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Abstract 

Adult colorectal epithelium undergoes continuous renewal and maintains homeostatic balance 
through regulated cellular proliferation, differentiation, and migration. The canonical Wnt signaling 
pathway involving the transcriptional co-activator β-catenin is important for colorectal devel-
opment and normal epithelial maintenance, and deregulated Wnt/β-catenin signaling has been 
implicated in colorectal carcinogenesis. Colorectal carcinogenesis has been linked to radiation 
exposure, and radiation has been demonstrated to alter Wnt/β-catenin signaling, as well as the 
proteasomal pathway involved in the degradation of the signaling components and thus regulation 
of β-catenin. The current review discusses recent progresses in our understanding of colorectal 
carcinogenesis in relation to different types of radiation and roles that radiation quality plays in 
deregulating β-catenin and ubiquitin-proteasome pathway (UPP) for colorectal cancer initiation 
and progression. 
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Introduction 
Qualitatively, ionizing radiation (IR) has been 

categorized depending on energy deposited in tissues 
per unit distance traversed into low and high linear 
energy transfer (low- and high-LET) radiation [1-4]. 
While low-LET radiation, such as γ-rays and x-rays is 
prevalent on earth, high-LET energetic heavy ion ra-
diation is mostly encountered in outer space but has 
also recently been used in radiotherapy. Constituents 
of radiation environment in space encountered by 
astronauts during space travel are mostly high-energy 
particles such as protons and heavy ions including 
16O, 12Si, and 56Fe. Notably, protons are the major 
contributor to the dose equivalent of solar particle 
event (SPE) originating from the sun; heavy ions are 
the significant contributors to the dose equivalent of 
galactic cosmic radiation (GCR) originating from out-
side the solar system. While low-LET radiation is 

sparsely ionizing and is less damaging relative to 
high-LET radiation, high-LET heavy ion radiation not 
only produces densely ionizing primary tracts but it 
also generates higher numbers of secondary ioniza-
tion events known as delta rays and has a higher rel-
ative biological effectiveness (RBE) compared to 
low-LET radiation [1-4].  

Therefore, high-LET heavy ion radiation expo-
sure is predicted to pose greater carcinogenic risk to 
space travellers than low-LET radiation and is one of 
the major concerns for future space missions espe-
cially long duration space missions such as mission to 
Mars [5, 6]. Additionally, heavy ions such as 12C due 
to their better dose conformity and higher RBE values 
relative to conventional radiotherapy are making sig-
nificant contribution to cancer treatment but concerns 
have been sounded about normal tissues exposure 
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and thus long-term risk to GI tissues [7, 8]. It is im-
portant to note that epidemiological studies in human 
and laboratory studies in animal models have estab-
lished low-LET radiation as a risk factor for colorectal 
carcinogenesis [1, 9, 10]. Considering their high-LET 
characteristics, heavy ions are expected to present 
greater risk of gastrointestinal (GI) pathologies in-
cluding colorectal cancer (CRC), and our own recent 
observations in mouse models suggest greater risk of 
CRC after 56Fe radiation exposure [5, 10-12]. 

Colon along with small intestinal epithelium 
have high cellular turnover and is replaced every 2-5 
days via proliferation and differentiation of adult 
somatic stem cells located at the crypt base [13-16]. 
Notably, the canonical Wnt pathway with its tran-
scriptional co-activator β-catenin is a major regulator 
of the self-renewing and rapidly cycling colonic epi-
thelium [10, 17, 18]. Binding of Wnt ligands to the 
Frizzled and low-density lipoprotein receptor-related 
protein (LPR) allows translocation of the cytoplasmic 
Axin, a negative regulator of β-catenin, to the plasma 
membrane. Subsequently, a series of complex signal-
ing events prevent formation of the β-catenin degra-
dation complex comprising of Axin, adenomatosis 
polyposis coli (APC), protein phosphatase 2A (PP2A), 
glycogen synthase kinase 3β (GSK3β) and casein ki-
nase 1α (CK1α) allowing cytoplasmic accumulation of 
β-catenin and later translocation to the nucleus [10, 17, 
18]. In the nucleus, β-catenin along with transcription 
factor TCF4 binds to promoters and upregulates 
transcription of target genes such as cMyc and cyclin 
D1. On the contrary, absence of Wnt ligand binding to 
Frizzled/LPR allows formation of the β-catenin deg-
radation complex leading to its phosphorylation by 
CK1α and GSK3β, and phosphorylated β-catenin is 
then ubiquitinated and targeted for proteasomal 
degradation - thus allowing regulation of its cellular 
level [10, 17-20].  

The ubiquitin-proteasome pathway (UPP), 
which is involved in protein degradation and is active 
in the cytoplasm as well as in the nucleus, plays an 
important role in cellular proteolysis and thus in 
protein turnover allowing spatial and temporal regu-
lation of protein levels in cells [21-24]. The target 
protein is polyubiquitinated by a multistep enzymatic 
process, and ubiquitin receptors are believed to sub-
sequently guide ubiqutinated proteins to the pro-
teasome for unfolding and degradation. 
Post-translational phosphorylation acts as a trigger for 
protein ubiquitination and proteasomal degradation. 
In our colorectal cancer mouse model system we have 
demonstrated that exposure to high-LET heavy ion 
radiation leads to decreased phosphorylation and 
thus increased accumulation of β-catenin in tumor 
samples with implications for higher and more ag-

gressive intestinal tumorigenesis after such radiation 
exposure [10]. Considering that the β-catenin level is 
actively regulated via the UPP, radiation affects both 
β-catenin and UPP, and both the pathways are impli-
cated in colorectal carcinogenesis [25, 26], this review 
will discuss recent updates on effects of radiation 
quality on β-catenin and UPP in relation to colorectal 
carcinogenesis.  

Radiation exposure on the Earth and in 
outer space 

Radiation environment on the Earth constitutes 
natural as well as man-made sources and both con-
tribute (310 mrem or 3.1 mGy from each source) 
equally to the average annual radiation dose of 620 
mrem or 6.2 mGy in the USA [27]. While radon is a 
major constituent of the natural radiation sources, 
medical procedures accounts for the major part of 
man-made radiation sources. Radon, whose decay is 
alpha particle emission and is considered high-LET, 
has limited tissue penetration capabilities and depos-
its much of its energy in a localized area. However, 
due to its gaseous nature, radon exposure has been 
implicated in increased risk of lung cancer [28]. On 
the contrary, medical procedures mostly involve 
photons such as x-rays and γ-rays with significant 
tissue penetration capabilities and are low-LET [27, 
29]. The radiation environment in outer space is qual-
itatively different than that on the Earth and three 
major sources of radiation contribute to radiation dose 
accrued by astronauts travelling beyond low-Earth 
orbit (LEO) [1, 3, 10, 30, 31]. Crossing the Van Allen’s 
belt exposes traveling astronauts to trapped radiation 
of high-energy electrons in the outer belt and of 
high-energy electrons and protons in the inner belt. 
The second radiation source in space is solar particle 
events (SPEs) or commonly referred to as solar 
storms, which are sporadic, and mostly consist of 
high-energy protons. Conversely, galactic cosmic ra-
diation (GCR), which is ambient in space, originates 
from outside the solar system, and a major part of its 
dose equivalent is contributed by the high-energy 
heavy ions such as 56Fe, 28Si, and 16O, and 12C, which 
are high-LET. Commonly, space radiation exposures 
will occur at low doses and dose rates, but protracted 
exposure during long-duration space missions may 
lead to enough dose accumulation especially of heavy 
ion radiation to raise long-term health concerns [32, 
33]. Indeed, calculation from the Radiation Assess-
ment Detector (RAD) in the Mars Science Laboratory 
showed that a round trip to Mars would expose as-
tronauts to a significant cumulative space radiation 
dose [34]. Additionally, radiation dose and dose rate 
of SPE is dependent on the intensity of solar activity 
and it has been predicted that the radiation dose to 
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astronauts during an SPE could reach up to 2 Gy be-
hind shielding [10, 32, 33]. Much of space radiation is 
high-energy and highly penetrating producing pri-
mary as well as secondary ionization tracks in tissues 
and has been shown to cause greater cellular damage 
relative to low-LET radiation on earth. Therefore, GI 
tissue with a highly proliferative epithelial compart-
ment is vulnerable to long-term consequences such as 
cancer after space radiation exposure.  

Colorectal carcinogenesis and radiation  
In the USA, CRC is still a common cancer and is 

one of the leading causes of cancer-related mortality 
[35]. While life-style related factors are known to play 
a major role in the CRC development [36], low-LET 
radiation exposure as a risk factor for colorectal car-
cinogenesis has been established from long-term fol-
low up studies in the atom bomb survivor cohort and 
radiation facility workers [37-40]. Additionally, stud-
ies in prostate and childhood cancer radiotherapy 
patients showed significantly increased risk of second 
malignancy in colon supporting the notion that ther-
apeutic radiation is a risk factor for CRC as well 
[41-43]. Diagnostic radiation exposures, especially 
procedures with multiple prolonged exposures such 
as CT, have also been predicted to pose colon cancer 
risk above the unexposed population [29, 44]. At the 
molecular level, radiation has been proposed to im-
part its carcinogenic effects via microsatellite instabil-
ity (MSI) and chromosomal instability (CIN) leading 
to loss of function of repair genes such as MLH1 or 
tumor suppressor genes such as APC considered 
critical for colorectal carcinogenesis [45, 46]. Alt-
hough, effects of heavy ion radiation on GI cells at the 
genome level has yet to be studied, it is expected that 
heavy ions due to their qualitatively greater damag-
ing capabilities than low-LET radiation even in the 
deep-sited tissues will cause greater MSI and CIN. 
Indeed, energy deposition from x-rays decreases ex-
ponentially as it traverses a tissue and the reverse can 
be true for particle radiation encountered in space [47, 
48]. Therefore, it is projected that there will be greater 
perturbation of molecular pathways critical for colo-
rectal carcinogenesis after space radiation exposures 
and there are increasing reports supporting such a 
view [10, 49-54].  

Wnt/β-catenin pathway  
The Wnt/β-catenin pathway also known as the 

canonical Wnt signaling pathway is a highly con-
served pathway and is involved in varied cellular 
processes beginning at embryogenesis and organis-
mal development to homeostasis and tissue mainte-
nance in adult life [55, 56]. For colorectal epithelium, 
the Wnt/β-catenin pathway not only plays important 

roles in renewal and maintenance of stem cells pre-
sent at the crypt bottom, but it also ensures regulated 
epithelial cell proliferation, differentiation, and mi-
gration to the crypt top, and finally shading into the 
lumen via apoptosis. Therefore, perturbed 
Wnt/β-catenin signaling has catastrophic conse-
quences on the colorectal epithelial cell turnover 
leading to varied human pathologies including cancer 
[55-57]. In the absence of Wnt ligand binding of Friz-
zled receptor, cytosolic β-catenin complexes with 
APC, GSK3β, Axin, and casein kinase 1α (CK1α) to 
form what is known as the β-catenin destruction 
complex (Figure 1). In this multi-protein complex, 
β-catenin is phosphorylated at the amino terminal by 
GSK3β and CK1α allowing recognition and ubiquiti-
nation of β-catenin by ubiquitin ligases and subse-
quent degradation of the β-catenin in the proteasome 
[55, 56]. Conversely, binding of Wnt ligand to Frizzled 
receptor prevents destruction complex formation 
leading to β-catenin accumulation. Therefore, pro-
teasomal degradation allows regulation of cellular 
β-catenin level and prevents translocation of β-catenin 
to the nucleus for joining with TCF4 to transcribe 
proliferative factors such as cMyc and cyclin D1.  

Ubiquitin-proteasome pathway (UPP) 
and colorectal carcinogenesis 

Protein degradation by the proteasome due to 
specific tagging of proteins with ubiquitin (a small 
protein marker) that are destined for degradation is a 
highly selective and critical process for cellular func-
tioning. Protein degradation through UPP involves 
ubiquitin protein, ubiquitinating and deubiquitinat-
ing enzymes, and proteasomes [58, 59]. Importantly, 
apart from regulating protein half-life through deg-
radation, ubiquitination also regulates activity and 
localization of the target proteins [58]. Indeed, multi-
ple ubiquitinating and deubiquitinating enzymes of-
ten clustered in multi-enzyme complex to control 
ubiquitin modification of proteins [58]. For ubiquiti-
nation, ubiquitin (Ub), conserved in all eukaryotes, is 
activated by E1 activating enzymes through adenyla-
tion at the C-terminus of the Ub. Subsequently, ade-
nylated Ub is transferred to the E2 conjugating en-
zymes leading to formation of the E2-Ub thioester 
intermediate, which is used by a substrate specific E3 
ligase to transfer the Ub to the target protein or to 
another Ub already on the target protein [26, 58-60]. 
Both mono- and poly-ubiquitination act as signal for 
proteolysis, however poly-ubiquinynation is required 
for proteasomal targeting and mono-ubiquitnation of 
a target protein is often associated with lysosomal 
degradation [59, 61]. It is important to note that the 
ubiquitin-mediated protein modification similar to 
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phosphorylation and other post-translational modifi-
cations can be reversed by a group of deubiquitinat-
ing (DUB) enzymes, which are reported to be associ-
ated with E3 ligases thus regulating the level of ubiq-
uitination [58].  

The proteasome in mammalian systems is 
known as the 26S complex, which has a 20S subunit at 
the core and two 19S subunits at each end of the core 
component [26, 58-60]. The 20S core particle is a cy-
lindrical multi-protein complex that provides the mi-
croenvironment for proteolysis of the target protein 
and at the same time protection of the non-target in-
tracellular proteins from undesired proteolysis [23]. 
The 19S subunit is involved in controlling substrate 
recognition, recruitment, and ATP-dependent pro-
cessing of the ubiquitinated target proteins [22, 23, 
62-64]. In addition to protein recycling, the pro-
teasome is also involved in modulation of various 
cellular processes such as cell cycle progression, reg-
ulation of gene expression, and stress responses by 
regulating turnover of specific proteins [24, 65]. 
Therefore, alterations in the UPP have the potential to 
alter cellular homeostasis, and studies have demon-
strated that proteasomal activity is elevated in human 

cancers including CRC. Indeed, deregulation of one or 
more subunits of the 20S proteasome has been corre-
lated with carcinogenesis, which could be due to ef-
fects of UPP on cell cycle regulatory factors such as 
cyclins and CDK inhibitors as well as on apoptotic 
factors such as p53 and caspases [26, 60, 66]. In addi-
tion, UPP helps maintain a balance between 
pro-apoptotic and anti-apoptotic signaling pathways 
and thus determines the ultimate cell fate. For exam-
ple, Mdm2, a E3 ubiquitin ligase ubiquitinates p53 to 
regulate its stability, and its DNA-damage- and 
stress-induced responses [67]. DNA-damage-induced 
genomic instability has been linked to carcinogenesis 
and recently, ubiquitin-proteasome signaling has 
been reported to coordinate with the DNA damage 
response (DDR) signaling at the double strand DNA 
break (DSB) site to execute the necessary repair 
mechanism [68]. In addition, protein ubiquitination 
has also emerged as a crucial modulator of cellular 
energy metabolism and inflammation, key players in 
carcinogenesis, through its involvement in regulation 
of TNF/TNFR1 and NFκB signaling [69].  

 

 
Figure 1. Schematic representation of APC-dependent and -independent ubiquitin-proteasome pathways (UPP) of β-catenin degradation. While molecular detail about the two 
APC-dependent β-catenin degradation complexes has been reported, we have yet to acquire a comprehensive understanding of the molecules involved in the RXRα/β-catenin 
degradation complex. 
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Carcinogenesis in colorectal epithelium like in 
other organs occurs as a result of complex multistep 
signaling pathway alterations [70], and sporadic CRC 
is commonly initiated through mutations in APC al-
lowing oncogenic β-catenin accumulation leading to 
transition of normal epithelium to microscopic aber-
rant crypt foci (ACF) considered a pathologic pre-
cursor for CRC [71, 72]. Acquisition of additional gain 
of function mutations in oncogenes, such as K-ras, 
and loss of function mutations in tumor suppressor 
genes, such as p53 and Smad4, supports disease pro-
gression from ACF to visible adenomas and subse-
quently to adenocarcinoma. Importantly, however, 
several molecules, such as β-catenin, c-jun, c-fos, Akt, 
Smad4, and p53 involved in CRC initiating and pro-
moting pathways, are regulated by the UPP [26, 60, 
73-76]. However, accumulation of oncogenic β-catenin 
due to alterations in its regulatory pathways remains 
the key early event in colorectal carcinogenesis [77, 
78], and apart from the already discussed 
APC-dependent APC-AXIN-GSK3β pathway, 
β-catenin is also targeted to ubiquitin-proteasome 
degradation either via APC-dependent p53/Siah1 
pathway or via the APC-independent retinoid X re-
ceptor α (RXRα) pathway [79-82] (Figure 1). Siah1 
(seven in absentia homolog 1), a mammalian homolog 
of the Drosophila seven in absentia (Sina) protein, is 
p53-inducible and similar to p53 acts as a tumor sup-
pressor through regulation of cell cycle, proliferation, 
and apoptosis [79, 83, 84]. Additionally, Siah1 with its 
E3 ubiquitin ligase properties has been demonstrated 
to bind to E2 ubiquitin conjugating enzymes and 
ubiquitinate β-catenin for degradation in a complex 
requiring the presence of the APC protein [79, 84]. 
Therefore, Siah1 acts as a link between p53 and 
Wnt/β-catenin pathways and plays an important role 
in the cellular β-catenin turnover independent of the 
GSK3β. Consequently, p53 mutation, recognized as a 
late event in colorectal carcinogenesis and linked to 
disease progression, robs cells of an alternate 
p53/Siah1-mediated β-catenin degradation pathway 
leading to additional loss of control of growth and 
proliferation.  

Since β-catenin’s escape from regulatory sur-
veillance has grave cellular consequences and two 
pathways involved in preventing pathogenic accu-
mulation of β-catenin are dependent on APC, com-
monly mutated in CRC, it is essential that there is an 
APC- and p53-independent β-catenin degradation 
pathway. Indeed, Xiao et al. have reported on the ex-
istence of a RXRα-mediated β-catenin degradation 
pathway [82]. Nuclear receptor RXRα, a member of 
the RXR family of DNA binding receptors with an-
ti-proliferative and anti-neoplastic function, is in-

volved in a plethora of genomic and non-genomic 
actions through heterodimerization with other nucle-
ar receptors as well as through homodimerization 
with itself [85, 86]. While RXRα in the presence of 
agonist is known to get co-degraded with its dimeri-
zation partners via UPP, molecular details of how 
RXRα interacts with β-catenin for proteasomal deg-
radation is not fully understood. However, it is be-
lieved that RXRα interacts with β-catenin in a degra-
dation complex similar to that of APC/β-catenin 
complex and targets β-catenin to proteasomal degra-
dation [82]. Notably, RXRα is capable of regulating 
β-catenin turnover even in cells with APC and p53 
mutations, and is demonstrated to hinder CRC pro-
gression [82]. Studies in animal models of human 
CRC have established that administration of RXRα 
agonist could block adenoma-carcinoma transition 
[85]. Considering that protein turnover is critical for 
cellular homeostasis, availability of multiple inde-
pendent pathways for protein degradation ensure 
that the potentially pro-carcinogenic β-catenin level 
remains within physiologic limits to avert cancer ini-
tiation and progression.  

Radiation stress and ubiquitin- 
proteasome pathway (UPP)  

Both low- and high-LET radiation are known to 
alter cellular protein turnover through alterations at 
the genomic [82, 86], epigenomic [87], transcriptional 
[88], translational, [89] and post-translational levels 
[90], often in a radiation dose and type dependent 
manner. While protein synthesis is regulated at the 
genetic, epigenetic, transciptomic, and translational 
levels [87, 91-94], protein degradation is mostly con-
trolled via specific post-translational modifications 
such as phosphorylation, acetylation, glutathionyla-
tion, ubiquitinylation, and sumoylation at selected 
amino acid sites, and radiation is reported to influence 
these processes [25, 95-98]. Radiation exposure is also 
known to cause non-specific protein modifications 
such as oxidation, carbonylation and nitrosylation 
through overproduction of reactive oxygen (ROS) and 
nitrogen (RNS) species [99-101], resulting in loss of 
protein function [54, 102], accumulation of unfolded 
proteins, and initiation of the unfolded protein re-
sponse (UPR) [103, 104]. Elimination of proteins 
modified post-translationally or oxidatively occurs 
either via lysosomal proteolysis or via ubiqui-
tin-proteasome pathway, the two major pathways 
involved in the removal of cellular proteins [105], and 
radiation has been documented to modulate both the 
systems [25, 98, 106, 107]. 

The UPP, the focus of the current review, has 
been widely studied in relation to low-LET ionizing 
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radiation [25, 98, 108]. Studies using purified pro-
teasomes as well as various cell lines have demon-
strated that radiation exposure is associated with in-
hibition of UPP [98, 109-113]. Importantly, impair-
ment of radiation-induced proteasome function has in 
part been attributed to free-radical induced damage to 
ubiquitin-proteasome pathway-associated molecules 
[109, 110] and increased expression of endogenous 
proteasomal inhibitors Hsp90 and PI31 [114, 115]. 
Although it has yet to be explored, persistent altera-
tions of the UPP, similar to stress response pathways 
observed by us in intestinal cells [54, 106, 116], are 
expected to occur long after radiation exposure espe-
cially after high-LET radiation exposures. Because 
UPP plays a major role in regulating levels of proteins 
involved in controlling growth and proliferation, ra-
diation-induced long-term alterations of the UPP 
components will have major ramifications for cellular 
homeostasis with implications for carcinogenesis in-
cluding colorectal carcinogenesis.  

With increasing interest in space travel and 
search for life beyond earth, it is important to under-
stand the effects of space radiation especially heavy 
ion radiation on cellular processes critical for 
maintenance of homeostasis, preservation of physio-
logic functioning, and prevention of initiation of 
pathologic processes. Although high-LET radiation 
including heavy ions has been demonstrated to cause 
greater protein modifications both via 
post-translational and oxidative processes relative to 
low-LET radiation [101, 106, 116-118], little progress 
has been made towards understanding its effects on 
UPP. We have demonstrated that exposure to 
high-LET heavy ion space radiation leads to increased 
risk of developing GI tumors in APC-mutant mouse 
models [10-12]. Exposure of APCMin/+ mice to 
high-LET 56Fe radiation led to higher intestinal tumor 
frequency relative to mice exposed to low-LET γ radi-
ation. In APC1638N/+ mice, a greater increase in tumor 
frequency was observed throughout the GI tract after 
high-LET 56Fe radiation relative to low-LET γ radia-
tion. Also, compared to low-LET tumors, significantly 
higher proportion of the high-LET heavy ion radia-
tion-induced tumors was invasive adenocarcinoma. 
Therefore, we concluded from our previous studies 
that high-LET heavy ion radiation induced GI tumors 
were of higher frequency and grade relative to 
low-LET γ radiation [10-12, 119]. At the molecular 
level high-LET 56Fe radiation-induced tumors showed 
more pronounced oncogenic β-catenin accumulation 
relative to low-LET γ radiation [10]. Considering that 
APC is mutated in these mice, the APC-dependent 
Wnt/β-catenin degradation pathways are expected to 
be non-functional. Therefore, the cell may rely more 
on APC-independent pathways such as 

RXRα-mediated UPP for β-catenin degradation to 
provide some protection from tumorigenesis. Con-
sequently, downregulation of the APC-independent 
RXRα pathway is expected to contribute to increased 
stabilization and thus accumulation of β-catenin 
leading to greater percentage of aggressive tumors in 
response to 56Fe radiation. While we already demon-
strated that the high-LET 56Fe radiation exposure 
caused greater β-catenin and higher percent of inva-
sive carcinoma in APCMin/+ mice [10], recently we 
have reported for the first time that 56Fe also led to 
downregulation of RXRα in the tumor-bearing as well 
as in the tumor-free areas of the intestine in these mice 
[120]. Conversely, differential effects of low- and 
high-LET radiation on UPP pathway have not yet 
been clearly delineated. Our initial results presented 
in this review demonstrate that exposure to 1.6 Gy 
high-LET 56Fe radiation caused higher downregula-
tion of RXRα in tumor as well as in normal intestinal 
tissues (Figure 2) suggesting greater inhibitory effects 
of 56Fe on UPP relative to an equitoxic (calculated and 
published previously in [121]) 2 Gy dose of γ radia-
tion. While further studies into the effects of high-LET 
radiation on UPP in relation to low-LET radiation at 
the molecular level are ongoing, our results suggest 
for the first time that radiation quality can differen-
tially impact UPP with implications for overall cellu-
lar protein turnover and thus for high-LET radiation 
carcinogenesis including GI carcinogenesis. 

Our results on intestinal tumorigenesis in 
APCMin/+ with Wip1 (wild-type p53 induced phos-
phatase-1) knockout (APCMin/+; Wip1-/-) mice showed 
that Wip1 abrogation abolishes radiation-induced 
intestinal tumorigenesis in these mice [122]. Since, 
Wip1, a phosphatase, is a radiation responsive protein 
known to regulate the p53-MDM2 auto-regulatory 
loop through dephosphorylation of p53 and 
dephosphorylated p53 is subjected to MDM2 medi-
ated ubiquitination and its subsequent degradation 
via proteasome [123], abrogation of Wip1 is believed 
to allow p53 accumulation and thus block tumor-
igenesis. We also reported persistent downregulation 
of autophagy in mouse intestine long-term after radi-
ation exposure [106], which could also be associated 
as reported earlier with decreased UPP flux [124, 125]. 
It has been postulated that decreased UPP flux in au-
tophagy-inhibited cells is caused due to accumulation 
of p62 [126] observed in radiation-exposed mouse 
intestine [106]. While these studies suggest effects of 
heavy ion radiation on UPP, there are considerable 
uncertainties in understanding how qualitatively dif-
ferent types of radiation affects UPP and how UPP 
modulates GI cancer risks after long duration space 
missions such as mission to Mars. Key to the risk es-
timates is to acquire in vivo mechanistic data on GI 
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carcinogenesis using surrogate biological endpoints. 
The UPP is linked to a number of carcinogenic pre-
cursor events such as oxidative stress and inflamma-
tion, which we demonstrated to occur persistently in 
response to high-LET 56Fe radiation and UPP inhibi-

tion itself has the potential to promote carcinogenesis 
(Figure 3). Additional studies focused on proteasome 
structure and function will be required to fully de-
lineate the link between UPP and GI cancer risk after 
energetic heavy ion space radiation exposures. 

 
 
 

 
Figure 2. Differential effects of low- and high-LET radiation on RXRα expression in intestine. Sections from control and irradiated (2 Gy γ-rays or 1.6 Gy 56Fe) mice were fixed 
in buffered formalin, paraffin embedded, and sectioned for immunohistochemistry. Detail of mice, irradiation, and sample collection were described previously [10, 106]. 
Immunohistochemistry for RXRα (Santa Cruz Biotechnology, Dallas, TX) was performed and quantified according to procedures described previously [101, 120]. Staining in 
control samples were considered 100% and quantification data from irradiated samples are presented graphically as percent change relative to controls. Data from five mice were 
used for statistical analysis and p<0.05 was considered as significant. Error bars represent mean ± standard error of mean (SEM). A) Representative images of RXRα staining in 
intestinal tumors from female APCMin/+ mice 100 to 110 d after radiation exposure. B) Quantification of RXRα immunohistochemistry staining in intestinal tumors. C) Repre-
sentative images of RXRα staining in normal intestinal sections from female C57BL/6J mice two months after radiation exposure. D) Quantification of RXRα immunohisto-
chemistry staining in normal intestinal sections. Significance - *relative to control and **relative to γ-radiation. 
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Figure 3. Radiation-induced oxidative stress, protein damage, and altered protein 
degradation pathways are implicated in carcinogenesis. 
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