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Abstract 

Objective: To investigate the role of neutrophils in colon cancer progression. 
Methods: Genetic data from 1,273 patients with colon cancer were procured from public databases and 
categorized based on genes linked to neutrophils through an unsupervised clustering approach. Through 
univariate Cox regression analysis, differentially expressed genes (DEGs) influencing overall survival (OS) 
were identified, forming the basis for establishing a prognostic risk score (PRS) system specific to colon 
cancer. Additionally, the correlation between PRS and patient prognosis, immune cell infiltration, and 
intratumoral gene mutations were analyzed. Validation of PRS as an indicator for "pan-tumor" 
immunotherapy was conducted using four distinct immunotherapy cohorts. 
Results: The research identified two distinct subtypes of colon cancer, namely Cluster A and B, with 
patients in Cluster B demonstrating remarkably superior prognoses over those in Cluster A. A total of 17 
genes affecting OS were screened based on 109 DEGs between the two cluster for constructing the PRS 
system. Notably, individuals classified under the high-PRS group (PRShigh) exhibited poorer prognoses, 
significantly linked with immune cell infiltration, an immunosuppressive tumor microenvironment, and 
increased genomic mutations. Remarkably, analysis of immunotherapy cohorts indicated that patients 
with PRShigh exhibited enhanced clinical responses, a higher rate of progression-free events, and improved 
overall survival post-immunotherapy. The PRS system, developed based on tumor typing utilizing 
neutrophil-associated genes, exhibited a strong correlation with prognostic elements in colon cancer and 
emerged as a vital predictor of "pan-tumor" immunotherapy efficacy. 
Conclusions: PRS serves as a prognostic model for patients with colon cancer and holds the potential to 
act as a "pan-tumor" universal marker for assessing immunotherapy efficacy across different tumor types. 
The study findings lay a foundation for novel antitumor strategies centered on neutrophil-focused 
approaches. 
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Introduction 
Cancer is the leading cause of premature death 

globally, posing a severe threat to human health [1]. 
Colon cancer, ranking as the third most prevalent 
malignant tumor, affects millions of people 
worldwide, with its onset increasingly observed at a 

younger age [2, 3]. Despite significant advances in the 
treatment and care of colon cancer [4], China has 
witnessed a sharp surge in its incidence and mortality 
rates in recent years [5]. Hence, improving universal 
health coverage and establishing prognostic 

 
Ivyspring  

International Publisher 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

2867 

assessment indicators and targeted therapy for colon 
cancer are imperative to enhance the prognosis of 
patients with colon cancer. 

Neutrophils, also recognized as polymorpho-
nuclear leukocytes (PMNs), are widely present in the 
peripheral circulation, serving as the most abundant 
innate immune cells and acting as first-line 
responders in the immune system, defending the host 
against invading pathogens [6, 7]. These neutrophils 
can infiltrate tumor tissues, known as tumor- 
associated neutrophils (TANs). TANs demonstrate a 
dual role in promoting and suppressing tumors 
during tumorigenesis, progression, metastasis, and 
potential recurrence because of their adaptable 
phenotype and functionality [8-10]. Elevated TANs in 
colon cancer correlate with a poorer patient prognosis 
[11]. According to TAN-related literature [12-15], the 
infiltration pattern of TANs in colon cancer is 
categorized into three types: scattered infiltration, 
concentrated infiltration, and peripheral infiltration. 
TANs exhibit their antitumor effects by phagocytosis, 
releasing reactive oxygen species, degranulation with 
proteases (e.g., myeloperoxidase, elastase), and 
generating neutrophil extracellular traps (NETs) [8, 
16, 17]. Additionally, they can stimulate colon cancer 
progression and liver and lung metastasis by 
promoting the epithelial-mesenchymal transforma-
tion of tumor cells [18], angiogenesis [19, 20], 
enhancing inflammation [21], trapping circulating 
tumor cells through NETs [22], and increasing 
vascular permeability [23] (Figure 1a). Neutrophil 
heterogeneity causes temporal and spatial variability, 
contributing to their multifaceted and contradictory 
roles in colon cancer. Therefore, colon cancer subtypes 
studies based on neutrophil-associated genes could 
aid in targeted evaluation and personalized treatment 
for this disease. 

In this study, 183 neutrophil-associated genes 
were gathered from a public data platform. 
Subsequently, 26 genes significantly associated with 
OS and prognosis of patients with colon cancer were 
identified. Unsupervised cluster analysis was 
conducted on 1,273 patients with colon cancer based 
on these genes. Additionally, 17 genes affecting 
overall survival were summarized from DEGs in 
patients with colon cancer with different subtypes to 
establish the PRS system. The investigation delved 
into the relationship between PRS and patient 
prognosis, immune cell infiltration, intratumoral gene 
mutations, and the efficacy of immunotherapy. 
Finally, the performance of PRS as a "pan-tumor" 
model of immunotherapy efficacy was validated 
across four independent immunotherapy cohorts. 
Molecular typing and PRS unveiled the characteristics 
of the immune microenvironment of patients with 

colon cancer. Overall, these findings offer novel 
insights into the prognostic assessment and clinical 
management of patients with colon cancer. 

Methods 
Data sources and processing of patients with 
colon cancer  

The effect of neutrophil-specific genes on the 
prognosis and survival of patients with colon cancer 
was assessed by analyzing data from three clinical 
prognosis-related patient cohorts: The Cancer 
Genome Atlas (TCGA)-Colon Adenocarcinoma 
(COAD) dataset (469 patients), sourced from the 
UCSC-XENA database (https://xenabrowser.net/ 
datapages/), GSE17538 (238 patients), and GSE39582 
(566 patients; https://www.ncbi.nlm.nih.gov/geo/). 
Clinical data were retrieved from the corresponding 
Gene Expression Omnibus databases. Gene 
expression underwent batch correction using the 
Combat algorithm [24], yielding 16,928 gene 
expression data points for 1273 patients with colon 
cancer. The detailed clinic parameters of the enrolled 
patients were listed in Supplementary Table 1. 

Neutrophil-associated genes and colon cancer 
typing 

Neutrophil-specific expressed genes were 
obtained by querying the MsigDB database for Gene 
Ontology (GO) annotation-related gene sets. The GO 
biological process (GO-BP) database was searched 
with neutrophil as the keyword. Eight significant 
gene sets associated with neutrophil function were 
identified, including GOBP NEUTROPHIL 
HOMEOSTASIS, GOBP NEUTROPHIL 
ACTIVATION INVOLVED IN IMMUNE RESPONSE, 
GOBP NEUTROPHIL MEDIATED IMMUNITY, 
GOBP NEUTROPHIL DIFFERENTIATION, GOBP 
NEUTROPHIL CHEMOTAXIS, GOBP NEUTROPHIL 
DEGRANULATION, GOBP NEUTROPHIL 
EXTRAVASATION, and GOBP NEUTROPHIL 
MIGRATION. Gene integration for each gene set 
revealed that the eight gene sets incorporated a total 
of 183 independent genes. The relationship between 
these genes and the survival and prognosis of patients 
with colon cancer was examined based on optimal 
cutoff values of the related genes using the 
surv_cutpoint function of the survminer package [25]. 
Patients were stratified into high- and low-expression 
groups. based on relevant cutoff values. Univariate 
Cox regression analysis was conducted to determine 
the hazard ratio of gene expression levels on the 
overall survival and prognosis of patients with colon 
cancer. To minimize false-positive results, a threshold 
of P < 0.01 was set for significant prognostic genes. 
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Among these genes, 26 were notably linked to the 
survival and prognosis of patients with colon cancer. 
Based on the expression levels of these 26 genes, a 
subgroup analysis of patients with colon cancer was 
performed by applying unsupervised clustering using 
ConsensusClusterPlus in R Language [26], grouping 
patients into Clusters A and B. A list of the 
neutrophil-associated genes within each GO-BP gene 
set is presented in Supplementary Table 2. 

Analysis of DEGs between colon cancer 
subtypes 

DEGs between Clusters A and B were identified 
using the "limma" package in R, applying criteria of 
an adjusted P value < 0.001 and |logFC| > 1. Further 
analysis using the survminer package revealed 17 
genes significantly associated with the survival and 
prognosis of patients with colon cancer. These 17 
genes led to the categorization of colon cancer into 
two subgroups, named GeneClusters A and B, 
respectively, through ConsensusClusterPlus in R 
Language. 

PRS construction 
Principal component analysis (PCA) was 

conducted utilizing the “prcomp” function in the R 
package “stats” for dimensionality reduction. The 
outcomes of PCA were depicted using the “ggbiplot” 
of the R package. The combined value of PC1 and PC2 
was designated as the PRS. The cohort was divided 
into two groups, PRShigh and PRSlow, based on the 
median risk score. Subsequently, the disparity in 
survival between the two patient groups was 
compared using the Kaplan-Meier plot and log-rank 
test. 

Gene set enrichment and correlation analyses 
Gene-set variation analysis (GSVA) enrichment 

was carried out to explore the diversity in various 
biological processes employing the “GSVA” package. 
A heatmap illustrating the intensity of gene set 
enrichment was generated using the pheatmap 
package. Following this, the level of immune cell 
infiltration in tumor tissues was evaluated utilizing a 
compilation of 23 commonly expressed gene sets 
specific to immune cells, as summarized by Bindea et 
al [27]. Furthermore, the correlation between relevant 
immune cell infiltration levels and patient PRS was 
analyzed. 

Mutation analysis of genomic data from 
TCGA-COAD patients 

The mutation annotation format from the TCGA 
database was generated utilizing the R package 
“maftools,” and the mutations in PRShigh and PRSlow 

were plotted. Additionally, the tumor mutational 
burden (TMB) for each patient with COAD in the 
TCGA cohort was calculated. The mRNA 
expression-based stemness index (mRNAsi) and DNA 
methylation-based stemness index (mDNAsi) were 
employed to reflect the gene expression and 
epigenetic characteristics of stem cells, respectively, 
and measure the correlation between these 
characteristics and PRS, according to the one-class 
logistic regression (OCLR) machine learning 
algorithm reported by Malta et al [28]. 

Clinical immunotherapy population cohort 
Four immunotherapeutic cohorts were 

employed to validate the prediction of immuno-
therapy efficacy based on PRS: (1) patients with 
melanoma receiving anti-PD-1 (GSE78220, 26 cases); 
(2) non-small cell lung cancer patients receiving 
anti-PD-1/PD-L1 therapy (GSE135222, 27 cases); (3) 
bladder cancer patients receiving Bacillus Calmette 
Guerin (BCG) vaccine immunotherapy (GSE176307, 
90 cases); and (4) patients with upper urinary tract 
tumor receiving anti-PD-L1 immunotherapy 
(IMvigor210CoreBiologies, 348 cases; http:// 
research-pub.gene.com/IMvigor210CoreBiologies/). 
The relationship between patient stratification, 
survival, and tumor prognosis under PRS optimal 
cutoff conditions was analyzed using survminer 
software. Additionally, the difference in survival 
between the two groups was compared using the 
Kaplan-Meier plot and log-rank test. 

Chemotherapy drug sensitivity analysis 
Colon cancer sensitivity to 138 chemotherapeutic 

drugs was evaluated using the pRRophetic algorithm 
software R package developed by Geeleher et al [29]. 
alongside gene expression profiles of patients with 
colon cancer. Moreover, the significance of the 
difference in IC50 of drug sensitivity between the 
PRShigh and PRSlow groups was compared using the 
nonparametric Wilcox-test. 

Statistical analyses 
All correlation analyses in this study were 

statistically assessed using R software (version 4.2.2; 
www.r-project.org) and associated software packages. 
Pearson's correlation coefficient was used for 
correlation analysis between variables. Differences in 
gene expression between cell subpopulations, PRS, 
and immune infiltration levels were examined using 
the Wilcoxon test. Between-group disparities in 
categorical variables were evaluated using the 
chi-square test. Unless otherwise specified, all tests 
were two-sided, and P < 0.05 denoted significant 
differences. 
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Results 
Value of neutrophil-specific genes in colon 
cancer subgroups 

The prognostic value of 183 neutrophil- 
associated genes (Supplementary Table 2) was 
initially assessed in 1,273 patients with colon cancer 
(Supplementary Table 3). Out of these, 26 genes were 
significantly associated with patient prognosis 
(univariate Cox regression P < 0.01; Figure 1a, 
Supplementary Figure 1). Among them, 10 genes 
were identified as unfavorable prognostic factors 
(ADAM8, ANXA1, AXL, C5AR1, CCL8, CD99L2, 
JAM3, LEF1, SLIT2, and TGFB2). Notably, a 
significant positive correlation was observed in the 
expression levels among these genes. On the contrary, 
the remaining 16 genes (CCL11, CCL20, CCL22, 
CXCL1, CXCL2, CXCL3, CXCL9, CXCL10, CXCL11, 
CXCL13, DNASE1L3, FUT4, FUT7, JAGN1, SLIT2, 
and TGFB2) were favorable prognostic factors, 
showing a significant positive correlation in their 
expression levels (P < 0.05). Furthermore, a significant 
negative correlation was observed between the 
expression levels of the 16 favorable genes and the 10 
unfavorable genes. Subsequent unsupervised cluster 
analysis of patients with colon cancer based on the 
expression levels of these 26 genes resulted in two 
major Clusters (Cluster A and B; Figure 1B). The 
survival and prognostic analyses of patients indicated 
a significant difference in overall survival between the 
two groups, with patients in Cluster B having a 
significantly better prognosis than those in Cluster A 
(log-rank P = 0.021; Figure 1c). Further investigation 
revealed differences in neutrophil gene expression 
between the two clusters. Genes such as JAGN1, 
DNASE1L3, VAV3, and CCL20 were expressed at 
lower levels in Cluster B, while 17 genes including 
CCL12, ADAM8, TGFB2, and JAM3 were expressed at 
relatively higher levels in Cluster B (Figure 1d-e). 
Additionally, Clusters A and B displayed differences 
in the enrichment degree of multiple gene sets related 
to various signaling pathways, as observed in the 
HALLMARK, KEGG, and Reactome gene sets 
(Supplementary Figure 2). In the HALLMARK gene 
set, Cluster B exhibited higher enrichment in several 
signaling pathways, including Interferon-γ, 
Interferon-α, IL6-JAK-STAT3, Angiogenesis, and 
Hypoxia. Conversely, peroxisome and Wnt/β-catenin 
signaling pathways displayed greater enrichment in 
Cluster A. Within the KEGG gene set, Cluster B 
demonstrated increased enrichment in NOD-like- 
receptor, T-cell receptor (TCR), natural killer 
cell-mediated cell killing, and cell adhesion signaling 
pathways. In the reactome gene set, Cluster B 
exhibited higher enrichment in multiple signaling 

pathways, such as interleukin (IL)-12, TCR, IL-10, and 
PD-1. 

Cluster immune infiltration and differential 
gene expression analyses in patients with colon 
cancer  

The distribution of the two clusters in PCA is 
shown in Figure 2a. Numerous studies have 
underscored the significant correlation between the 
infiltration of immune and stromal cells within tumor 
tissue and the survival rates and prognosis of patients 
with tumor [30-32]. Utilizing the ESTIMATE 
algorithm, the StomalScore, ImmuneScore, and 
ESTIMATEScore of patients in Clusters A and B were 
compared. Cluster B exhibited significantly increased 
levels of stromal and immune cell infiltration, as well 
as total infiltration of both cell types, in contrast to 
Cluster A (Figure 2b). Moreover, employing GSVA, 
the infiltration levels of 23 immune cell types in colon 
cancer tissues were assessed for both clusters. Cluster 
B exhibited significantly higher infiltration levels in 20 
out of 23 immune cell subpopulations, including B 
cells, T cells, monocytes, and macrophages, compared 
with Cluster A (Figure 2c). Therefore, patients with 
elevated levels of immune and stromal cell infiltration 
in colon cancer tissues experienced significantly 
improved survival and prognosis. By examining gene 
expression differences between Cluster A and B, 94 
significantly highly expressed genes and 15 
significantly low expressed genes were identified in 
Cluster B relative to Cluster A (Figure 2d). Biological 
process (BP) GO enrichment analysis highlighted the 
involvement of these DEGs primarily in immune 
responses mediated by lymphocytes, B cells, 
neutrophils, and myeloid cells (Figure 2e). Cellular 
component (CC) GO enrichment analysis revealed 
significant enrichment of DEGs in signaling pathways 
such as extracellular matrix collagen, endocytosis 
vesicle, and Golgi-related pathways (Figure 2f). 
Molecular Function (MF)-related signaling showed 
significant enrichment of related genes in pathways 
such as cytokine receptors, MHC-II protein molecules, 
CCR cytokine receptors, and CXCR receptors (Figure 
2g). 

PRS construction 

The correlation between the identified 109 
significant DEGs and the survival rates as well as the 
prognosis of patients with colon cancer was 
thoroughly analyzed (Supplementary Table 4). 
Notably, the tissue expression levels of 17 genes, 
including SFRP2, SPINK1, CXCL9, CXCL10, CD163, 
and e.g., demonstrated a significant correlation with 
the OS of patients (Figure 3a).  
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Figure 1: Subgroup typing of patients with colon cancer based on neutrophil-associated genes. (a) Distribution status of tumor-associated neutrophils within colon 
cancer, pro- and anti-cancer roles, and screening of prognostic genes of neutrophil origin within colon cancer; (b) Correlation between the expression levels of 26 prognostic 
neutrophil-specific genes in the tumor tissues of patients with colon cancer (N = 1273). Circle size represents the P-value of the Pearson’s test for prognostic correlation between 
the relevant genes and patients with colon cancer; the right half of the circle suggests patient survival–related characteristics (purple denotes prognostic risk factors; green 
denotes prognostic protective factors); the line between the circles represents the correlation between the expression of the two genes (red represents a positive correlation 
with P < 0.0001, and blue represents a negative correlation with P < 0.001); (c) Unsupervised cluster analysis of patients with colon cancer (N = 1273) based on the expression 
of 26 genes, yielding two subtypes (Clusters A and B); (d) Prognostic differences in patients with colon cancer with different subtypes (log-rank test, P = 0.021); (E) Heatmap of 
gene expression levels and related clinical features between the colon cancer clusters; (F) Differential gene expression of 26 tumor-associated neutrophils between the different 
subtypes of colon cancer; ns, no significance: P > 0.05, **P < 0.01,***P < 0.001. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

2871 

 
Figure 2: Differences in immune infiltration and gene expression levels between the two clusters of patients with colon cancer. (a) PCA of the two clusters. 
(b) Differences in cellular stroma, immune infiltration, and tumor purity values between the two clusters of patients with colon cancer, ***P < 0.001; (c) Differences in immune 
cell infiltration scores between the two clusters of patients with colon cancer, ns, no significance: P >0.05, *P <0.05, **P <0.01, ***P <0.001. (d) Volcano plot of the differentially 
expressed genes (DEGs) between the two clusters of patients with colon cancer. Red represents genes with high expression in Cluster B, blue represents genes with low 
expression in Cluster B, and DEGs with |logFC|>1 and P-false discovery rate (FDR) < 0.05 are considered significant DEGs; (e-g) Functional enrichment (Gene Ontology) analysis 
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of 109 DEGs between two clusters of patients with colon cancer (Clusters A and B), covering biological process (BP) (e), cellular component (CC) (f), and molecular function 
(MF) (g). The analysis results were sorted according to the GeneRatio size of the pathway, where the circle size represents the number of genes enriched, and the color 
represents the P-value of the enrichment analysis. 

 
Figure 3: Correlation analysis of DEGs between two GeneClusters of patients with colon cancer with their clinical characteristics. (a) Forest plot showing 17 
DEGs associated with survival in patients with colon cancer (univariate Cox regression P < 0.01); (b) Unsupervised cluster analysis of colon cancer based on 17 prognostic genes, 
categorizing patients with colon cancer into two gene clusters (GeneClusters A and B); (c) Kaplan-Meier plots showing the differences in survival among patients after clustering 
(log-rank test P = 0.046); (d) Heatmap showing gene expression levels and related clinical features between two gene clusters of patients with colon cancer; (e) Expression of 
17 prognostic genes in the two gene clusters (*** P < 0.001); (f) Survival curves of patients with PRShigh and those with PRSlow (log-rank test P < 0.001); (g) Sankey diagram showing 
the distribution of prognostic status of Clusters A and B, GeneClusters A and B, and patients with PRShigh and those with PRSlow; and differences in survival status (h), recurrence 
or metastasis status (i), and clinical stage (j) between patients with PRShigh and those with PRSlow. 
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Employing unsupervised cluster analysis based 
on the expression levels of these 17 prognostic genes, 
patients were classified into two distinct groups, 
labeled as GeneCluster A and B (Figure 3b). The 
survival analysis indicated that patients belonging to 
GeneCluster A exhibited a significantly higher overall 
survival rate than those in GeneCluster B (Figure 3c, 
log-rank test P = 0.046). Moreover, an in-depth 
investigation into the expression patterns of these 17 
prognostic genes within patient tumor tissues was 
conducted (Figure 3d). Except for C10orf99 and 
SPINK1, which showed lower expression in 
GeneCluster B, the remaining 15 genes exhibited 
relatively higher expression levels in GeneCluster B 
(Figure 3e). Utilizing these 17 genes, a PRS system 
was devised for patients with colon cancer. Patients 
were stratified into PRShigh and PRSlow groups based 
on the median risk score. Notably, patients with 
PRShigh displayed significantly lower overall survival 
rates than those with PRSlow (log-rank test P < 0.001, 
Figure 3f). The Sankey diagram suggested that 
patients in the PRShigh group predominantly belonged 
to the neutrophil-specific gene subgroup Cluster B 
and the 17 prognostic gene group (GeneCluster B). 
These patients also exhibited a higher percentage of 
follow-up mortality events (Figure 3g). Clinically, the 
PRS was relatively higher in patients with colon 
cancer who experienced follow-up events such as 
death, recurrence, metastasis, and clinical grade 
III/IV (Figure 3h-j). 

Correlation between PRS and immune cell 
infiltration in tissues of patients with colon 
cancer 

Examining the infiltration levels of various 
immune cell types within colon cancer tissues 
revealed a significant positive correlation between 
PRS and the levels of immature B cells, immature 
dendritic cells (DC), myeloid-derived suppressor cells 
(MDSC), type 1-Thelper, and type 17- Thelpers (Figure 4a). 
Additionally, an analysis of the expression levels of 
chemokines, cytokines (ILs), interferons, and other 
immunomodulatory cytokines, and their receptors in 
colon cancer tissues demonstrated a notable positive 
correlation with PRS (Figure 4b). Subsequently, an 
assessment of HALLMARK gene set enrichment in 
colon cancer tissues revealed a significant positive 
correlation between PRS and pathways associated 
with tumor progression such as epithelial-to- 
mesenchymal-transition, Angiogenesis, and KRAS 
signaling pathways. Conversely, tumor suppressor- 
related signaling pathways such as peroxisome and 
oxidative phosphorylation showed a significant 
negative correlation with PRS (Figure 4c). In recent 
years, immunotherapeutic strategies targeting 

immune checkpoints have gained substantial 
attention. Notably, PRS exhibited a significant 
positive correlation with mRNA levels of immune 
checkpoint-associated molecules CD274, CTLA4, 
LAG3, and TIGIT in colon cancer tissues. Further-
more, the expression levels of related 
immunosuppressive molecules were significantly 
higher in patients with colon cancer and PRShigh 
(Figure 4d-g).  

Correlation between PRS and tumor genomic 
mutations in tissues of patients with colon 
cancer  

An investigation into the influence of gene 
mutations within tumor tissues on PRS involved a 
comparative analysis of gene mutation profiles 
between patients exhibiting PRShigh and PRSlow scores. 
Utilizing genomic mutation data from patients with 
colon cancer in the TCGA dataset, along with 
associated PRS (Figure 5a-b), revealed distinct 
mutation patterns. Among patients with PRShigh (N = 
136), the most frequent gene mutations were observed 
in TTN (61%), TP53 (45%), and APC (44%; Figure 5a). 
By contrast, patients with PRSlow (N = 257) exhibited 
varying mutations, with the top 3 genes being APC 
(60%), TP53 (49%), and KRAS (44%; Figure 5b). 
Comparative analysis between these two clusters 
highlighted notable differences in gene mutations. 
Mutations in KIAA1217, POLD1, PIEZO1, NBEAL2, 
DDX17, and PARP14 were significantly more 
prevalent in patients with colon cancer and PRShigh 
than in those with PRSlow (Figure 5c). Moreover, 
examination of gene copy variants of 17 prognostic 
genes in colon cancer tumor tissues, utilizing the 
GSCA database (Figure 5d). MAFB and CTHRC1 
showed significant gene amplification in colon cancer 
tissues (Figure 5e). However, SFRP2, SPINK1, 
CXCL11, CXCL13, and CXCL10 exhibited gene copy 
loss in certain tumor populations (Figure 5f). Further 
investigation into gene-mRNA correlations in colon 
cancer tissues unveiled intriguing relationships. 
Notably, SPINK1 and CXCL11 gene copy numbers 
exhibited a positive correlation with gene mRNA 
levels, while MAFB copy number displayed a 
negative correlation with its gene mRNA level in 
colon cancer tissues (Figure 5g). Additionally, 
methylation levels of specific genes such as CD2, 
C10orf99, MAFB, CXCL10, SFRP2, and THBS2 were 
found to have significant negative correlations with 
their corresponding gene expressions, while the 
methylation level of the SPP1 gene showed a positive 
correlation with its gene expression level (Figure 5h). 
The investigation delved into relevant gene variants 
in the TCGA-COAD dataset, revealing relatively low 
mutation frequencies for 17 prognostic genes in colon 
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cancer. Only THBS2 and CD163 exhibited somatic 
mutations in 6.14% (25/407) and 5.90% (24/407) of 
patients with tumor, respectively, with the remaining 

genes showing mutation frequencies below 2% 
(Figure 5i). 

 

 
Figure 4: Gene expression profiles of patients with PRShigh and PRSlow and their correlation with the expression of immunosuppressive molecules. (a) 
Heatmap of the correlation between prognostic risk score (PRS) and immune cell infiltration in tumor tissues of patients with colon cancer. *P < 0.05; (b) Difference in the 
expression of chemokines and their receptors between patients with PRShigh and those with PRSlow, ns > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001; (c) Correlation of PRS with the 
enrichment level of 50 HALLMARK pathway genes. Significant positive correlation with P < 0.05 is denoted by yellow, and significant negative correlation with P < 0.05 is denoted 
by blue. (d-g) Significant positive correlation between PRS and expression of the immune checkpoint molecules CD274 (d), CTLA4 (e), LAG3 (f), and TIGIT (g) (N = 1273); 
relatively higher expression of CD274, CTLA4, LAG3, and TIGIT in patients with colon cancer with PRShigh (Wilcoxon test P < 0.001). 
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Figure 5: Analysis of gene mutations, genomic variants, and regulation of methylation modifications in patients with colon cancer. (a) Gene mutations in 
patients with colon cancer in the TCGA dataset PRShigh (N = 138); (b) Gene mutations in patients with colon cancer in the TCGA dataset PRSlow (N = 263); (c) Difference in gene 
mutation frequencies between patients with PRShigh and PRSlow. (d) Percentage of gene amplifications and deletions of 17 genes in colon cancer tissues; (e) Percentage of 
heterozygous deletions or amplifications of 17 genes in colon cancer tissues; (f) Percentage of homozygous deletions or amplifications of 17 genes in colon cancer tissues; (g) 
Correlation analyses of copy levels of 17 genes and their mRNA expression levels in colon cancer tissues; (h) Correlation between genomic methylation levels and mRNA 
expression levels of 16 genes; (i) Mutation frequencies of 16 prognostic genes in patients with colon cancer. The circle size indicates the P value, and the color represents the 
correlation coefficient. 
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Figure 6: Relationship between prognostic risk score (PRS) and the survival and prognosis of patients with tumor receiving immunotherapy. Relationship 
between PRS and overall survival and immunotherapy efficacy (progressive disease/stable disease or partial response/complete response) in patients with melanoma (a), bladder 
cancer (c), and uroepithelial carcinoma (d); (b) Association between PRS and disease-free survival and immunotherapy outcome (progression/non-progression) in patients with 
non–small cell lung cancer treated with anti-PD1/PD-L1. 

 
Tumor cell stemness, a crucial factor in tumor 

progression and treatment outcomes [33], was 
assessed through mRNAsi and mDNAsi scores in 
TCGA-COAD colon cancer. Interestingly, both scores 
exhibited a significant negative correlation with PRS, 
with patients with PRShigh displaying lower mDNAsi 
and mRNAsi scores than those with PRSlow 
(Supplementary Figure 3a-b). Clinical parameters 
such as microsatellite instability (MSI) and TMB in 
colon cancer are closely associated with patients' 
clinical treatment options and prognosis [34, 35]. A 
significant positive correlation was observed between 
PRS and patients' MSI scores in the TCGA-colon 
cancer population (N = 427; Pearson's r = 0.24, P < 
0.001), with patients with PRShigh demonstrating 
higher MSI scores than those with PRSlow 
(Supplementary Figure 3C), and an increased tumor 
tissue TMB degree was observed in patients with 
colon cancer and PRShigh (Supplementary Figure 3D). 

Correlation of PRS with tumor clinical 
immunotherapy efficacy and chemosensitivity 

Immunotherapy has emerged as a pivotal 
clinical treatment for tumors in recent years. A 
significant correlation was observed between the 
expression levels of patients' genes and the 

effectiveness of immunotherapy in a clinical setting. 
Seventeen genes derived from the colon cancer PRS 
were assessed as potential prognostic markers for 
"pan-tumor" immunotherapy within a publicly 
available dataset. A gene prognostic score, GPS, was 
constructed based on the expression patterns of these 
17 genes. The predictive value of GPS regarding 
treatment outcomes and its association with patient 
clinical prognosis were subsequently evaluated across 
various cancer types. This evaluation encompassed 
patients receiving different forms of immunotherapy: 
patients with melanoma treated with anti-PD-1 
(GSE78220; N = 26), patients with non–small cell lung 
cancer treated with anti-PD-1/PD-L1 therapy 
(GSE135222; N = 27), individuals with bladder cancer 
undergoing BCG immunotherapy (GSE176307; N = 
90), and patients with upper urinary tract tumors 
treated with anti-PD-L1 immunotherapy 
(IMvigor210CoreBiologies; N = 348). In terms of 
clinical prognosis, individuals with PRShigh in 
melanoma (log-rank P = 0.0058; Figure 6a), bladder 
cancer (log-rank P = 0.0071; Figure 6c), and upper 
urinary tract epithelial tumors (log-rank P = 0.0012; 
Figure 6d) demonstrated a notably increased CR/PR 
(complete response/ partial response) and a 
significant decreased PD/SD (progressive disease/ 
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stable disease) than those with PRSlow. Within the 
non–small cell lung cancer patient cohort receiving 
immune checkpoint inhibitors, a relatively high 
proportion of patients with PRShigh experienced 
progression-free status. What’s more, these patients 
also exhibited a significantly improved survival rate 
compared with those with PRSlow (log-rank P = 0.0073; 
Figure 6b). 

To examine the effect of PRS on chemotherapy 
sensitivity in patients with colon cancer, the 
sensitivity of patients with tumor to 138 
chemotherapeutic agents was assessed using the 
pRRophetic algorithm and colon cancer gene 
transcriptome data. Comparison between patients 
with PRShigh and PRSlow highlighted varying 
sensitivities to different compounds, with patients 
with PRShigh showing increased sensitivity to specific 
agents such as A-770041, ABT-263, AICAR, and 
AMG-706, while being less responsive to others such 
as A443654, AKT inhibitor, BIBW2992, and BIRB0796 
(Supplementary Figure 4). 

Discussion 
Colon cancer is one of the leading causes of 

cancer-related fatalities on a global scale, imposing 
substantial financial strains on national healthcare 
systems [23, 36]. Tumors originate from chronic 
inflammation, with the tumor microenvironment 
characterized by persistent inflammation [37-39]. 
Neutrophils, positioned at the intersection of 
inflammation and cancer, play a pivotal role in colon 
cancer. While most studies categorize neutrophils as 
short-lived cells [40, 41], circulating for a maximum of 
approximately 5.4 days [42], those present in tissues 
can survive for weeks [43]. The prolonged lifespan of 
TANs implies adaptability and unpredictability in 
their functions. Research demonstrates that TANs 
exhibit diverse immune subtypes across different 
tumor types [44-47], discerned by functional or 
molecular markers. This spatial and temporal 
heterogeneity enables varied functionality at different 
tumor stages and regions. Daniel Triner et al. 
suggested that neutrophils could impede colon tumor 
growth and progression by limiting bacterial 
populations and tumor-associated inflammatory 
responses [21]. Conversely, Zhang et al. suggested 
that neutrophils might promote colitis-associated 
colon carcinogenesis [48]. Moreover, Rayes et al. 
found evidence that NETs could facilitate targeted 
metastasis in colon cancer [49]. Nonetheless, the 
precise role of neutrophils in colon cancer remains 
incompletely characterized. 

Neutrophil heterogeneity in colon cancer was 
analyzed in this study. Initially, patients with colon 
cancer were classified based on neutrophil-associated 

genes. Both patient clusters exhibited significant 
differences in gene expression levels and enrichment 
of associated signaling pathways. Remarkably, 
Cluster B patients exhibited superior prognosis and 
greater immune cell infiltration than Cluster A 
patients. Subsequently, 17 genes, significantly 
correlating with overall survival, were identified 
among 109 DEGs between the two clusters. A 
secondary unsupervised cluster analysis using these 
genes categorized patients into GeneCluster A and B. 
Patients in GeneCluster B demonstrated worse overall 
survival outcomes than those in GeneCluster A. The 
PRS system based on these 17 genes was developed to 
evaluate the prognosis of patients with colon cancer. 
Notably, patients with PRShigh scores exhibited 
significantly lower overall survival rates than those 
with PRSlow scores. Additionally, the PRShigh group 
experienced a higher rate of mortality, recurrence, 
metastasis, and clinical grade III/IV. 

Further analysis focused on immune-related 
information. The PRS exhibited a significant positive 
correlation with the infiltration of diverse immune 
cells, expression levels of related cytokines, and 
mRNA levels of immune checkpoints CD274, CTLA4, 
LAG3, and TIGIT in colon cancer tissues. This 
suggests that infiltration by relevant immune cells 
could contribute to the poor survival prognosis in 
colon cancer patients with PRShigh. The gene mutation 
profiles differed significantly between patients with 
PRShigh and those with PRSlow, highlighting the 
significant effects of gene mutations and genomic 
methylation modifications on the PRS in patients with 
tumor. The PRShigh score group displayed increased 
immune cell infiltration, heightened expression of 
immune checkpoints and chemokine-related genes, 
greater gene mutations, and elevated TMB and MSI. 
Consequently, this patient cohort exhibited enhanced 
efficacy in immunotherapy. This was substantiated 
using independent immunotherapy cohorts, where 
patients with PRShigh displayed an increased CR/PR, a 
decreased PD/SD, a higher rate of progression-free 
events, and significantly improved overall survival. 
Overall, the PRS system can serve as a prognostic tool 
for patients with colon cancer and as a "pan-tumor" 
model for predicting immunotherapy effectiveness 
across various tumors. However, this study has 
certain limitations. The PRS model's development 
relied on a public database and lacked validation from 
prospective clinical trials. 

The interactions between neutrophils and other 
cells in the tumor immune microenvironment, such as 
lymphocytes, macrophages, and fibroblasts, are of 
significant importance. Neutrophils exhibit both pro- 
and anti- tumor functions by differentially regulating 
components of the tumor microenvironment and 
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other immune cells [50]. Of the 17 genes constructing 
PRS, VSIG4 and CD163 genes, which are significantly 
associated with poor prognosis, are specifically 
expressed in macrophages [51, 52] VSIG4 is 
acknowledged as a promising macrophage immune 
checkpoint [53], while CD163 is deemed a specific 
marker for senescent macrophages [54]. Investigating 
the role of intercellular communication between 
neutrophils and macrophages in colon cancer 
progression is crucial. Neutrophil heterogeneity gives 
rise to numerous immune subpopulations. Therefore, 
understanding the generation, evolution, temporal 
dynamics, and spatial phenotypic variations of 
neutrophil populations within the tumor 
microenvironment during colon cancer progression is 
imperative. Identifying and tracking changes in 
surface markers during the spatiotemporal dynamics 
of neutrophils and inducing the transformation of 
TANs into specific anti-tumor populations according 
to different subtypes and stages of the tumor are 
crucial aspects for successful tumor immunotherapy. 

Conclusions 
In summary, PRS demonstrated significant 

associations with immune infiltration, immune 
checkpoints, gene mutations, TMB, MSI, 
immunotherapy efficacy, and prognostic features. 
Hence, PRS could serve as a prognostic model for 
patients with colon cancer, guiding personalized 
treatment. Additionally, PRS holds the potential to act 
as a "pan-tumor" universal marker for assessing 
immunotherapy efficacy across different tumor types. 
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