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Abstract 

Background: To explore the hub gene closely related to the progression of gastric cancer (GC), so as 
to provide a theoretical basis for revealing the therapeutic mechanism of GC.  
Methods: The gene expression profile and clinical data of GSE15459 in Gene Expression Omnibus 
(GEO) database were downloaded. The weighted gene co-expression network analysis (WGCNA) was 
used to screen the key modules related to GC progression. Survival analysis was used to assess the 
influence of hub genes on patients’ outcomes. CIBERSORT analysis was used to predict the tissue 
infiltrating immune cells in patients. Immunohistochemical staining was conducted to further verify the 
expression of hub genes.  
Results: Through WGCNA, a total of 26 co-expression modules were constructed, in which salmon 
module and royalblue module had strong correlation with GC progression. The results of enrichment 
analysis showed that genes in the two modules were mainly involved in toll-like receptor signaling 
pathway, cholesterol metabolism and neuroactive ligand-receptor interaction. Six hub genes (C1QA, 
C1QB, C1QC, FCER1G, FPR3 and TYROBP) related to GC progression were screened. Survival analysis 
showed overall survival in the high expression group was significantly lower than that in the low 
expression group. CIBERSORT analysis revealed that immune characteristics difference between patients 
in early stage and advanced stage. Immunohistochemical results confirmed that C1QB, FCER1G, FPR3 and 
TYROBP were significantly associated with disease progression in GC.  
Conclusion: Our study identified that C1QB, FCER1G, FPR3 and TYROBP played important roles in the 
progression of GC, and their specific mechanisms are worth further study. 
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1. Introduction 
Gastric cancer (GC) is the fifth most common 

cancer in the world, with more than one million new 
cases occurring every year. The early symptoms of GC 
are not obvious, and about 50% of GC patients are 

already in the advanced stage when they are found, 
thus losing the best opportunity for surgical 
treatment. As GC is often diagnosed at an advanced 
stage, it has a high mortality rate, making it the third 
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leading cause of cancer-related deaths, with 768,793 
deaths worldwide in 2020 [1]. However, 25-40% of 
patients with treated GC will have recurrence and 
metastasis due to tumor heterogeneity [2], which is a 
major challenge in the treatment of GC.  

GC is a heterogeneous disease with high 
histological and molecular diversity and a complex 
genomic landscape, thus challenging the definition of 
clinical and therapeutic strategies [2]. To date, there is 
no gold standard therapy for GC, and the treatment 
options are mainly based on the stage of disease 
and/or the presence of biomarkers. For the 
early-stage disease, surgery is the only curative 
approach in the treatment of GC. A large-scale study 
has demonstrated that the addition of chemotherapy 
in stage II and III patients can add a survival benefit 
compared to surgery alone [3]. Targeted therapies for 
GC are anti-human epidermal growth factor receptor 
2 (HER2) and anti-vascular therapy [4]. Noteworthily, 
due to the known heterogeneity of GC cases, only 
specific subpopulations of GC would benefit from 
immune therapy [5]. Although various treatments 
such as radiotherapy and chemotherapy, neoadjuvant 
chemotherapy and immunotherapy can prolong the 
survival of patients to a certain extent, it is still 
difficult to significantly improve the overall survival 
rate of patients with advanced GC [6, 7]. Therefore, 
in-depth exploration of the molecular mechanism of 
GC metastasis and the search for molecular targets in 
the process of cancer metastasis and invasion are of 
significant clinical significance for the control of GC 
metastasis and the development of targeted 
therapeutic drugs. 

Although many excellent algorithms have been 
proposed for the study of important molecules [8, 9], 
in the current study, we conducted a comprehensive 
bioinformatics analysis between early-stage GC 
tissues and advanced stage GC tissues via weighted 
gene co-expression network analysis (WGCNA) [10, 
11]. And hub genes identification, biological processes 
and tumor immune status were determined based on 
comprehensive bioinformatics analyses. The 
relationship between hub genes and patient outcomes 
was also investigated. Finally, we validated the 
expression of the hub gene in our cohort by 
immunohistochemistry (IHC).  

2. Materials and Methods 
2.1 Data acquisition 

The GC-related expression profiling by array 
data (GSE15459) and clinical information were 
downloaded from the Gene Expression Omnibus 
(GEO) database (https://www.ncbi.nlm.nih.gov/ 
geo/). The data set included 192 primary tumor 

tissues from GC patients with an average age of 64.37 
(23.4-92.4) years, and 125 patients were male and 67 
patients were female. Among them, 31 patients were 
in stage 1, 29 patients were in stage 2, 72 patients were 
in stage 3 and 60 patients were in stage 4 at the time of 
surgery, respectively. The annotation information of 
GSE15459 was obtained through GPL570 [HG-U133_ 
Plus_2] Affymetrix Human Genome U133 Plus 2.0 
Array. After obtaining the gene expression matrix of 
GSE15459, the gene without gene name was deleted 
by comparing with the micro-array annotation 
information table. For the repeated genes in the 
matrix, the genes with the largest total sample mean 
were retained for subsequent analysis.  

2.2 Weighted gene co-expression network 
analysis (WGCNA) 

The “WGCNA” package of R (version: 3.6.3) was 
used to construct the co-expression network. 
Hierarchical clustering analysis was performed in the 
gene expression data of 192 GC samples to identify 
outliers. The R function “pickSoftThreshold” was 
applied to screen the appropriate soft threshold 
power β for standard scale free network establish-
ment. In this study, the soft threshold was set to 10. 
The weighted adjacency matrix is transformed into a 
topological overlap metric matrix (TOM) to estimate 
its connectivity in the network. The clustering tree of 
TOM matrix was constructed by using the average 
link hierarchical clustering method. In this study, the 
minimum gene module size was set to 30 to obtain the 
appropriate module, and the threshold for merging 
similar modules was set to 0.25. The gene significance 
(GS) and module membership (MM) were calculated 
to relate modules to clinical traits. For the identified 
modules, the important modules that need further 
analysis were determined according to their 
correlation coefficients r and P values. 

2.3 Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathways enrichment analysis 

GO functional enrichment analysis and KEGG 
enrichment analysis were performed on the genes in 
the key modules related to GC progression using 
online STRING (https://string-db.org/). The false 
discovery rate ≤ 0.05 indicated that the enrichment 
results were statistically significant. The results of GO 
analysis mainly studied the related pathways of 
enrichment of these genes in biological processes, 
molecular functions and cellular components. The 
results of GO and KEGG were visualized by using the 
“ggplot2” package of R software. The results of top 10 
in each GO terms of GO analysis were presented in 
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the form of bar chart, and the enrichment results of 
KEGG were presented in the form of bubble chart. 

2.4 Hub gene identification and survival 
analysis 

The GS and MM values in the key gene module 
of GC were calculated respectively, and the key genes 
in the key module were screened according to the 
screening criteria recommended by the WGCNA 
official website (|MM| > 0.8 & |GS| > 0.2). The 
selected key genes were further subjected to 
expression analysis in the GEPIA (http://gepia 
.cancer-pku.cn/; Match TCGA normal and GTEx 
data) database to find genes significantly related to 
different stages of GC patients for subsequent 
verification. Meanwhile, Kaplan-Meier survival 
analysis followed by log-rank test was performed to 
evaluate the impact of hub genes on the prognosis of 
patients. 

2.5 Gene Set Enrichment Analysis (GSEA) of 
hub genes 

To study the potential function of hub genes, the 
“clusterProfiler” package of R was applied to perform 
GSEA analysis. The samples were divided into two 
groups according to the median expression of hub 
genes, and the h.all.v7.4.entrez.gmt was chosen for 
analysis. The “ggplot2” package was used to visualize 
the significant functional pathways involved in hub 
genes. And specific pathways were visualized with 
“enrichplot” package. 

2.6 Evaluation of tissue infiltrating immune 
cells 

The CIBERSORT deconvolution algorithm was 
employed to predict the immune cell fractions in 
GSE15459 datasets based on gene expression profiles, 
according to the known reference set LM22 (leukocyte 
signature matrix) [12]. The relationship of hub genes 
and tissue infiltrating immune cells were assessed via 
the method of Spearman analysis. 

2.7 Immunohistochemical validation of hub 
genes 

In this study, 20 patients with GC who were 
surgically removed between March 2022 and May 
2022 from Dazhou Central Hospital were collected in 
accordance with the policy of the Ethics Committee of 
the Dazhou Central Hospital (No. 2022032). 
According to the tumor-node-metastasis (TNM) 
cancer staging system of the American Joint 
Committee on Cancer (Version 8), 10 patients were in 
early stage (with a mean age of 68.3; 60% were male) 
and 10 patients were in advanced stage (with a mean 
age of 68.7; 50% were male). The detailed 

demographic information of the patients is provided 
in Supplementary File 1. Tumor tissues were fixed 
with 4% paraformaldehyde, embedded in paraffin 
and sliced into 4 μm-thick sections following a 
standard protocol. C1QA monoclonal antibody (1:100, 
Cat.67063-1-Ig, Proteintech), C1QB rabbit pAb (1:100, 
Cat.382301, ZENBI0), C1QC polyclonal antibody 
(1:100, Cat.16889-1-AP, Proteintech), Anti-FPR3 
(1:100, Cat.ab188785, abcam), DAP12 (TYROBP) rabbit 
pAb (1:100, Cat.383147, ZENBI0) and FCER1G (1:100, 
Cat.CQA4448, Cohesion) were used as primary 
antibodies, and working solution form Dako REAL™ 
EnVision™ test (Cat.K5007) were as secondary 
antibody. The tissue samples of two patients had been 
detached in the experiment, and the final 
experimental results could not be obtained. Therefore, 
only 9 patients in each group were included in the 
final immunohistochemical analysis. The results of 
the statistical analysis of IHC were performed by 
Aperio ImageScope software (Vista, CA, USA) and 
the difference was compared based on H-score. 

3. Results 

3.1 Construction of weighted gene 
co-expression network and key gene modules 
identification 

Patients with different stages have significantly 
different prognosis, and in general, the earlier the 
stage (Early stage included stage 1 and stage 2 
patients, advanced stage included stage 3 and stage 4 
patients), the better the prognosis (Supplementary 
Figure 1). After preprocessing GSE15459 data, the 
expression matrix containing 21,653 genes was finally 
obtained for analysis. The average clustering method 
was used to cluster 192 samples. The height of 
clustering was set to 5e+5 (marked by red line) 
(Supplementary Figure 2A), and the abnormal 
sample GSM387791 was deleted according to the 
clustering tree. After removing the abnormal sample, 
sample clustering containing corresponding sample 
information was obtained for subsequent WGCNA 
analysis (Supplementary Figure 2B). Through the 
establishment of a scale-free network, gene modules 
highly related to disease stage were screened, and the 
soft threshold was selected as 10 (R2 = 0.95), and the 
modules were finally determined (non-clustering 
modules were gray) (Supplementary Figure 3). 
Finally, 26 gene modules were identified, among 
which 7 modules were significantly correlated with 
tumor stage in GC. ME-salmon (r=0.186, P=0.01) and 
ME-royalblue (r=-0.19, P=0.009) were selected as the 
modules with the largest correlation coefficient with 
tumor stage, which contained 164 genes (Figure 1). 
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Figure 1. Module-trait relationship. Each row indicates a module eigengene and each column indicates a trait.  

 

3.2 Gene function and pathway enrichment 
analysis 

GO and KEGG enrichment analysis of 164 genes 
in salmon and royalblue modules to gain insight into 
biological significance of these genes. The results 
showed that GO functional annotation significantly 
enriched 360 biological process items, 47 cellular 
component items and 21 molecular function items 
(Detailed GO terms were in supplementary file 2). All 
significant molecular functions, cellular component, 
and top 10 biological processes are shown in bar 
charts in Figure 2A, mainly involved in Integral 
component of membrane, Signaling receptor activity, 
Immune response. Genes in the KEGG pathway 
enrichment analysis module were significantly 
enriched in 19 pathways, including Toll-like receptor 
signaling pathway, Neuroactive ligand-receptor 
interaction, Lysosome, Gastric acid secretion, 
Cholesterol metabolism (Figure 2B).  

3.3 Identification and function analysis of hub 
genes 

Fourteen hub genes were identified from the 
salmon and royalblue modules by setting the 
screening criteria of |MM| > 0.8 and |GS|> 0.2 
(Figure 3A-B). The difference analysis results further 

demonstrated that C1QA, C1QB, C1QC, C3AR1, CD14, 
FCER1G, FCGR1B, FCGR2A, FPR3, HAVCR2, LAIR1 
and TYROBP were significantly over-expressed in 
advanced patients, while FBXL13 and TMED6 were 
significantly over-expressed in early patients (Figure 
3C). The GEPIA database was further used to analyze 
these genes and it was found that 12 genes except for 
FCGR1B and FBXL13 were significantly different 
between GC tissues and normal tissues (P<0.05). 
Among the 12 genes, C1QA, C1QB, C1QC, FCER1G, 
FPR3, HAVCR2, LAIR1 and TYROBP displayed 
obvious differences in different stages (P<0.05) 
(Supplementary Figure 4). According to the median 
expression of genes, those below this value are 
low-expression groups, and those above this value are 
high-expression groups. Kaplan-Meier survival 
analysis in GSE15459 cohort further indicated that the 
C1QA (HR=1.510, P=0.0472), C1QB (HR=1.765, 
P=0.0064), C1QC (HR=1.723, P=0.0091), FCER1G 
(HR=1.593, P=0.0248), FPR3 (HR=1.613, P=0.0215) and 
TYROBP (HR=1.654, P=0.0148) were significantly 
associated with overall survival of GC (Figure 4, 
Supplementary Figure 5). GSEA was performed to 
identify the functional enrichment of the above high 
expression genes and above low expression genes 
respectively (Figure 5). HALLMARK enrichment 
term exhibited that high expression of C1QA was 
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mainly associated with interferon alpha response 
activation and oxidative phosphorylation suppres-
sion, high expression of C1QB, C1QC, FCER1G and 
FPR3 were all mainly associated with interferon 
gamma (INFγ) response activation and oxidative 
phosphorylation suppression, and high expression of 
TYROBP was mainly associated with epithelial 
mesenchymal transition activation and oxidative 
phosphorylation suppression (Figure 5A). These 
results suggested that these genes played a major role 
in INFγ response activation (Figure 5B) and oxidative 
phosphorylation suppression (Figure 5C). 

3.4 Differences in immune characteristics 
between early and advanced stage  

CIBERSORT analysis revealed that patients in 
early stage had significantly lower levels of T cells 
follicular helper, macrophages M1, and macrophages 
M2 than those in advanced stage. However, the levels 
of B cell naive, T cells CD4 memory resting, and NK 
cells resting were significantly higher than those in 
advanced stage (Figure 6A-B). The correlations 
between the 6 hub genes and immune cell types were 
also calculated for all patients (Figure 6C). Among the 
significant difference immune cell types, all six hub 
genes were significantly positive with macrophages 
M2, significantly negative with T cells CD4 memory 
resting, and NK cells resting. C1QA, C1QB, C1QC, 
FCER1G and FPR3 were significantly positive with 
macrophages M1. 

3.5 Immunohistochemistry validation of hub 
genes  

To verify the bioinformatics results, IHC 
experiments were further conducted. The results 
revealed that the protein expression levels of C1QB 
(P=0.024), FCER1G (P=0.019), FPR3 (P=0.024) and 
TYROBP (P=0.038) were significantly higher in the 
advanced stage group. The difference in the C1QA 
(P=0.354) and C1QC (P=0.402) expression between the 
two groups was not statistically significant (Figure 7). 
These finding indicated that the results of data mining 
were reliable and had potential research value. 

4. Discussion 
GC remains one of the world’s most malignant 

cancers with heterogeneous characteristics. Although 
some studies have explored molecular and function 
related to its pathogenesis, diagnosis and prognosis, 
they are not sufficient to elucidate GC clearly. 
Therefore, we performed WGCNA analysis, GO and 
KEGG enrichment analysis, GSEA analysis through 
GC-related data in the GEO database, and through OS 
analysis, TCGA database analysis and IHC 
verification, we found that C1QB, FCER1G, FPR3 and 
TYROBP may be the core genes for the occurrence and 
development of GC, and their mechanism of action 
may involve toll-like receptor signaling pathway, 
neuroactive ligand-receptor interaction, lysosome, 
gastric acid secretion, cholesterol metabolism, INFγ 
response activation and oxidative phosphorylation 
suppression.  

 
 

 
Figure 2. The functional enrichment analysis of gene in the two clinically important modules. (A) Top 10 GO terms in each category of GO enrichment analysis. (B) Significantly 
enriched KEGG pathways. FDR: false discovery rate. 
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Figure 3. Hub gene identification between early stage and advanced stage of gastric cancer. (A)The scatterplot describing the relationship between MM and GS in salmon 
module. (B) The scatterplot describing the relationship between MM and GS in the royalblue module. (C) Fourteen hub genes expression between early stage and advanced stage 
of gastric cancer in GSE15459 cohort.  

 
Through WGCNA, we identified modules likely 

to be important in GC development, whose genes 
were strongly related to toll-like receptor signaling 
pathway, cholesterol metabolism, INFγ response 
activation and oxidative phosphorylation suppres-
sion. Consistent with the predicted functional 
enrichment of genes in significant modules, the 
toll-like receptor signaling pathway has been shown 
to be associated with the pathogenesis of immune 
diseases and cancer through stimulating several 

downstream signaling pathways [13, 14]. Besides, 
toll-like receptor signaling pathway involved gene 
such as TLR4 expression is linked to several cancers. 
Huang et al. have reported that TLR4 is expressed in 
mouse tumor cells and activation of TLR4 in these 
cells induces the expression of a variety of soluble 
factors, making tumor cells resistant to Cytotoxic T 
lymphocyte attacks [15]. Additionally, toll-like 
receptors play a major role in early innate immune 
defense mechanisms through activating canonical and 
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non-canonical pathways of inflammation [16]. Our 
study also highlighted the dysregulation of the 
toll-like receptors signaling pathway in the 
progression of GC and the differences in the 
composition of some innate immune system cells, 
such as T cells, NK cells, and macrophages, which 
indicated that the toll-like receptors signaling 
pathway and innate immune system regulation were 
involved in the occurrence and development of GC. In 
general, cholesterol and its metabolites (precursors 
and derivatives) play complex roles in tumors. In 
recent years, studies have reported the role of 
cholesterol metabolism in regulating tumor biological 
processes, especially carcinogenic signaling pathways 
and tumor microenvironment [17, 18]. Preclinical 
studies over the years have shown that manipulating 
the synthesis and uptake of cholesterol has an 
inhibitory effect on tumor growth, invasion and 
proliferation in a variety of cancers [18-20]. In 
addition, some new cholesterol metabolism 
molecules, such as SOAT1, SQLE and NPC1, have 
recently become promising drug targets for cancer 
treatment [21]. Some IFNγ signaling related genes, 
such as IRF family genes, play an important role in the 
prognosis of RCC by regulating cell cycle and 
inducing apoptosis [22]. Tumor cells are the key 
responders of IFN-γ in the tumor microenvironment 
[23]. The immune activation of IFN-γ on tumor cells is 
mainly attributed to the induction of tumor cells to 
express MHC class I, secrete chemokines, promote 
lymphocyte migration, and inhibit angiogenesis 
[24-26]. By directly killing gastric parietal cells, IFN-γ 
also appears to be a driver of disease progression to 
metaplasia during chronic gastritis [27]. 

The TME is a highly structured ecosystem that 
includes a rich diversity of immune cells, cancer- 
associated fibroblasts, endothelial cells, pericytes, and 
other cell types that vary from tissue to tissue, such as 
fat cells and neurons [28-30]. As a key element in the 
evolutionary and ecological processes of tumori-
genesis and treatment, the TME has received 
increasing attention in research and drug develop-
ment. Previous studies have shown that high levels of 
immune cell infiltration are associated with a better 
prognosis for prostate cancer, cutaneous melanoma, 
and breast cancer. And increasing evidence indicated 
the implication the profound effects of TME in 
tumorigenesis, progression, and therapeutic resis-
tance of cancers [31-33]. Researches have revealed that 
that inhibitory Tregs, tumor-associated stromal cells 
(TASCs), tumor-associated macrophages (TAMs), 
Tc17, and CD8+ depleted T cells are enriched in the 
tumor, while mast cells, endocrine, and follicular 
regulatory T cells are enriched in paracancer tissue 
through a comprehensive GC single cell transcrip-
tome map. Notably, a higher proportion of TASCs 
was associated with worse prognosis [34]. Similarly, 
our analysis of TME landscape highlighted the 
enrichment of macrophages M1, macrophages M2 
and follicular helper T cells in advanced stage tumor 
tissues while the levels of B cell naive, T cells CD4 
memory resting, and NK cells resting were 
significantly decreased compared with that in early 
stage. Studies have proved that macrophages are 
players in the innate immune response and a major 
component of the leukocyte infiltrate present in solid 
tumors, which have two activated polarized states, 
namely classical (M1 polarization with tumor 

 

 
Figure 4. The correlation between C1QA, C1QB, C1QC, FCER1G, FPR3, TYROBP expression and the prognosis of gastric cancer was analyzed using GSE15459 cohort. 
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inhibitory function) and alternative (M2 polarization 
with tumor promoting and immunosuppression 
function) [35, 36]. Additionally, inducing M2 
polarization and inhibiting M1 polarization in the 
TME of GC is one of the important factors in the 
formation of immune tolerance [36, 37]. We found 
higher distribution of both macrophages M1 and 
macrophages M2 in advanced stage patients. This 
may be due to the increase of M1 macrophages in 
tumor tissues of advanced patients to inhibit tumor 
growth, while the balance of TME in advanced tissues 
was destroyed, and M2 macrophages also increased 

and promoted tumor growth. NK cells can directly 
kill target cells and recognize tumor cells that CD8 + T 
cannot recognize. In GC patients, the infiltration level 
of NK cells in tumors and the infiltration level of NK 
cells in peripheral blood were positively correlated 
with the prognosis [38, 39]. Although the cytotoxicity 
of resting NK cells to GC is very low, NK cells 
induced by K562-mb15-41BBL cell line in vitro have 
strong cytotoxicity to GC and showed strong 
anti-tumor activity in animal experiments [40]. Our 
findings in this study were consisted with these 
results. 

 

 
Figure 5. GSEA for samples with high hub gene expression and low hub gene expression. (A) The enriched gene sets in HALLMARK collection by samples of high C1QA, C1QB, 
C1QC, FCER1G, FPR3, TYROBP expression, respectively. (B) Gene set enriched in the interferon gamma response (p.adjust = 4.545e-10, NES =3.33, p-value = 1e-10). (C) Gene set 
enriched in the oxidative phosphorylation (p.adjust = 4.545e-10, NES =-2.39, p-value = 1e-10). NES: normalized enrichment score. GSEA: Gene Set Enrichment Analysis. 
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Figure 6. Estimation of tissues infiltrating immune cell types between early stage and advanced stage patients in the GSE15459 cohorts via CIBERSORT. (A) Stacked barplots 
show the relative composition of 22 immune cell subsets in 191 gastric cancer patients. (B) The boxplots show tissues infiltrating immune cell difference between early stage and 
advanced stage gastric cancer patients. Data were assessed via the method of wilcox test. * p-value < 0.05, ** p-value < 0.01, ns, no significance. (C) Heatmap of 6 hub genes and 
tissues infiltrating immune cell. Data were assessed via the method of Spearman analysis. * p-value < 0.05, ** p-value < 0.01. 
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Figure 7. Experimental verification of six hub genes in different gastric cancer stage tissues. (A) Statistical analysis of immunohistochemistry results in early-stage tissues (n = 9) 
and advanced stage tissues (n = 9). Data were assessed via the method of Mann-Whitney U test. * p-value < 0.05, ns, no significance. (B) Representative images of 
immunohistochemical staining for C1QA, C1QB, C1QC, FCER1G, FPR3, and TYROBP between early stage and advanced stage gastric cancer patients. Scale bars = 100 μm. 

 
In the present study, WGCNA networks 

revealed four common hub genes between early stage 
and advanced stage of GC patients, including C1QB, 
FCER1G, FPR3 and TYROBP. And these hub genes 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

3294 

were strongly correlated with overall survival of GC 
patients. Previous studies have shown that C1q is the 
first recognition subcomponent of the complement 
classical pathway, which is comprised of three chains: 
C1qA, C1qB, and C1qC, and plays complex effects in 
the occurrence of various tumors, such as prostate 
cancer [41], ovarian cancer [42] and gliomas [43]. 
According to Yamada’s report [44], high expressed 
C1QB was significantly related to poor prognosis in 
renal cell carcinoma. A similar scenario was also 
observed in the KM analysis of GC patients that C1QB 
was negatively associated with prognosis of patients. 
FCER1G is located on chromosome 1q23.3 and 
encodes the γ subunit of the crystalline (Fc) region (Fc 
R) of an immunoglobulin fragment, which 
participates in various immune responses such as 
phagocytosis and cytokine release [45, 46]. FCER1G 
appears to be altered in the progression of several 
cancers, such as esophageal squamous cell carcinoma, 
multiple myeloma, and clear cell renal cell carcinoma 
[46-48]. In addition, FCER1G has been linked to 
macrophage and T cell function in renal cancer [48]. 
These findings were consistent with our results that 
high expression of FCER1G was positively correlated 
with infiltration of M2 macrophages and negatively 
correlated with CD4 T cells, NK cells. Formyl-peptide 
receptors (FPRs) belong to the classical GPCR 
subfamily and three FPRs has been identified in 
humans: FPR1, FPR2 and FPR3. It has been reported 
that FPR1 and FPR2 are abnormally expressed in 
various tumors [49]. The expression of FPR1 in GC 
tissues is higher than that in normal tissues, which is 
closely related to the survival time of patients [50], 
and FPR2 is also highly expressed in endometrial and 
colon cancer [51]. However, little research has been 
done on FPR3. FPR3 is expressed in eosinophils, 
monocytes, macrophages, and dendritic cells, but its 
function is unclear [52]. Several ligands for FPR3 have 
been identified, including F2L, the acetylated 
n-terminal fragment of human heme-binding protein 
[53], and the neuroprotective peptide humanin [54]. 
Interestingly, FPR3 does not interact with formylated 
chemoattractants or ligands of FPR1 or FPR2. 
Therefore, FPR3 may have a unique functional role 
[55]. A recent study identified FPR3 as a key 
immune-related biomarker for predicting poor 
prognosis of breast cancer, possibly playing an 
important role in the progression of breast cancer by 
modulating the immune microenvironment [56]. Our 
study demonstrated the important role of FPR3 in GC 
progression. Moreover, our results revealed a positive 
correlation between TYROBP and tumor stage in GC. 
TYROBP, also known as DAP12 is notably positive 
with tumor progression in multiple cancers. Previous 
study has uncovered an association between high 

TYROBP expression with high-risk metastases as well 
as poor survival of breast cancer patients [57]. In our 
present study, TYROBP overexpression was 
associated with tumor stage and poor survival of GC 
patients. Additionally, results from interrelation 
analysis showed that TYROBP was positively 
associated with macrophage M2 and CD8 T cells, 
which negatively correlated with NK cells resting. 
This is consistent with some previous studies [58, 59]. 
These results indicated that TYROBP might be 
playing an immunosuppressive role to promote 
tumor immune escape in advanced GC.  

The current study also has several limitations. 
Firstly, this study was based on bioinformatics 
analysis, and a relatively small cohort was recruited 
for hub genes verification, so further validation using 
large clinical cohorts should be performed to verify 
these results. Secondly, the results lacked vitro and 
vivo exploration to confirm the reliability of the 
mechanistic analysis. Therefore, a number of 
experiments should be conducted to demonstrate the 
mechanistic connections between these genes and GC 
progression in the future. 

5. Conclusion 
In conclusion, the current study identified 4 hub 

genes associated with GC progression and patients’ 
prognosis through a series of bioinformatics analyses 
and validation. In addition, the four hub genes were 
significantly correlated with the infiltration of 
immune cells, which may help guide further studies 
to gain a comprehensive understanding of the 
network of hub genes involved in tumor progression 
and provide valuable clues for the treatment of GC. 

Supplementary Material 
Supplementary figures and tables.  
https://www.jcancer.org/v15p3284s1.pdf 

Acknowledgements 
Funding 

The study was approved by Dazhou Science and 
Technology Bureau project (21ZDYF0025, 21ZDYF 
0023), Sichuan Medical Association Project (S21048), 
Sichuan Administration of Traditional Chinese 
Medicine project (2023MS141) and the "Chunhui 
Program" Cooperative Scientific Research Project of 
the Ministry of Education (HZKY20220562). 

Data availability statement 
The datasets analyzed during the current study 

are accessible via the GEO repository (GSE15459) 
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE15459]. The unprocessed data can be 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

3295 

obtained from jianguoyun at the following link: 
https://www.jianguoyun.com/p/DQDavU4Qju6ED
BjAnp8FIAA. 

Author contributions 
RL, BL, XLY, JL and YPC conceived the study. 

JZ, QC, JL and RL drafted the manuscript. XLY, TCZ 
and CZL performed the literature search and collected 
the data. XFL and RL analyzed and visualized the 
data. YPC, LGF, JPF and JZ completed in vitro 
experiment. HC, BL, QC, YPC and XFL helped with 
the final revision of this manuscript. All authors 
reviewed and approved the final manuscript. 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. 

Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and 
Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 
71: 209-49. 

2. Cristescu R, Lee J, Nebozhyn M, Kim K-M, Ting JC, Wong SS, et al. Molecular 
analysis of gastric cancer identifies subtypes associated with distinct clinical 
outcomes. Nat Med. 2015; 21: 449-56. 

3. Sasako M, Sakuramoto S, Katai H, Kinoshita T, Furukawa H, Yamaguchi T, et 
al. Five-year outcomes of a randomized phase III trial comparing adjuvant 
chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J 
Clin Oncol. 2011; 29: 4387-93. 

4. Raimondi A, Nichetti F, Peverelli G, Di Bartolomeo M, De Braud F, 
Pietrantonio F. Genomic markers of resistance to targeted treatments in gastric 
cancer: potential new treatment strategies. Pharmacogenomics. 2018; 19: 
1047-68. 

5. Sexton RE, Al Hallak MN, Diab M, Azmi AS. Gastric cancer: a comprehensive 
review of current and future treatment strategies. Cancer Metastasis Rev. 2020; 
39: 1179-203. 

6. Tan Z. Recent Advances in the Surgical Treatment of Advanced Gastric 
Cancer: A Review. Med Sci Monit. 2019; 25: 3537-41. 

7. Davidson M, Okines AFC, Starling N. Current and Future Therapies for 
Advanced Gastric Cancer. Clin Colorectal Cancer. 2015; 14: 239-50. 

8. Yao Z, Li F, Xie W, Chen J, Wu J, Zhan Y, et al. DeepSF-4mC: A deep learning 
model for predicting DNA cytosine 4mC methylation sites leveraging 
sequence features. Comput Biol Med. 2024; 171: 108166. 

9. Yao Z, Zhu G, Too J, Duan M, Wang Z. Feature Selection of OMIC Data by 
Ensemble Swarm Intelligence Based Approaches. Front Genet. 2021; 12: 
793629. 

10. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation 
network analysis. BMC Bioinformatics. 2008; 9: 559. 

11. Liu K, Chen S, Lu R. Identification of important genes related to ferroptosis 
and hypoxia in acute myocardial infarction based on WGCNA. Bioengineered. 
2021; 12: 7950-63. 

12. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust 
enumeration of cell subsets from tissue expression profiles. Nat Methods. 
2015; 12: 453-7. 

13. Tsan M-F. Toll-like receptors, inflammation and cancer. Semin Cancer Biol. 
2006; 16: 32-7. 

14. Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev 
Cancer. 2009; 9: 57-63. 

15. Huang B, Zhao J, Li H, He K-L, Chen Y, Chen S-H, et al. Toll-like receptors on 
tumor cells facilitate evasion of immune surveillance. Cancer Res. 2005; 65: 
5009-14. 

16. van Bergenhenegouwen J, Plantinga TS, Joosten LAB, Netea MG, Folkerts G, 
Kraneveld AD, et al. TLR2 & Co: a critical analysis of the complex interactions 
between TLR2 and coreceptors. J Leukoc Biol. 2013; 94: 885-902. 

17. Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ. The interplay between cell 
signalling and the mevalonate pathway in cancer. Nat Rev Cancer. 2016; 16: 
718-31. 

18. Huang B, Song B-L, Xu C. Cholesterol metabolism in cancer: mechanisms and 
therapeutic opportunities. Nat Metab. 2020; 2: 132-41. 

19. Lyu J, Yang EJ, Head SA, Ai N, Zhang B, Wu C, et al. Pharmacological 
blockade of cholesterol trafficking by cepharanthine in endothelial cells 
suppresses angiogenesis and tumor growth. Cancer Lett. 2017; 409. 

20. Costa GA, de Souza SB, da Silva Teixeira LR, Okorokov LA, Arnholdt ACV, 
Okorokova-Façanha AL, et al. Tumor cell cholesterol depletion and V-ATPase 

inhibition as an inhibitory mechanism to prevent cell migration and 
invasiveness in melanoma. Biochim Biophys Acta Gen Subj. 2018; 1862: 684-91. 

21. Xu H, Zhou S, Tang Q, Xia H, Bi F. Cholesterol metabolism: New functions 
and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer. 
2020; 1874: 188394. 

22. Zhang Q, Zhang L, Li L, Wang Z, Ying J, Fan Y, et al. Interferon regulatory 
factor 8 functions as a tumor suppressor in renal cell carcinoma and its 
promoter methylation is associated with patient poor prognosis. Cancer Lett. 
2014; 354: 227-34. 

23. Kim EY, Ner-Gaon H, Varon J, Cullen AM, Guo J, Choi J, et al. Post-sepsis 
immunosuppression depends on NKT cell regulation of mTOR/IFN-γ in NK 
cells. J Clin Invest. 2020; 130: 3238-52. 

24. Kanda N, Shimizu T, Tada Y, Watanabe S. IL-18 enhances 
IFN-gamma-induced production of CXCL9, CXCL10, and CXCL11 in human 
keratinocytes. Eur J Immunol. 2007; 37: 338-50. 

25. Grasso CS, Tsoi J, Onyshchenko M, Abril-Rodriguez G, Ross-Macdonald P, 
Wind-Rotolo M, et al. Conserved Interferon-γ Signaling Drives Clinical 
Response to Immune Checkpoint Blockade Therapy in Melanoma. Cancer 
Cell. 2020; 38. 

26. Muntjewerff EM, Meesters LD, van den Bogaart G, Revelo NH. Reverse 
Signaling by MHC-I Molecules in Immune and Non-Immune Cell Types. 
Front Immunol. 2020; 11: 605958. 

27. Osaki LH, Bockerstett KA, Wong CF, Ford EL, Madison BB, DiPaolo RJ, et al. 
Interferon-γ directly induces gastric epithelial cell death and is required for 
progression to metaplasia. J Pathol. 2019; 247: 513-23. 

28. Chi H, Xie X, Yan Y, Peng G, Strohmer DF, Lai G, et al. Natural killer 
cell-related prognosis signature characterizes immune landscape and predicts 
prognosis of HNSCC. Front Immunol. 2022; 13: 1018685. 

29. Chi H, Gao X, Xia Z, Yu W, Yin X, Pan Y, et al. FAM family gene prediction 
model reveals heterogeneity, stemness and immune microenvironment of 
UCEC. Front Mol Biosci. 2023; 10: 1200335. 

30. Xiong J, Chi H, Yang G, Zhao S, Zhang J, Tran LJ, et al. Revolutionizing 
anti-tumor therapy: unleashing the potential of B cell-derived exosomes. Front 
Immunol. 2023; 14: 1188760. 

31. Zeng D, Zhou R, Yu Y, Luo Y, Zhang J, Sun H, et al. Gene expression profiles 
for a prognostic immunoscore in gastric cancer. Br J Surg. 2018; 105: 1338-48. 

32. Zeng D, Li M, Zhou R, Zhang J, Sun H, Shi M, et al. Tumor Microenvironment 
Characterization in Gastric Cancer Identifies Prognostic and 
Immunotherapeutically Relevant Gene Signatures. Cancer Immunol Res. 2019; 
7: 737-50. 

33. Zeng D, Ye Z, Wu J, Zhou R, Fan X, Wang G, et al. Macrophage correlates with 
immunophenotype and predicts anti-PD-L1 response of urothelial cancer. 
Theranostics. 2020; 10: 7002-14. 

34. Sun K, Xu R, Ma F, Yang N, Li Y, Sun X, et al. scRNA-seq of gastric tumor 
shows complex intercellular interaction with an alternative T cell exhaustion 
trajectory. Nat Commun. 2022; 13: 4943. 

35. Biswas SK, Mantovani A. Macrophage plasticity and interaction with 
lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010; 11: 889-96. 

36. Chen D, Zhang X, Li Z, Zhu B. Metabolic regulatory crosstalk between tumor 
microenvironment and tumor-associated macrophages. Theranostics. 2021; 11: 
1016-30. 

37. Liu Y, Li C, Lu Y, Liu C, Yang W. Tumor microenvironment-mediated 
immune tolerance in development and treatment of gastric cancer. Front 
Immunol. 2022; 13: 1016817. 

38. Li T, Zhang Q, Jiang Y, Yu J, Hu Y, Mou T, et al. Gastric cancer cells inhibit 
natural killer cell proliferation and induce apoptosis via prostaglandin E2. 
Oncoimmunology. 2016; 5: e1069936. 

39. Xie M-Z, Tang Y-P, Hu B-L, Li K-Z, Li J-L, Liang X-Q. Percentage of Natural 
Killer (NK) Cells in Peripheral Blood Is Associated with Prognosis in Patients 
with Gastric Cancer: A Retrospective Study from a Single Center. Med Sci 
Monit. 2021; 27: e927464. 

40. Mimura K, Kamiya T, Shiraishi K, Kua L-F, Shabbir A, So J, et al. Therapeutic 
potential of highly cytotoxic natural killer cells for gastric cancer. Int J Cancer. 
2014; 135: 1390-8. 

41. Hong Q, Sze C-I, Lin S-R, Lee M-H, He R-Y, Schultz L, et al. Complement C1q 
activates tumor suppressor WWOX to induce apoptosis in prostate cancer 
cells. PLoS One. 2009; 4: e5755. 

42. Agostinis C, Vidergar R, Belmonte B, Mangogna A, Amadio L, Geri P, et al. 
Complement Protein C1q Binds to Hyaluronic Acid in the Malignant Pleural 
Mesothelioma Microenvironment and Promotes Tumor Growth. Front 
Immunol. 2017; 8: 1559. 

43. Mangogna A, Belmonte B, Agostinis C, Zacchi P, Iacopino DG, Martorana A, 
et al. Prognostic Implications of the Complement Protein C1q in Gliomas. 
Front Immunol. 2019; 10: 2366. 

44. Yamada Y, Arai T, Kojima S, Sugawara S, Kato M, Okato A, et al. Regulation of 
antitumor miR-144-5p targets oncogenes: Direct regulation of syndecan-3 and 
its clinical significance. Cancer Sci. 2018; 109: 2919-36. 

45. Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S, et al. 
FcRgamma activation regulates inflammation-associated squamous 
carcinogenesis. Cancer Cell. 2010; 17: 121-34. 

46. Fu L, Cheng Z, Dong F, Quan L, Cui L, Liu Y, et al. Enhanced expression of 
FCER1G predicts positive prognosis in multiple myeloma. J Cancer. 2020; 11: 
1182-94. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

3296 

47. Xu T, Dai T, Zeng P, Guo Y, He K. A novel immune-related gene signature 
predicts survival in esophageal squamous cell carcinoma. Transl Cancer Res. 
2021; 10: 2354-67. 

48. Dong K, Chen W, Pan X, Wang H, Sun Y, Qian C, et al. FCER1G positively 
relates to macrophage infiltration in clear cell renal cell carcinoma and 
contributes to unfavorable prognosis by regulating tumor immunity. BMC 
Cancer. 2022; 22: 140. 

49. Prevete N, Liotti F, Visciano C, Marone G, Melillo RM, de Paulis A. The formyl 
peptide receptor 1 exerts a tumor suppressor function in human gastric cancer 
by inhibiting angiogenesis. Oncogene. 2015; 34: 3826-38. 

50. Yang Y, Liu Y, Yao X, Ping Y, Jiang T, Liu Q, et al. Annexin 1 released by 
necrotic human glioblastoma cells stimulates tumor cell growth through the 
formyl peptide receptor 1. Am J Pathol. 2011; 179: 1504-12. 

51. Cocco E, Bellone S, El-Sahwi K, Cargnelutti M, Buza N, Tavassoli FA, et al. 
Serum amyloid A: a novel biomarker for endometrial cancer. Cancer. 2010; 
116: 843-51. 

52. Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K, Rossi AG. The 
role of formylated peptides and formyl peptide receptor 1 in governing 
neutrophil function during acute inflammation. Am J Pathol. 2015; 185: 
1172-84. 

53. Migeotte I, Riboldi E, Franssen J-D, Grégoire F, Loison C, Wittamer V, et al. 
Identification and characterization of an endogenous chemotactic ligand 
specific for FPRL2. J Exp Med. 2005; 201: 83-93. 

54. Harada M, Habata Y, Hosoya M, Nishi K, Fujii R, Kobayashi M, et al. 
N-Formylated humanin activates both formyl peptide receptor-like 1 and 2. 
Biochem Biophys Res Commun. 2004; 324: 255-61. 

55. Rabiet M-J, Macari L, Dahlgren C, Boulay F. N-formyl peptide receptor 3 
(FPR3) departs from the homologous FPR2/ALX receptor with regard to the 
major processes governing chemoattractant receptor regulation, expression at 
the cell surface, and phosphorylation. J Biol Chem. 2011; 286: 26718-31. 

56. Qi J, Liu Y, Hu J, Lu L, Dou Z, Dai H, et al. Identification of FPR3 as a Unique 
Biomarker for Targeted Therapy in the Immune Microenvironment of Breast 
Cancer. Front Pharmacol. 2020; 11: 593247. 

57. Shabo I, Olsson H, Stål O, Svanvik J. Breast cancer expression of DAP12 is 
associated with skeletal and liver metastases and poor survival. Clin Breast 
Cancer. 2013; 13: 371-7. 

58. Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as 
major players in the tumor microenvironment. Cancers (Basel). 2014; 6: 
1670-90. 

59. Jiang J, Ding Y, Wu M, Lyu X, Wang H, Chen Y, et al. Identification of 
TYROBP and C1QB as Two Novel Key Genes With Prognostic Value in Gastric 
Cancer by Network Analysis. Front Oncol. 2020; 10: 1765. 

 


