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Abstract 

Background: Despite a growing number of studies evaluating cancer of prostate (CaP) specific gene 

alterations, oncogenic activation of the ETS Related Gene (ERG) by gene fusions remains the most 

validated cancer gene alteration in CaP. Prevalent gene fusions have been described between the 

ERG gene and promoter upstream sequences of androgen-inducible genes, predominantly 

TMPRSS2 (transmembrane protease serine 2). Despite the extensive evaluations of ERG genomic 

rearrangements, fusion transcripts and the ERG oncoprotein, the prognostic value of ERG remains 

to be better understood. Using gene expression dataset from matched prostate tumor and normal 

epithelial cells from an 80 GeneChip experiment examining 40 tumors and their matching normal 

pairs in 40 patients with known ERG status, we conducted a cancer signaling-focused functional 

analysis of prostatic carcinoma representing moderate and aggressive cancers stratified by ERG 

expression. 

Results: In the present study of matched pairs of laser capture microdissected normal epithelial 

cells and well-to-moderately differentiated tumor epithelial cells with known ERG gene expression 

status from 20 patients with localized prostate cancer, we have discovered novel ERG associated 

biochemical networks. 

Conclusions: Using causal network reconstruction methods, we have identified three major sig-

naling pathways related to MAPK/PI3K cascade that may indeed contribute synergistically to the 

ERG dependent tumor development. Moreover, the key components of these pathways have 

potential as biomarkers and therapeutic target for ERG positive prostate tumors. 

Key words: Prostate cancer; differentiation status; TMPRSS2-ERG fusion. 

Background 

Cancer of the prostate (CaP) is the second lead-
ing cause of cancer related death in men in the USA 
with estimated 238,590 new cases and 29,720 deaths in 
2013 [1]. Although significant progress has been made 
in the early detection and treatment of the organ con-
fined CaP, better understanding of the cancer biology 

is essential in addressing current challenges related to 
the development of more precise diagnostic and 
prognostic biomarkers and rational therapy targets. 
[2] Recent investigations have been providing new 
insights into common genomic alterations in CaP. [3] 
The driver genetic alterations and molecular mecha-
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nisms contributing to CaP onset and progression need 
to be better understood. [4-8] Despite a growing 
number of studies evaluating CaP specific gene alter-
ations, oncogenic activation of the ETS Related Gene 
(ERG) by gene fusions remains the most validated 
cancer gene alteration in CaP. [9-11]  

Evaluations of the CaP epithelial transcriptome 
revealed overexpression of the ERG mRNA in pros-
tate cancer cells. [12-14] Further, our quantitative 
evaluations of ERG mRNA expression in laser capture 
micro-dissected (LCM) matched benign and tumor 
cells of 114 patients, identified ERG overexpression in 
over two thirds of patients. [14] Prevalent gene fu-
sions have been described between the ERG gene (or 
other members of the ETS Family of transcription 
factors) and promoter upstream sequences of andro-
gen-inducible genes, predominantly TMPRSS2 
(transmembrane protease serine 2) and other andro-
gen inducible genes. [15-17] ERG knock-down in 
TMPRSS2-ERG positive CaP cell culture and xeno-
graft models revealed significantly reduced tumor cell 
growth. [18] Further, altered ERG expression in cell 
culture models of CaP resulted in differentia-
tion-associated or invasion-associated gene expres-
sion. [18-20] 

With the development of ERG monoclonal anti-
bodies, recent reports provided first insights into the 
detection of the protein products of the ERG gene 
fusions in CaP. [21, 22] The ERG oncoprotein expres-
sion in CaP is highly tumor cell specific (>99%) and 
concordant (>95%) with the ERG gene fusion status. 
[23-26] Despite the extensive evaluations of ERG ge-
nomic rearrangements, fusion transcripts and now the 
ERG oncoprotein, the prognostic value of ERG re-
mains to be better understood. [11, 27] Cooperation of 
ERG with other CaP-associated alterations, primarily 
the loss of PTEN (phosphatase and tensin homolog) 
has shown association with the disease progression. 
[28-33]  

Studies have also suggested prognostic implica-
tion of the relative abundance of specific 
TMPRSS-ERG splice variants (full length vs. truncat-
ed) in CaP progression. [20, 34] Although, a consid-
erable number of studies have addressed the clinical 
correlations of the oncogenic activation of ERG, criti-
cal pathways affected by ERG remain to be better de-
fined. Since the analysis of pairwise gene interaction 
of fusion gene networks, including ERG, indicated 
universal principles in human neoplasia [35], bioin-
formatic approaches have been used to address the 
ERG-regulated gene expression signature in CaP. 
Studies on ERG-associated gene expression patterns 
revealed signatures of epigenetic reprogramming and 
elevated expression of WNT-associated and attenu-
ated cell death pathways [36] Association of epige-

netic alterations as well as the presence of WNT sig-
nature in ERG positive human prostate tumors have 
been confirmed by several studies [37-39] A function-
al interface of ERG and C-MYC (v-myc myelocyto-
matosis viral oncogene homolog (avian)) has also 
been noted in the regulation prostate epithelial dif-
ferentiation markers [18] Integrative molecular con-
cept analysis addressing the CaP-associated gene ex-
pression signatures have revealed ERG as the most 
upregulated feature in prostatic adenocarcinoma. 
These data also highlighted the enrichment of differ-
entially expressed networks of the protein biosynthe-
sis pathway and androgen signaling in the transition 
from benign to pre-invasive and from localized to 
metastatic prostate cancer [40]  

Using gene expression dataset from matched 
prostate tumor and normal epithelial cells from 40 
patients [14, 18, 41]; we conducted a cancer signal-
ing-focused functional analysis of prostatic carcinoma 
representing moderate and aggressive cancers strati-
fied by ERG expression. Our findings suggest the ac-
tivation of MAPK (mitogen activated kinase-like pro-
tein) and PI3K (Phosphoinositide 3-kinase) cascades 
by synergistic actions of several genes (FGF2 (fibro-
blast growth factor 2), Angiotensin II, Neprilysin, AR 
(androgen receptor), E2F1 (E2F transcription factor 1), 
Tcf (T-cell specific factors), and DAN (neuroblastoma, 
suppression of tumorigenicity 1)) via three major dis-
tinctive signaling pathways.  

Methods 

Selection of Cases, LCM isolation of Tumor 

and Matching Benign Cells, Detection of ERG  

Using our previously reported gene expression 
dataset (GSE32448) from laser capture mi-
cro-dissected matched normal and tumor cells from 
40 patients [18, 41]; we performed evaluation of bio-
chemical pathways in ERG positive and ERG negative 
tumors. Briefly, from a PSA (prostate specific antigen) 
screened patient group with no prior neoadjuvant 
treatment, 300 cases were examined under an ap-
proved protocol from the Institutional Review Board 
approval of Walter Reed National Military Medical 
Center (WRNMMC) and Uniformed Services Univer-
sity of the Health Sciences (USUHS). Following radi-
cal prostatectomy frozen tumor tissues were obtained 
by ex-vivo biopsy of palpable tumors representing 
mainly index tumors. Prostates were preserved as 
whole-mounted FFPE fixed specimens. Following the 
evaluation of all tumor foci in whole-mounted sec-
tions, tumor growth pattern (Gleason score) and also 
the glandular differentiation (differentiation) were 
recorded in both the FFPE and the matching frozen 
tissues. We have selected cases representing two ex-
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tremes from the continuum of prostate cancers. In one 
group (n=20) cases were selected with Gleason sum 6 
(n=11) and 7 (3+4, n=9) and tumors cells with well- to 
moderately differentiated (WMD) morphology. The 
laser capture procedure was performed on the sin-
gle-cell level capturing only cells with well to moder-
ately differentiated morphology from Gleason patter 
3. In the second group (n=20) cases with Gleason sum 
of 8-9 were selected. Single cell resolution of laser 
capture was directed to cells with PD morphology. 
Cells were isolated by laser capture microdissection 
(LCM) (Arcturus Pixel 2) from OCT embedded and 
H&E stained frozen prostate sections (2000 laser shots 
per area as described earlier [14, 41-43] The morpho-
logical homogeneity was approximately 90% for can-
cer or benign epithelial cells. As a quality control for 
tumor or benign epithelial cells ERG, AMACR (al-
pha-methylacyl-CoA racemase) and PCA3 (prostate 
cancer antigen 3) transcripts were analyzed by 
QRT-PCR, confirming the morphological assessment 
[43] Presence or absence of ERG expression, 
TMPRSS2-ERG transcripts, and the expression of 
major ERG splice variants were derived from the 
previously published data [14, 34, 41] TMPRSS2-ERG 
fusion junctions (fusion “a, b and/or c”) at mRNA 
levels was detected in 18 of the 20 samples with WMD 
tumor cell morphology. TMPRSS2-ERG fusion junc-
tion was found only in 9 cases among the samples 
from PD tumor cells as previously shown [41].  

Microarray Expression Profiling and Statistical 

Analysis 

RNA extracted from the LCM benign and ma-
lignant epithelial cells and were hybridized to Affy-
metrix GeneChips (Human Genome U133 Plus 2.0 
chip) and processed as decribed [14, 42] Expression 
profiles in CEL format containing probe intensities 
corresponding to 80 samples were [NCBI/GEO: 
GSE32448] processed using R 
(http://r-project.com/). Additional modules used for 
data processing, normalization, clustering were ob-
tained from Bioconductor Project 
(http://www.bioconductor.org) [44]. The initial pro-
cessing of CEL files was performed using an updated 
GeneChip Robust Multiarray Averaging (GC-RMA) 
algorithm with new probe annotations [45, 46] for 
EntrezGene features provided by Affymetrix 
(http://brainarray.mbni. med.umich.edu/ Brainarray 
/DatabaseCustomCDF /genomic_curated_CDF.asp). 
For the purpose of this study, each set of intensities 
obtained from EntrezGene microarray analysis is re-
ferred to as an “experiment” file.  

The data for present study thus consisted of ex-
periments obtained for prostate tumor cells and 
matched benign prostate cells from the same cases. 

For each EntrezGene feature the change in gene ex-
pression level was calculated by two ways: matched 
fold changes and mean fold changes. For each 
matched pair of experiments the change in gene ex-
pression level was calculated as the difference be-
tween gene expression levels in tumor sample vs. 
normal sample. This approach takes into account 
variability in each individual’s gene expression pat-
tern. Mean fold changes were computed for each En-
trezGene feature as difference between mean expres-
sion in case matched samples and mean expression in 
control samples for each defined comparison groups 
of samples. 

The following datasets were subjected to clus-
tering analysis: (a) full set of 40 cases with 
Fold-Changes, (b) a set of only WMD tumor cells 
(Gleason score ≤7), (c) a set of only poor differentiated 
tumor cells (Gleason score > 7).  

Clustering Analysis 

Clustering analysis of experiments in a fold 
change format was performed with Pvclust [47]. This 
package allows for hierarchical clustering using var-
ious algorithms with Multiscale Bootstrap 
Resampling (MRB). The method is based on 
resampling of data, and applicable to a large class of 
problems including hierarchical clustering. In the 
MRB, we set the gene set size of bootstrap samples to 
several values. Let N be the original data size, and N’ 
be that for bootstrap samples (N’= N*0.5; 0.6; 0.7; 0.8; 
0.9; 1; 1.1; 1.2; 1.3 and 1.4). In our case, N = 18873 En-
trezGene features, and N’ = 9436, 11323, 13211, 15098, 
16985, 18873, 20760, 22647, 24534 and 26422 random 
EntrezGene features. MRB uses 1000 bootstrap repli-
cates with random N’ data sizes. On the basis of con-
structed bootstrap samples MRB measures the accu-
racy of defined clusters as p-values, which ranges 
from 0 to 1. MRB yields Approximatelly Unbiased 
(AU) p-value for each cluster, a cluster is considered 
statistically significant if AU p-value < 0.05. High sta-
tistical approval of AU p-value usage during cluster 
analysis is described in [48]. In our work we use 
standard R-package representation of these p-values, 
therefore statistically significant range of AU p-values 
is from 95 to 100 [47].  

Clustering analysis was performed with Single 
Linkage, Complete Linkage, Average Linkage and 
Centroid Linkage algorithms. To determine the dis-
tance between clusters, Euclid metrics was used.  

Clustering analysis was performed on a total set 
of EntrezGene features for all experiments, as well as 
on partial sets [49] Specifically, 1000, 3000, and 5000 
expression profiles with the biggest standard devia-
tions between log2 transformed fold changes of ex-
pression level in tumor tissue compared to normal 
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tissue were used for clustering analysis first, and the 
cluster stability was then tested on a full set of genes 
(all features found on the investigated Affymetrix 
platform). 

Identification of differentially expressed genes 

To identify differentially expressed genes be-
tween defined groups of samples, we used Bayesian 
moderated t-statistics coupled with false discovery 
rate (FDR) adjustment = 0.05. This test borrows in-
formation about gene-wise signal variances across all 
genes and uses empirical Bayes approach to derive 
posterior estimates of variance. Formally it shrinks 
variances towards a pooled estimate, thus increasing 
statistical power when number of samples is small. 
Moreover, this test is insensitive to missing data and 
doesn't require normality of the data [50] 

From the lists of differentially expressed genes, 
the genes (EntrezGene features) were selected based 
on expression levels: either downregulated or upreg-
ulated at least 1.5 mean fold change values.  

Functional Analysis  

We used the knowledge-based MetaCore 6.7 
software package [51] to identify molecular processes 
that are affected by the gene’s products of translation 
and transcription. MetaCore™ analyzes the global 
biological network by various algorithms, such as 
direct interactions, shortest paths, analyze network, 
transcription regulation, and auto-expand, expand by 
one interaction, and others. [51] We used transcription 
regulation algorithm to identify the most overcon-
nected transcription factors in a set of differentially 
expressed genes in our experimental data and Ca-
nonical Pathway modeling to identify canonical 
pathways enriched with differentially expressed 
genes from our data. 

Transcription regulation algorithm starts build-
ing a network by first constructing a smaller network 
that consists of the initial set of genes of interest and 
then by adding closest transcription factors (tran-
scription factors that are connected to a gene in a set 
by “transcription regulation” edge). Then, a separate 
network is built around every transcription factor, 
using the Auto Expand algorithm (which gradually 
expands sub-networks around every transcription 
factor) while limiting the expansion to the objects 
from the initial list. The algorithm delivers a list of 
networks, one per transcription factor. 

For every initial object the Canonical Pathway 
modeling algorithm searches the MetaCore™ Data-
base for all canonical pathways that start at, end at, or 
pass through that initial object, and builds a network 
consisting of all objects and links from all such path-
ways. The set of networks thus obtained is then pri-

oritized by the number of initial objects they contain. 
If two or more networks contain the same number of 
the initial objects, they are further prioritized by giv-
ing preference to those with the least total number of 
objects.  

Statistically significant network modules were 
combined for easier visualization of interconnecting 
processes taking place in prostate tumors with the 
expression of ERG oncogene. 

Enrichment Analysis 

A total of four functional ontologies of biological 
processes were used: GO processes 
(www.geneontology.org) and three MetaCore ontol-
ogies – GeneGo Process Networks Ontology (163 
networks of cell processes created from literature cu-
rated data), GeneGo Pathway Maps (163 maps of 
main cellular activation processes, also constructed 
from annually curated data), Diseases (by Bi-
omarkers) (known biomarkers of various diseases). In 
all three MetaCore ontologies molecular processes are 
prioritized based on statistical significance. To iden-
tify common molecular-biological processes the 
Compare Experiments workflow was used. This 
workflow determines common processes based on the 
analysis of statistically significant biological processes 
and expression data for genes participating in these 
processes. Visualization of generated hypotheses in 
the form of networks was also performed in MetaCore 
[51]. 

Results  

In order to evaluate the biological role of ele-
vated ERG expression in prostate tumors with ERG 
activation, we investigated global expression profiles 
of prostatectomy specimens from PSA (prostate spe-
cific antigen)-screened patients, who had no prior 
androgen ablation treatment. ERG expression was 
evaluated in human prostate cancer samples by using 
Affymetrix oligonucleotide microarrays. The data was 
generated from quality controlled laser capture mi-
crodissected tumor cells (n=40) and matched benign 
epithelial cells (n=40) from OCT embedded frozen 
prostate specimens. The specimens were obtained 
from age and race (Caucasians) matched cases, se-
lected from a cohort of over 300 patients. Table 1 
summarizes ERG expression levels in each tumor – 
normal pair sample. Applying a 1.5X cutoff, ERG 
overexpression is prevalent in well-to-moderately 
differentiated tumors (tumors that are associated with 
lower, ≤7 Gleason score, Table 1): 15 out of 20 
well-to-moderately differentiated (WMD) tumors had 
increased ERG levels vs 6 out of 20 PD samples 
(p-value = 0.04953, Chi-squared test).  
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Table 1. Tumor cell differentiation and ERG expression levels in tumor samples. ERG+: samples with overexpressed ERG; 

ERGn: samples with relative ERG expression changes not exceeding the 1.5X cutoff. 

Patient#  Diff. status ERG Fold 
Change value 

ERG mRNA  Patient ID Diff. status ERG Fold 
Change value 

ERG mRNA 

17 WMD 16.3 ERG+  31 PD 8.9 ERG+ 

19 WMD 15.2 ERG+  28 PD 8.7 ERG+ 

18 WMD 12.9 ERG+  26 PD 8.6 ERG+ 

3 WMD 12.5 ERG+  24 PD 7.9 ERG+ 

15 WMD 10.2 ERG+  33 PD 7.6 ERG+ 

1 WMD 9.7 ERG+  37 PD 5.4 ERG+ 

8 WMD 9.0 ERG+  40 PD 1.5 ERGn 

4 WMD 8.3 ERG+  29 PD 1 ERGn 

5 WMD 8.1 ERG+  32 PD 1 ERGn 

16 WMD 7.7 ERG+  25 PD 1 ERGn 

10 WMD 7.2 ERG+  27 PD 1 ERGn 

13 WMD 6.7 ERG+  21 PD 1 ERGn 

14 WMD 5.9 ERG+  30 PD 1 ERGn 

11 WMD 4.3 ERG+  36 PD 1 ERGn 

6 WMD 2.6 ERG+  38 PD 1 ERGn 

7 WMD 1.1 ERGn  34 PD 1 ERGn 

2 WMD 1 ERGn  39 PD 1 ERGn 

9 WMD 1 ERGn  35 PD 1 ERGn 

12 WMD 1 ERGn  23 PD 1 ERGn 

20 WMD 1 ERGn  22 PD 1 ERGn 

 
 
WMD tumors associate with better overall clini-

cal prognosis (see, for example, [2]). As noted before 
[41], majority (75%) of WMD samples harbored ERG 
overexpression. Hierarchical clustering analysis of 
our dataset may help validate the observation that 
ERG overexpression is more frequently observed in 
WMD samples. Thus, clustering analysis was per-
formed with Single Linkage, Complete Linkage, Av-
erage Linkage and Centroid Linkage algorithms with 
multiscale bootstrap resampling (MRB). To determine 
the distance between clusters, Euclid metrics was 
used. On the basis of constructed bootstrap samples, 
MRB measured the accuracy of defined clusters as 
p-values, which ranged from 0 to100. MRB yielded 
Approximatelly Unbiased (AU) p-value for each 
cluster; a cluster was considered statistically signifi-
cant if AU p-value >95. For clustering analysis, we 
used a total set of genes, about 20,000 (please refer to 
Methods for explanation how these genes were de-
termined), as well as sets of 1000, 3000 and 5000 genes 
with the largest standard deviations between log2 
transformed fold changes in normal vs. tumor sam-
ples expression profiles. 

In the analyzed sets two extremes 
(well-to-moderately and poorly differentiated (PD)) 
tumors were equally represented. Clustering of all 40 
samples with either full or truncated gene set did not 
yield clusters that correlated with either an observed 
differentiation status or ERG expression feature (data 
not shown). In contrast, when we performed cluster-
ing analysis on a set of 20 WMD samples with either a 
full or any of the truncated set of genes we observed a 

statistically significant partitioning that correlated 
with ERG+ and ERG- groups (Figure 1). This correla-
tion was not observed in PD samples likely reflecting 
progression-associated molecular complexity of PD 
tumor cells.  

Hierarchical clustering analysis confirmed that 
the set of genes expressed differentially in normal and 
cancerous tissue, partitioned samples into distinct 
clusters with ERG expression in WMD and not in PD 
prostate cancer samples. This result is consistent with 
several previously reported observations for this da-
taset [14, 41] indicating that elevated ERG expression 
in WMD samples suggests for the role of ERG onco-
gene in early stages of CaP onset.  

We next explored the mechanism of ERG over-
expression in the subset of WMD cancer samples by 
building a “causal” model, or network, using differ-
entially expressed genes (DEGs) as the seed nodes 
and collection of some 400,000 protein-protein inter-
actions in MetaBase™ (Thomson Reuters) as the 
source of edges [51] DEGs used for causal network 
construction were identified by comparing expression 
profiles of ERG-overexpressing, WMD tumor samples 
with normal tissues from matched patients (Figure 2). 
A total of 207 genes (for the list, see Addition file 1) 
with > 1.5 fold change and p-value of differential ex-
pression <0.05, were processed for further analysis. 
However, comparison between ERG positive or ERG 
negative tumors (regardless of differentiation status) 
without reference to matched normal epithelial cells 
did not yield significant enrichment of DEGs to per-
form further analysis (Additional file 2).  
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Figure 1. Clustering of 20 samples from well differentiated tumors with the whole set of differentially expressed gene (DEGs). ERGn samples are in orange frames, 

ERG+ samples are in purple frames. For both clusters Approximately Unbiased (AU) p-value=96. Values on the edges of the clustering are p-values (%). Red values 

are AU p-values, and green values are Bootstrap Probability values (Explanations about AU and BP values are found on the website 

http://www.is.titech.ac.jp/~shimo/prog/pvclust/ along with the description of pvclust R package that was used to perform clustering. In brief, BP values are computed 

by bootstrap resampling and AU values are computed by multiscale bootstrap resampling and thus are considered a better representation of an unbiased p-value for 

clusters.) Clusters strongly supported by the data have AU values of larger than 95% and are highlighted in red in the Figure. 

 

 
Figure 2. Flowchart of sample selection and DEGs identification for the construction of causal network. 



 Journal of Cancer 2015, Vol. 6 

 

http://www.jcancer.org 

496 

Analysis of key “triggers” and “effectors” [52] in 
the set of 215 DEGs (“ERG+ dependent genes”) ac-
cording to MetaCore™ database of protein interac-
tions (Thomson Reuters) suggests the following sce-
nario of progression of normal to a ERG overex-
pressing cancer cells in the early stages of prostate 
cancer development (Figure 3). In this context, AR 
(androgen receptor) drives the unscheduled expres-
sion of the TMPRSS2-ERG in CaP cells, resulting in 
the production of truncated ERG (32 amino terminal 
amino acids) oncoprotein. The ERG oncoprotein as a 
transcription factor may then increase the expression 
of its targets including the activation of C-MYC on-
cogene 1  and TWIST1 (twist basic helix-loop-helix 
transcription factor 1) that is associated with increased 
proliferative potential (mean fold change = 3.53; 
p-value = 6.8e-05). These two transcription factors 
(TFs) act as coactivators for several TFs such as AR, 
E2F1 (E2F transcription factor 1), Tcf (Lef) and 
changing the expression levels of ERG dependent 
genes. 

Network reconstruction method allows us to 
create hypotheses about further cancer development 
events (Figure 3 and 4). For example, TWIST1 by co-
operation with histone deacetylase HDAC5 (histone 
deacetylase 5) activates HIF1A (hypoxia inducible 
factor 1, alpha subunit) [53] transcription factor and 
induces overexpression of GHR (growth hormone 
receptor) and Tissue factor. Indeed, our data indicates 
(see above) that TWIST1 is significantly overex-
pressed in WMD, ERG+ samples. Increased amount of 
GHR and Tissue factor may then initiate downstream 
signal transduction by MAPK and PI3K cascades and 
cause activation of downstream transcriptional fac-
tors. This pathway is shown in bold purple line on 
Figure 4.  

An additional activation of MAPK pathway can 
possibly be induced due to an increased intercellular 
concentration of FGF2 (fibroblast growth factor 2) and 
Angiotensin II. Higher level of FGF2 and Angiotensin 
II may result from decreased expression of metallo-
peptidase Neprilysin in tumor cells, observed in this 
study (Figure 4). In normal process, Neprilysin breaks 
down signaling peptides FGF2 and Angiotensin II 
and thus inhibits hyperactivation of MAPK pathway, 
and, specifically, angiogenesis [54] In addition it has 

                                                 
1 C-MYC is overexpressed in 9/15 ERG+ well differentiated 
tumor samples. p-Value for c-Myc is only 0.28 and because 
of our stringent statistical requirements it is not highlighted 
on network in Figure 4. However, indirect evidence sug-
gests that c-Myc plays a role in the CaP pathogenesis: scru-
tiny of the network in Figure 4 reveals that a glucocorticoid 
receptor alpha, located directly downstream of c-Myc and 
negatively regulated by it, is underexpressed in our set of 
samples 

been shown that Angiotensin II serves as an activator 
for EGF (epidermal growth factor), which is also ca-
pable of activating the MAPK pathway [55] (Figure 4, 
bold beige lines).  

 Another route of activation that can lead to en-
hanced AR activity starts with a downregulated on-
cogene suppressor, DAN (neuroblastoma, suppres-
sion of tumorigenicity 1). In normal cellular context 
this protein is excreted into intercellular space and 
inhibits signaling peptides of BMP (Bone morpho-
genic proteins) family. BMPs initially reported to be 
regulators of bone biology have also been shown to 
influence other tissues. BMP receptors can phosphor-
ylate transcription factors of SMAD family [56] Acti-
vated transcription factors SMAD, in turn, form com-
plexes with CBP (CREB-binding protein) [57] which 
then can bind with AR and can enhance AR activity 
[57, 58] (Figure 4, bold green lines). 

Overall, Figures 3 and 4 show a model of a can-
cer self-regulatory circuit that was uncovered by an-
alyzing DEGs in ERG overexpressing WMD prostate 
tumor cells. Interestingly, we can discern three major 
pathways (shown in bold green, purple and beige 
lines on Figure 4) that contribute to the tumor devel-
opment in the studied samples. In addition to the 
top-level process of cancer development shown in 
Figure 4 our newtwork analysis identified specific 
processes that some of ERG+ dependent genes par-
ticipate in, thus contributing to the tumorigenesis. 
First, several ERG+ dependent genes are related to 
angiogenesis. The key factor in this process is the 
transcription factor HIF1 (Hypoxia Induced Factor 1). 
HIF1 may be activated in ERG+ tumors by several 
complementary pathways: by active MAPK cascade; 
by covalent modification brought about by histone 
deacetylases HDAC1 (which in our dataset has in-
creased expresion) or HDAC5 (mediated by TWIST1); 
and by direct interaction with Angiotensin II, which is 
turned on by AR or IL-8. These observations may also 
reflect normal functions ERG in vascular endothelial 
cells [59-61] Second, activation of a sub-set of phos-
pholipases that regulate arachidonic acid synthesis 
can be expected in the well-to-moderately defferenti-
ated ERG overexpressing tumors. Phospholipases 
PLA2G4C and PLA2G7 are found among upregulated 
ERG+ dependent genes, and in addition, their activity 
can be increased by MAPK cascade. An observed de-
creased SFN (14-3-3 sigma) expression (which in 
normal processes inhibits cell cycle kinase CDK) can 
lead to accelerated cell cycle and uncontrolled prolif-
eration [62] Third, translation processes can be accel-
erated by increased expression levels of some ribo-
somal proteins, translation initiation factor eIF2 and 
translation elongation factor eEF2, all of which are 
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present in ERG, as well as, in the ERG-downstream 
C-MYC activated genes.  

According to the analyzed data two independent 
pathways can be envisioned that support ERG+ can-
cer cell survival – protein folding increase and secre-
tion of surplus products of translation in intercellular 
space. In ERG+ tumors an increased expression of 
TAOK3 protein (serine/threonine protein kinase 
TAO3) was noted, which activates IRE3 (endoplasmic 
reticulum to nucleus signaling 3) kinase responsible 
for launching cell survival pathways during unfolded 
protein response. IRE3 activates transcription factor 
XBP1 (X-box binding protein 1) which regulates a 
number of proteins involved in protein folding in 
endoplasmic reticulum and elimination of protein 
surplus [63] Further, the increased expression of my-
osin-6 can cause the secretion of large amounts of 
newly synthesized proteins, peptides, glycoproteins 
in intercellular region since myosin-6 forms structures 
that transport newly formed vacuoles from Golgi 
apparatus to cell surface through actin filaments [64, 
65] Rab-11A protein from GTPase superfamily regu-
lates vacuole transport to cell surface [66] and is 
overexpressed in most ERG+ samples. Both of the 
described processes and activated AKT pathway can 
inhibit apoptosis.  

In summary, the analysis of the data on differ-
entially expressed genes in ERG positive, WMD 
prostate tumor samples with TMPRSS2-ERG fusion 
reveals the following signature. Our data suggests the 
activation of MAPK and PI3K cascades by synergistic 
actions of several genes (FGF2, Angiotensin II, 
Neprilysin, AR, E2F1, Tcf, and DAN via three major 

distinctive signaling pathways (Figure 4). The major 
finding of this study is that an “out of context” ex-
pression of ERG in prostate cancer cells may activate 
processes resembling angiogenesis that may reflect 
the normal endothelial function of ERG. Further 
findings include increased proliferation, suppressed 
apoptosis and increased protein synthesis likely con-
tributing to the overall process through distinct sig-
naling pathways. We thus envision that key kinases 
from the identified pathways may be considered as 
therapeutic targets for potential ERG+ tumors.  

Discussion 

Lack of molecular typing of prostate tumors 
presents significant challenges in selecting targeted 
treatment strategies. For patients with localized can-
cer and low initial PSA levels, expectant management 
might be a preferred strategy, however, these patients 
must be distinguished from patients with progressive 
cancer phenotypes who require aggressive treatment 
[67] TMPRSS2-ERG fusion, detected in 50 to 70% 
prostate cancers, has been a subject of extensive 
evaluations [68-73] In this study we studied WMD 
subset of prostate tumor samples that had elevated 
levels of ERG expression in a defined cohort of radical 
prostatectomy patients with no previous hormone 
therapy. This type of WMD tumors may present spe-
cial treatment challenges since typically they are as-
sociated with low (≤7) Gleason scores and low PSA 
levels at initial diagnosis and as such may prompt 
expectant management of patients. Understanding 
specific molecular mechanisms of cancer develop-
ment in these tumors and identification of possible 

biomarkers and/or treatment targets can 
help clinicians to stratify patients into 
different treatment categories.  

 
 
 

Figure 3. Possible scenario of preinvasive to invasive stages 

of prostate tumorigenesis. 
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Figure 4. Detailed self-regulation scheme of cancer development in ERG+ well differentiated tumor samples. Thin green links indicate activation interactions. Thin 

red links indicate inhibition interactions. Bold purple links – key pathway from Fig.3. Bold green links – DAN dependent AR activation. Bold beige links – MAPK 

cascade activation pathways.  - down regulated ERG+ dependent genes.  - upregulated ERG+ dependent genes.  - triggers of the most important pathways. 

 
In the present study, we have identified 215 dif-

ferentially expressed genes by comparing gene ex-
pression profile between ERG positive and ERG neg-
ative tumors versus matched normal epithelial cell in 
the well differentiated group. This gene set was then 
used for the reconstruction of causal network relying 

on protein interactions manually curated from litera-
ture and algorithms from MetaCore™ (Thomson 
Reuters). Application of system biology methods to a 
large set of data allowed an insight to complex inter-
actions and causal dependencies that exist between 
potential disease biomarkers, transcription factors, 
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key enzymes and other functional proteins repre-
sented by the set of differentially expressed genes. 
[51] These causal relationships can then be easily 
visualized on a network (such as shown in Figure 4) in 
the form of distinct pathways, processes and signal 
transduction routes. Some of the key benefits of visu-
alizing protein interactions on a network constructed 
from knowledge base of literature curated interac-
tions using well-validated and widely accepted algo-
rithms [51] include ability to assess dependencies, key 
regulators, auxillary metabolic enzymes, as well as 
being able to see fine details of individual pathways. 
For example, some important genes vital to a pathway 
might have not been detected in a gene expression 
experiment either due to an experimental design, or 
due to a lack of expression at the particular timepoint 
of the experiment, or simply due to statistical con-
straints placed on the experiment. Our network (Fig-
ure 4) shows that HIF1A is an important participant of 
AR/ERG activation pathway (bold purple lines), but 
HIF1A was not found among 215 differentially ex-
pressed genes in our study. Thus, HIF1A could have 
been missed if we were to only construct a gene sig-
nature from our data without a consideration of func-
tional significance revealed by network reconstruction 
method.  

The causal network we constructed by analyzing 
the gene expression profiles of well differentiated, 
ERG-positive tumor samples offers a working hy-
potheses of the ERG-positive cancer phenotype. It 
follows from the network analysis that three major 
pathways leading to cancer development and pro-
gression are at play (Figure 4). All three pathways are 
related to a well-documented and cancer-related 
MAPK/PI3K cascade, but our network offers finer 
details on molecular mechanism of the MAPK cascade 
activation. Androgen-receptor activated ERG→MYC, 
TWIST1→HIF1A pathway, FGF2→Angiotensin II 
pathway and AR-activating DAN→SMAD1 pathway 
work synergistically and interdependently to promote 
tumorigenesis. A scrutiny of the network along these 
pathways can also yield a list of potential treatment 
targets that may be considered. Three major cancer 
pathways are supplemented by “typical” can-
cer-associated processes of angiogenesis, cell prolif-
eration, increased translation and apoptosis inhibi-
tion.  

Supplementary Material 

Additional File 1:  
Table listing genes that are differential expressed in 
well differentiated samples of CaP with 
ERG-TMPRSS2 fusion in comparison to normal pros-
tate samples of the same patients.  
http://www.jcancer.org/v06p0490s1.xlsx 

Additional File 2:  
Table listing differential expressed genes counts for 
different comparisons of experimental groups. For 
valuable differential expressed gene lists enrichment 
analysis is shown for pathways and other gene sets. 
http://www.jcancer.org/v06p0490s2.xlsx 

Conclusions 

In the present study of matched pairs of isolated 
normal epithelial cells and WMD tumor epithelial 
cells with known ERG gene expression status from 20 
patients with localized prostate cancer, we have dis-
covered novel ERG associated biochemical networks. 
Using causal network reconstruction methods, we 
have identified three major signaling pathways re-
lated to MAPK/PI3K cascade that may indeed con-
tribute synergistically to the ERG dependent tumor 
development. Moreover, the key components of these 
pathways have potential as biomarkers and thera-
peutic target for ERG positive prostate tumors. 
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