, including early tumor 
screening and diagnosis. Additionally, the 
significantly differential genera will serve as 
candidate targets for the experimental validation of 
the molecular mechanisms of microbial action in BC. 
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