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Abstract 

Prostate cancer (PCa) is a significant cause of morbidity and mortality and the most common 
cancer in men in Europe, North America, and some parts of Africa. The established methods for 
detecting PCa are normally based on tests using Prostate Specific Antigen (PSA) in blood, Prostate 
cancer antigen 3 (PCA3) in urine and tissue Alpha-methylacyl-CoA racemase (AMACR) as tumour 
markers in patient samples. Prior to the introduction of PSA in clinics, prostatic acid phosphatase 
(PAP) was the most widely used biomarker. An early diagnosis of PCa through the detection of 
these biomarkers requires the availability of simple, reliable, cost-effective and robust techniques. 
Immunoassays and nucleic acid detection techniques have experienced unprecedented growth in 
recent years and seem to be the most promising analytical tools. This growth has been driven in 
part by the surge in demand for near-patient-testing systems in clinical diagnosis. This article re-
views immunochemical assays, and nucleic-acid detection techniques that have been used to 
clinically diagnose PCa. 
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Introduction 
Prostate cancer is the second most common 

cancer in men worldwide [1] and in 2012, there were 
approximately 758,000 new prostate cancer cases in 
developed countries – more than double that found in 
developing countries; this is a particularly worrying 
statistic considering that developed countries contain 
only 17% of the world’s population [2]. The disease 
incidence varies more than 25-fold worldwide, but 
tends to be highest in Northern and Western Europe, 
Northern America, New Zealand and Australia. The 
greater incidence within these regions can be at-
tributed, in part, to the greater awareness of the dis-
ease through the increasing use of prostate specific 
antigen (PSA) as a screening tool [1]. As a conse-
quence, it is little surprise to find that when compar-
ing incidence and mortality rates, the numbers of 
deaths from PCa are notably greater in less developed 
regions. It is widely recognised that mortality rates 
are higher in predominantly black populations such 
as sub-Saharan Africa and the Caribbean while re-

maining very low in Asia - especially in Southern and 
Central Asia [4-6]. At age 85, it has been estimated 
that the cumulative risk of developing PCa ranges 
widely from 0·5% to 20% worldwide [3, 7]. Irrespec-
tive of demographics, it universally accepted that the 
most critical point to achieve the best outcome in 
cancer treatment is to diagnose the disease at an early 
stage [8] and therefore the aims of the present review 
are to provide an overview of the diagnostic options 
currently being employed and to highlight and criti-
cally appraise new and emerging prognostic systems. 

Prostate cancer is a particularly problematic case 
as it is not until the cancer is in the advanced stages 
that symptoms can manifest and there can be reluc-
tance on the part of the patient to seek medical advice. 
Clinical assessment can also be fraught with a con-
siderable ambiguity and many of the symptoms are 
not directly specific to prostate cancer and can often 
occur due to other non-cancerous conditions such as 
infection and inflammation or enlargement of the 
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prostate. As such, there are considerable hurdle to 
early diagnosis and it is often the case that the cancer 
is not detected until further symptoms occur such as 
pain in the ribs, spine or hips arise indicating that the 
cancer has spread from the prostate to the bones [9]. 
There is a pressing need for objective strategies that 
enable early diagnosis not simply of the presence of 
cancerous prostate but rather tests that can offer 
prognostic assessments of the severity of the condi-
tion. 

Despite this considerable burden, the exact aeti-
ology and pathogenesis of PCa remains largely unex-
plained. Epidemiological studies suggest that envi-
ronmental and lifestyle risk factors are determinants 
of disease risk [12]. Despite the fact that age, race and 
family history have long been recognised as risk fac-
tors for PCa, there has been no conclusive evidence 
for direct links to its development [12].  

Diagnosis of prostate cancer  
The clinical approach to the diagnosis of prostate 

cancer (PCa) has changed significantly over time. 
Prior to the introduction of PSA testing in the 1980s 
(Figure 1), PCa was diagnosed by assessing prostatic 
acid phosphatase (PAP) activity, digital rectal exami-
nation (DRE) or as an incidental histological finding in 
prostatic chips from transurethral sections of the 
prostate - usually performed for benign prostatic hy-
perplasia [4]. In the present era, most men in the UK 
who are diagnosed with PCa are asymptomatic. It is 
clinically detected by abnormalities in serum PSA 
level and/or DRE. The elevation of serum PSA 
and/or abnormal DRE subsequently prompts further 
investigation - typically transrectal ultrasound-guided 
prostate needle biopsy (TRUS), usually with pro-

curement of a Gleason core [13]. Histopathological 
examination of needle core sections (biopsy) is pres-
ently the definitive procedure for the establishment of 
the diagnosis of PCa [4].  

Currently, PSA, prostate health index (PHI), 
prostate cancer antigen 3 (PCA3) and al-
pha-methylacyl-CoA racemase (AMACR) are in-
creasingly being utilised in the workup of difficult 
biopsies. This article provides a review of the immu-
nochemical assays for PAP and PSA, and nucleic-acid 
detection techniques for PCA3 and AMACR that have 
been used to clinically diagnose PCa.  

Detection of prostate cancer biomarkers 
in clinical samples 
Prostatic Acid Phosphatase  

Acid phosphatases are a group of tissue isoen-
zymes that can hydrolyse organic monophosphate 
esters and are found in red blood cells, kidney, lung, 
liver, platelets and osteoclasts. In healthy patients, the 
concentration of serum prostatic acid phosphatase 
(PAP) typically lies is in the range 8 – 16 μg/l [15] but 
can be over a hundredfold more abundant in the 
prostate than in other tissues [14]. Evaluation of PAP 
activity particularly in human serum became clini-
cally relevant after it was discovered that its activity is 
not only high as a consequence of PCa [16, 17], but 
also increases with disease progression [18]. Conse-
quently, tremendous effort was made in developing 
colorimetric enzymatic assays using various sub-
strates such as p-nitrophenylphosphate and 
α-naphthylphosphate, inhibitors such as L-tartrate, or 
isoenzymes for PAP but these were only partly suc-
cessful because the tests could not differentiate be-

tween prostatic and other tissue sources [19, 
20]. Early methodological developments 
were devoted to distinguishing PAP from 
acid phosphatases originating in other tis-
sues. To improve the assay specificity, Roy 
and colleagues in 1971 utilised sodium thy-
molphthalein monophosphate as a PAP se-
lective substrate resulting in what is now 
considered to be the most prostate-specific of 
the enzymatic reactions [19]. The activity of 
PAP in the sera of 85 healthy individuals was 
found to be in the range of 0.56-110 U/l and 
when the sera of 87 patients (27 women with 
breast cancer, 23 patients with liver/biliary 
tract disease, 7 patients with kidney disease 
and 36 patients with cancer of non-prostatic, 
non-hepatic, non-mammary and non-renal 
origin) were analysed using their assay, 
there were no incidences of false positive 
results [19]. This clearly demonstrated that 

 
 

Figure 1: Schematic representation of PAP timeline (adapted from [27]). 
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thymolphthalein monophosphate was the substrate 
least affected by non-prostatic acid phosphatases. 
However, the sensitivity of their method was only 
superior to other enzymatic assays when used to an-
alyse serum where the activity of PAP was noticeably 
high [19]. Since these enzymatic assays were measur-
ing PAP activity, any available inactive PAP could not 
be determined and a universal ‘normal’ serum PAP 
activity in healthy individuals could not be estab-
lished because the substrates used were of varying 
specificity. 

Given the clear deficiencies in the enzyme as-
says, the developments of immunoassays were pur-
sued as a more specific measure of PAP [21]. In 1977, 
Foti and his colleagues developed one of the first PAP 
specific radioimmunoassays (RIA) which demon-
strated only 5.5% (5/90) false positives and which was 
in marked contrast to the 26.6% (24:90) arising from 
the enzymatic assays [14]. Various antisera to PAP 
were successfully raised and used to develop other 
RIAs [14, 22-24]. A double-antibody RIA was used to 
measure PAP in serum and the incidence of false 
positive results further reduced to 3%, the normal 
values were found to be 2.69 ±1.8 μg/l and levels 
higher than 6.2 μg/l were found for prostatic cancer 
[25]. The RIAs offered extreme sensitivity, high speci-
ficity, quantifiable results and even the capability of 
determining ‘inactivated’ PAP. The RIA approach had 
numerous limitations: radioactive labels, complex 
instrumentation and a requirement for a high degree 
of user expertise. The tests were also time-consuming 
(48-hr duration) and clearly unsuitable as a screening 
technique. [14]. In contrast to RIA, another immuno-
assay for PAP known as counter-immuno-

electrophoresis (CIEP) [15, 26] was favoured for its 
simplicity, higher sensitivity (as little as 1.0 ng of PAP 
could be detected in serum) and the short period (2 
hrs) required to complete a test.  

The measurement of serum ‘prostatic’ acid 
phosphatase (PAP) has been used in the diagnosis of 
PCa for over 45 years until it was replaced by PSA 
(Figure 1). However, recent work suggesting it plays a 
major role in the prognosis of intermediate and 
high-risk PCa has led to renewed interest in this bi-
omarker [27]. This has resulted in the development of 
a barcode lateral immunochromatographic strip 
which could be used for rapid testing in clinical la-
boratories [28]. Combining PAP and PSA tests could 
further improve the diagnostic accuracy of PCa [27]. 

Prostate Specific Antigen (PSA) 

PSA and its clinical relevance in prostate cancer  
PSA is a member of the human kallikrein family, 

of which some of them are prostate specific [28,29]. It 
is known to play a vital role in the liquefaction of se-
men and exists in high concentrations in seminal fluid 
[30]. Consequently, it is an important biomolecule for 
normal human reproduction and exists in different 
molecular forms; namely, complexed PSA and free 
PSA within human sera [31]. PSA is a serine protease 
found in and secreted by the epithelial cells of the 
prostate (Figure 2). Normal secretory epithelial tissues 
which are surrounded by basal cells and a membrane 
releases proPSA into the lumen where it is cleaved by 
human kallikrein 2 (hK2) to generate active PSA [29]. 
Part of the active PSA can diffuse into the blood-
stream where it is bound by protease inhibitors e.g. 
alpha1-antichymotrypsin (ACT) (bound PSA) while 

the rest can undergo proteolysis in the 
lumen to produce inactive PSA (this can 
enter the bloodstream and circulate as 
free PSA, fPSA). The remaining active 
PSA can also enter the bloodstream as 
fPSA. In PCa, the basal cells, basement 
membrane, and the normal architecture 
of the lumen is lost; thus, there is a de-
crease in the bioprocessing of proPSA to 
active PSA, and active PSA to inactive 
PSA. There is also an increase in the 
levels of bound PSA and proPSA in the 
bloodstream. In PCa there is a signifi-
cant loss of the basal membrane. 

Studies in the early 1990s con-
firmed that serum PSA levels could be 
used to identify patients with prostate 
cancer [16, 32, 33]. The serum PSA is the 
most commonly used tumour bi-
omarker for PCa and has a relevant 
role, despite possessing some consid-

 
Figure 2: Schematic representation of the biosynthesis of PSA in normal and cancerous epithelial 
tissues of the prostate (adapted from [29]). 
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erable limitations in the detection, staging and post 
therapy monitoring of PCa [34, 35]. Currently, most 
men diagnosed with PCa have clinically impalpable 
carcinoma with elevated levels of serum PSA in the 
range of 2.5 -10.0 ng/ml. PSA is also detectable in the 
urine but this assay is regarded as having limited di-
agnostic value [4]. Unfortunately, elevated levels of 
serum PSA are not specific for histological diagnosis 
of PCa and it has been estimated that some 75% of 
men with elevated serum PSA are found not to have 
the disease but, rather another abnormality, benign 
prostatic hyperplasia (BPH) [4] or prostatic infarction 
and inflammation [36].  

There is however a positive predictive value 
(PPV) of elevated serum PSA for the detection of PCa 
but this largely depends on the definition of an opti-
mal upper limit of ‘normal’ PSA levels [34]. The PPV 
for histological diagnosis of PCa for serum PSA >4 
ng/ml is ~31-51% but the rate of detection is 10% at 
0.6-1.0 ng/ml; 17% at 1.1-2.0 ng/ml; 24% at 2.1-3.0 
ng/ml and 27% at 3.1-4.0 ng/ml [37]. Additionally, 
about 13-25% of PCa detected at 4 ng/ml have high 
histological Gleason grades (a score ≥7). These data 
creates the challenge of setting lower limit cut-off 
points for ‘normal’ serum PSA levels. At high serum 
PSA levels (>10 ng/ml), the probability of disease 
detection is ~60% even though most men present with 
levels lower than 10 ng/ml. In an attempt to improve 
the PPV of serum PSA, variations in PSA assays have 
been extensively developed. These variations include 
proPSA, PSA doubling time (PSADT), age-specific 
PSA, PSA velocity (PSAV, rate of change of PSA levels 
over time), PSA density (PSAD, serum PSA ÷ ulstra-
sound volume of the prostate gland), free PSA (fPSA), 
percent free PSA (%fPSA), complexed PSA, and be-
nign PSA (BPSA) [38, 39]. More recently, another iso-
form of proPSA, pro2PSA, was identified as the most 
PCa-specific biomarker [40]. 

PSAV >0.75 ng/ml per year is associated with 
the presence of PCa while a rise of >2 ng/ml per year 
is related with a more aggressive form of the cancer 
[41]. The percentage of fPSA is often used to counsel 
men whose total PSA ranges from 4 ng/ml to 10 
ng/ml about their risk of PCa [34]. Total PSA (tPSA), 
which includes all types of PSA (whether free or 
bound to other proteins) circulating in the blood-
stream, has also been used to screen for PCa [42, 43]. 
Sadly, there is no PSA value below which a man can 
be assured that he has no risk of PCa but professional 
organisations, such as the American Cancer Society, 
recommends that PSA testing be offered to men over 
50 years. It also suggests that PSA testing could begin 
at a younger age (45 years) for high risk men, espe-
cially those with positive family history [44].  

To enhance the specificity for early detection, a 
new mathematical formula (the Prostate Health In-
dex, PHI), that combines tPSA, fPSA and pro2PSA 
into a single score that can be used to aid in clini-
cal-decision making was developed in 2011. PHI has 
been approved in Europe, US and Australia [45] and 
is calculated using the following formula: (pro2PSA / 
fPSA) × √tPSA) [46]. PHI makes sense in that men 
with a higher tPSA and pro2PSA, and lower fPSA are 
more likely to have clinically significant PCa. It is a 
simple, non-invasive blood test that is shown to be a 
more accurate way to assess PCa risk than any other 
known PSA-based biomarker alone; thus, reducing 
unnecessary biopsies by ~26% especially for men with 
2-10 ng/ml PSA values (Figure 3A). Higher PHI val-
ues are associated with increased probability of PCa 
(Figure 3B) and the inclusion of pro2PSA means that 
PHI preferentially detects more aggressive form of the 
disease [46]. 

 

 
Figure 3: The specificity and probability of prostate health index (PHI) 
(adapted from [46]). 

 

Immunoassays for the detection of PSA 
There are a range of commercially available as-

says currently used for PSA testing, the most popular 
being manufactured by Abbott Diagnostics, Bayer 
Diagnostics and Beckman Coulter. Although such 
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systems are highly sensitive (possessing detection 
limits in the range of 0.005-0.05 ng/ml), they are very 
much a centralised option and Therapeutic Turna-
round Time (TTAT) becomes a significant issue.  

The TTAT is defined as the time between the 
physicians’ stated need for the test and the therapeu-
tic action taken on the test result [47-50] and in the 
case of PSA can take up to several weeks before the 
results are received by the physician. Early diagnosis 
of prostate cancer is crucial for the successful treat-
ment of the disease [51]; therefore the long waiting 
time is not an ideal situation.  

The development of point of care testing (POCT) 
for PSA has the potential to revolutionise the patients 
experience as results could be obtained within a mat-
ter of minutes, meaning fewer clinical visits will be 
needed and proffering the possibility of a better clin-
ical outcome. A number of immunostrip (immuno-
chromatographic membrane or lateral flow) tests have 
been developed in recent years to provide POCT for 
PSA. Immunostrip tests are popular because of their 
low cost, rapid result and ease of use. There are a 
number of commercially available PSA immunostrip 
tests: BioSign® PSA test by Princeton BioMeditech 
Corp and the SERATEC® PSA Semiquant test by 
Seratec Diagnostics, however they offer 
semi-quantitative diagnostics producing only a posi-
tive (PSA> 4ng/ml) or negative result. In order to 
replace centralised laboratory testing regimes, new 
POCTs need to be both rapid and quantitative. Two 
such devices commercially available are the 
PSAwatch™ and the FastPack® IP System. These 
immunoassay analysers are significantly less expen-
sive than conventional autoanalyser systems and do 
not require any specialist knowledge or training to 
operate. Each device can produce a quantitative result 
with a detection range of 0.5 – 25 µg/L for the 
PSAwatch™ and 0.04 – 50 µg/L for the FastPack® IP 
System whereas most conventional autoanalyser sys-
tems have an upper detection limit in the region of 25 
– 100 µg/L [48, 52]. Results can be produced from the 
immunoassay in approximately 15 minutes enabling 
the physicians to perform the test and make an in-
formed decision on any further treatment within a 
single visit. Although these devices have started to 
pave the way for point of care (POC) PCa testing, an 
evidence review on POC PSA assays by the Centre for 
Evidence-Based Purchasing for the UK National 
Health Service concluded that none of the POC PSA 
assays tested (including the PSAwatch and FastPack® 
IP System) satisfied the criteria for acceptable per-
formance and the POC PSA assays were deemed to 
have performed poorer that those in centralised la-
boratories [52]. 

Current status of PSA testing  
Prostate cancer screening based on the use of the 

PSA test remains highly controversial since its intro-
duction [53, 54]. The test was not initially intended to 
be a screening tool but as a way to measure treatments 
responses in men with the disease [54]. Far in advance 
of evidenced-based practice, the widespread utilisa-
tion of PSA screening globally, especially in Europe 
and USA, was in the first instance driven by the logi-
cal assumption that the earlier one detects a malig-
nancy, the more likely treatment is to be curative and 
that attendant harms could be concurrently mini-
mised. However, there is now a significant growing 
body of observational evidence that shows that there 
is a substantial burden of associated over-diagnosis 
and overtreatment of PCa from PSA screening tests 
[53-56]; this evidence suggests that screening for PCa 
using the PSA test confers a modest mortality benefits 
but at the cost of over-diagnosis and overtreatment. 
There have been varied responses to this by clinicians, 
researchers and medical societies and many of these 
have updated their recommendation statements. For 
example, the American Cancer Society now empha-
sises the need for informed decision-making as a 
prerequisite to PSA screening for PCa and that the test 
should not be automatic [44] while the American 
Urological Association (AUA) recommends against 
PSA screening in men under 40 or over 70 years. 
However, the AUA recommends PSA screening for 
men aged 55 to 69 years and recognises that the deci-
sion to undertake PSA screening should be individu-
alised [57]. It should be mentioned that the scientist 
who initially discovered the PSA biomarker, Dr 
Richard J. Ablin, recently wrote that he has come to 
believe that the automatic and widespread use of PSA 
screening for men aged 50 years was “a public health 
disaster” [58]. In view of the above, clinicians would 
need to discuss the continued uncertainty of the 
overall value of the PSA test, particularly regarding 
the well documented potential harms resulting from 
over-diagnosis and overtreatment. 

Detection of prostate cancer antigen 3  
Prostate cancer antigen 3 (PCA3) was identified 

in 1999 as a gene that expresses a non-protein coding 
RNA [59]. It is only expressed in human prostate tis-
sue, and is highly overexpressed in PCa. PCA3 ex-
pression is not correlated with prostatic volume 
and/or other prostatic disease such as prostatitis. Be-
cause of its restricted expression profile, the PCA3 
mRNA is a very useful tumour marker [60-62]. Con-
sequently, quantification of the gene expression is a 
promising tool that assists in PCa diagnosis. In con-
trast to surrogate tumour makers, including serum 
PSA, the PCA3 assay directly detects cancerous cells 
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released into the urine following DRE. The assay 
(Figure 4) involves the purification of PCA3 and PSA 
mRNAs in urine samples through capture onto mag-
netic particles-coated with target-specific oligonucle-
otides and amplification of the captured targets using 
transcription-mediated amplification (TMA). The 
gene amplification products are then detected using a 
chemiluminescent DNA probe via a hybridisation 
protection assay [62]. The final output of the test 
(PCA3 score) is usually a ratio ([PCA3 mRNA/PSA 
mRNA] x 1000); this measures the degree to which 
PCA3 is overexpressed in the urine.  

The diagnostic value of the PCA3 score in pa-
tients demonstrated a sensitivity of 46-82%, specificity 
of 56-89%, PPV of 59-97% and negative predictive 
value (NPV) of 87-98% [63-66]. Such variability can be 
explained by the fact that different inclusion criteria, 
cut-off values and protocols were used in these stud-
ies. However, the PCA3 score at cut-off of 35 tend to 
provide an optimal balance between sensitivity and 
specificity. 

 Prior to this, a time-resolved fluorescence (TRF) 
reverse transcription-polymerase chain reaction 
(RT-PCR) method was used to quantify PCA3 and 
PSA mRNAs in urine sediments [67]. The analytical 
performance of the PCA3 assays have been exten-
sively characterised [65-70] and the test is emerging as 
the first fully translated PCa diagnostic assay [71]. 

Analysis at the mRNA level has shown to be 
difficult because of the limited sensitivity of most of 
the more traditional time-consuming techniques such 
as hybridisation protection assays (RPAs) [72] and 
RT-PCR [72, 73]. Thus, trained personnel as well as 
specialised laboratories are required before the PCA3 
test can be performed. The assay usually takes about 7 
days to be completed; thus, rendering it unsuitable for 

point-of-care applications [73]. Theoretically, RT-PCR 
can amplify a single nucleic acid sequence a mil-
lion-fold but optimisation of primer sets tend to pro-
long the assay time and different genes in equal 
amounts in a starting mRNA mixture may not be 
equally amplified because of selective and non-linear 
target amplification [74]. These limitations affect the 
quality of the amplification data; thus, distorting the 
information on the gene expression. Consequently, it 
is imperative that rapid progress is made towards the 
development of sensitive, reliable and rapid gene de-
tection assays for near-patient clinical diagnostics.  

Detection of Alpha-methylacyl-CoA racemase 
(AMACR) 

Alpha-methylacyl-CoA racemase (AMACR) is a 
peroxisomal and mitochondrial enzyme that plays a 
vital role in the biosynthesis of bile acid [75] and has 
been identified as a gene that is significantly ex-
pressed in PCa relative to benign prostate epithelium 
[76-79]. Enormous effort has been made towards early 
detection of PCa through mass screening and this has 
resulted in the discovery of an increasing number of 
small foci of cancers on needle biopsy specimens 
[80-82]. The diagnosis of these small foci of PCa in 
biopsy specimens is a major diagnostic challenge be-
cause these small lesions are either under or 
over-diagnosed; causing unfortunate consequences 
for patients. It has been shown that using AMACR as 
a positive biomarker in conjunction with other PCa 
tumour makers can help confirm PCa diagnosis 
[83-85]. Using AMACR alone as a positive biomarker 
could be misleading because expressions of AMACR 
have been seen in benign glands, high grade prostatic 
intraepithelial neoplasia (PIN) [78, 79, 86] and ade-
nomatous hyperplasia [87].  

 
 

 
Figure 4: The PCA3 test assay and score. 
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Different kinds of techniques have been used to 
measure the expression of AMACR including West-
ern blotting, immunohistochemistry, cDNA expres-
sion arrays and RT-PCR [89-92]. The main drawback 
of immunohistochemcial staining techniques for small 
lesions of cancer is that atypical glands could disap-
pear on further sectioning. More recently, a fluores-
cent-based assay was used to measure the biomarker 
in tissue samples [93]. Therefore, the development of 
simple and accurate nucleic-acid assays is needed to 
help identify small foci of cancers to better support 
clinical decisions.  

Multipanel Biomarker Arrays 
The use of a single biomarker is clearly of little 

use and as mentioned in the previous sections there is 
a continuing demand for diagnostic systems that offer 
a much more refined clinical picture and a greater 
opportunity for personalised medicine [94, 95 96]. 
While multiparametric testing can be achieved 
through sequential autoanalyser assays, there is, at 
present, very little available as a POCT within the 
clinic. There is however an increasing effort to harness 
the use of microfluidic processing as the first steps in 
the development of systems that can assay a range of 
biomarkers.  

There have been several recently commercialised 
systems enabling automated or semi-automated 
analysis for multi-protein determination and typically 
employ fluorescence (Luminex corp.; Rules Based 
Medicine Inc.) electrochemiluminescence (ECL) 
(Roche Diagnostics; Meso Scale Discovery), and sur-
face plasmon resonance (Horiba Inc.; BIO-RAD) 
measurement technologies. These systems offer pan-
els of up to 10 proteins per sample with detections in 
the region of 1–100 pg/ml (Rusling et al. 2010; 
Quansys Biosciences) [97]. These systems are still 
prohibitively expensive for decentralised POCT use 
involving both high capital outlay and high cost per 
sample. Moreover, the nature of their addition still 
requires a degree of expertise that is unlikely to be 
found within a general clinic setting.  

Rusling and coworkers however have pioneered 
the use of small foot print microarray technologies 
that can capture multiple proteins and have advanced 
the microfluidic processing to reduce the sample cost 
and the technical overhead associated with the auto-
analyser and multiprotein chips, The system uses a 
combination of magnetic particles and enzyme labels 
(detailed in Figure 5) to provide a highly sensitive 
detection option[98-100] for the detection of PSA, 
prostate specific membrane antigen (PSMA), platelet 
factor-4 (PF-4), and interlukin-6 (IL-6). 

 
 

 
Figure 5: Multi-enzyme magnetic particle-labelled antibody detection strategies for the detection of serum biomarkers: (A) immunosensor after incubating with 
protein analyte in a flowing conventional single-enzyme labelled antibody; (B) immunosensor after offline capture of protein analyte with heavily labelled antibody and 
enzyme. The enzyme-antibody-protein analyte is trapped by capture antibodies (adapted from [98]). 
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The system has been adapted for use with a 
number of detection technologies, electroanalyti-
cal[99] and electrochemiluminescent (ECL)[100] 
measurements and while these approaches are still 
very much at the lab bench prototype stage – they 
nevertheless serve as potent indicators of future di-
agnostic systems that could eventually make transi-
tion to the clinic and offer a more viable POCT option. 

Conclusion  
There is little debate over the need for routine 

measurement of PCa tumour markers and the availa-
bility of simple, rapid and low-cost diagnostics. 
Presently, clinical diagnosis of the disease involves a 
combination of blood (PSA), urine (PCA3) and tissue 
(AMACR) based tests as well as histopathological 
examination of needle sections. Immunochemical as-
says and nucleic acid detection techniques are the 
ideal approaches for measuring these biomarkers in 
biological fluids. But most of the traditional nucleic 
acid detection techniques at the mRNA level are rela-
tively low in sensitivity, time-consuming, labourious 
and demands high technical skills. Therefore, it is 
imperative that rapid progress is made towards the 
development of simple, accurate and low-cost plat-
forms for near-patient testing of these tumour bi-
omarkers. 
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