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Abstract 

Breast cancer is a complex disease encompassing multiple tumor entities, each characterized by 
distinct morphology, behavior and clinical implications. Besides estrogen receptor, progesterone 
receptor and human epidermal growth factor receptor 2, novel biomarkers have shown their 
prognostic and predictive values, complicating our understanding towards to the heterogeneity of 
such cancers. Ten cancer hallmarks have been proposed by Weinberg to characterize cancer and 
its carcinogenesis. By reviewing biomarkers and breast cancer molecular subtypes, we propose 
that the divergent outcome observed from patients stratified by hormone status are driven by 
different cancer hallmarks. ‘Sustaining proliferative signaling’ further differentiates cancers with 
positive hormone receptors. ‘Activating invasion and metastasis’ and ‘evading immune destruction’ 
drive the differentiation of triple negative breast cancers. ‘Resisting cell death’, ‘genome instability 
and mutation’ and ‘deregulating cellular energetics’ refine breast cancer classification with their 
predictive values. ‘Evading growth suppressors’, ‘enabling replicative immortality’, ‘inducing 
angiogenesis’ and ‘tumor-promoting inflammation’ have not been involved in breast cancer 
classification which need more focus in the future biomarker-related research. This review novels 
in its global view on breast cancer heterogeneity, which clarifies many confusions in this field and 
contributes to precision medicine. 
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Introduction 
Breast cancer is the most common neoplasm 

among women in the majority of the developed 
countries, accounting for one-third of newly 
diagnosed malignancies [1]. It is a highly 
heterogeneous disease, encompassing a number of 
biologically distinct entities with specific pathologic 
features and biological behaviors [1, 2]. Different 
breast tumor subtypes have different risk factors, 
clinical presentation, histopathological features, 
outcome, and response to systemic therapies [3-8]. 
Thus, stratification of breast cancer by clinically 
relevant subtypes is urgently required. 

Immunohistochemistry (IHC) markers, together 
with clinicopathological variables such as tumor size, 
tumor grade, nodal involvement, histologic type, and 

surgical margins, have been widely used for 
prognosis, prediction and treatment selection [9, 10]. 
Back to 1970s, breast cancer was divided into two 
subtypes according to the status of estrogen receptor 
(ER). With the advent of new technologies and 
incremental understanding of the complex 
tumorigenesis progress, new biomarkers and novel 
subtypes have been kept identified. This, on one 
hand, helps us in more accurate disease management, 
but, on the other hand, complicates our 
understanding towards breast cancer heterogeneity.  

In 2000, Weinberg et al. have reported six 
hallmarks of cancer, i.e., ‘sustaining proliferative 
signaling’, ‘evading growth suppressors’, ‘resisting 
cell death’, ‘enabling replicative immortality’, 
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‘inducing angiogenesis’, and ‘activating invasion and 
metastasis’ [11]. The same authors have identified two 
emerging hallmarks, i.e., ‘reprogramming of energy 
metabolism’ and ‘evading immune destruction’, in 
2011, and pointed out that all these hallmarks are 
enabled by two characteristics, i.e., ‘genome 
instability and mutation’ and ‘tumor-promoting 
inflammation’ [12]. As tumors are not conceivable as a 
single disease, breast cancer with different diagnostic 
features should differ in the hallmarks controlling 
their clinical differences. This review aims at 
identifying these dominant hallmarks driving breast 
cancer heterogeneity by focusing on identified 
biomarkers and the associated subtypes. 

Hallmark 1: Sustaining proliferative 
signaling  
Hormonal and growth receptors define basic 
breast tumor molecular subtypes 

IHC markers including ER, progesterone 
receptor (PR) and human epidermal growth factor 
receptor 2 (HER2) are classically used for breast tumor 
subtyping [13]. Experiments testing these markers 
have been routinely carried out in pathology 
laboratories, with staining and evaluation protocols 
well established worldwide [1]. These hormonal and 
growth receptors are known to mediate cell growth 
signaling. For instance, estrogen promotes the 
development of breast cancer and stimulates the 
growth in vitro of breast cancer cell lines having the 
corresponding receptors [14, 15]. Breast tumors are 
grouped into four basic subgroups according to these 
markers, i.e., [ER+|PR+]HER2- (tumors with either 
ER or PR positivity, and HER2 negativity), 
[ER+|PR+]HER2+ (tumors with either ER or PR 
positivity, and HER2 positivity),  

ER-PR-HER2+ (tumors with ER and PR 
negativity, and HER2 positivity, also named HER2 
positive), ER-PR-HER2- (tumors with ER, PR, HER2 
negativity, also named triple negative). In this naming 
system, hormonal receptors (HR) are shown in the 
square brackets, ‘|’ represents ‘or’, and ‘+/-’ shows 
the receptor status [1]. In general, ER-PR- tumors 
(tumors with both ER and PR negativity) have 
relatively poorer prognosis than [ER+|PR+] cancers 
(tumors with either ER or PR positivity).  

ER  
ER is the most important and prevalent 

biomarker for breast cancer classification. It was first 
identified in the 1960s and used in breast cancer 
clinical management since mid-1970s as a primary 
indicator of endocrine responsiveness and a 
prognostic factor for early recurrence [16]. ER plays 

crucial roles in breast carcinogenesis, whose inhibition 
forms the mainstay of breast cancer endocrine 
therapy. ER status has been shown to be the major 
determinant of breast cancer molecular portraits by 
recent gene expression profiling (GEP) studies [17-21]. 
It is comprised in the UK minimum data set for 
histopathology reporting of invasive breast cancer 
and routinely determined by a standardized 
technique [22]. 

ER positive tumors comprise up to 75% of all 
breast cancer patients, and constitute 65% and 80%, 
respectively, patients under and above 50 years [23]. 
ER positive tumors are largely well-differentiated, 
less aggressive, and associated with better outcome 
after surgery [24] than ER-negative ones [25]. Though 
ER alone provides limited prognostic value given the 
little difference on patients’ long-term survival 
stratified by its status [26], it has been considered as 
the most powerful single predictive factor identified 
in breast cancer [20, 26-28]. In general, ER negative 
tumors are unlikely to respond to endocrine therapy, 
and approximately 50% ER positive patients are 
responsive to anti-estrogen or aromatase inhibitors 
[29]. A small proportion of ER negative tumors are 
documented to respond to hormonal therapy [30, 31]. 
Breast tumors differing in ER status are 
fundamentally different at the transcriptional level 
[17-19, 32], complexity of genetic aberrations [33-35], 
as well as the pathways and networks [17, 35, 36]. 
Besides ER, the importance of other biomarkers have 
been continuously reported in breast tumor subtyping 
with respect to their risk factors, clinical and 
biological behaviors [7, 29, 31].  

PR 
PR is induced by endocrine, whose activation 

suggests an active ER signaling [37-40]. PR positive 
tumors comprise 65% to 75% breast cancers and 
several studies have suggested its clinical implications 
in the classification of such tumors [41-46]. However, 
its classification role has been questioned by several 
researchers due to the lack of evidence supporting its 
predictive role over ER on endocrine therapeutic 
response [26, 29, 47]. PR positive tumors are hardly 
ER negative [47], i.e., 0.2% to 10% depending on the 
detection methods [16, 48-52]. Thus, strong PR 
positivity in an ER negative case may indicate a false 
discovery on ER negativity, which is commonly 
encountered in routine practice [50]. As demonstrated 
by Dowsett et al. [31], ER-PR+ patients benefit from 
endocrine therapy which would be excluded from 
such treatment if the decision was based on ER status 
alone. Approximately 40% ER positive tumors are PR 
negative [53]. ER+PR- tumors are less responsive to 
endocrine treatment than ER+PR+ tumors [53-56], 
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particularly for metastatic tumors under tamoxifen 
treatment [44, 45]. Lacking PR expression in ER 
positive tumors may suggest aberrant growth factor 
signaling that, in turn, contributes to tamoxifen 
resistance of such tumors [53-56]. PR is conventionally 
used together with ER in breast tumor subtyping, i.e., 
ER+PR+, ER+PR-, ER-PR+, ER-PR- are classified. The 
double positive group (ER+PR+) comprises 55% to 
65% of breast tumors [24, 53, 57], among which 75% to 
85% are responsive to endocrine treatment [31]. 
Compared with the other subgroups, patients of these 
tumors are associated with older age, lower grade, 
smaller tumor size and lower mortality rate. The 
double negative group (ER-PR-) comprises 18% to 
25% of the tumors, among which around 85% are of 
grade 3. These tumors are associated with a higher 
recurrence rate, lower overall survival and do not 
respond to endocrine therapy [44, 45, 54, 57-59]. 
Tumors with concurrent negativity of ER and PR 
have, in general, good response to preoperative 
taxane/anthracycline-based regimen. Lots of 
evidences indicate that tumors of this class are highly 
heterogeneous [7, 60], which could be sub-divided 
into many groups based on the status of other 
markers such as HER2 [19, 20]. The single positive 
phenotype is consist of ER+PR- and ER-PR+ tumors, 
each accounting for 12% to 17% [24, 53, 57] and 0.2% 
to 10% breast cancer patients. Compared with double 
positive tumors, these cancers are more often of 
higher histological grade, larger tumor size, and are 
more likely to be aneuploidy and show higher 
expression of proliferation-related genes such as 
epidermal growth factor receptor (EGFR) and HER2 
[53, 55]. Tumors with single hormone receptor 
positivity respond less well to endocrine treatment 
than those harboring double positive receptors [44, 54, 
61], with only 40% responding to hormonal 
manipulation [31]. The single positive group is 
reported to show biological features somewhere in 
between the double positive and double negative 
groups [53, 62, 63]. 

Instead of using the binary representation, i.e., 
positive and negative, to define the receptor status in 
subtyping, the expression levels of ER and PR have 
been used to predict tumors’ response to endocrine 
therapy [64]. Two categories of ER+PR+ tumors are 
reported, i.e., tumors over-expressing both ER and PR 
(ER > 50% and PR > 50%) and tumors expressing low 
levels of either or both receptors (10% < ER < 50% or 
PR < 50%), where the first category is highly sensitive 
to hormone treatment and the second is incompletely 
endocrine responsive [64]. The ER-/PR- group (ER < 
10% and PR < 10%), on the other hand, is not shown to 
be beneficial from endocrine therapy [64]. A 
meta-analysis shows that the benefit of women from 5 

years’ tamoxifen treatment is proportional to the level 
of ER [29]. Further, Stendahl et al. recommend the use 
of a fractioned rather than dichotomized 
immunohistochemical evaluation of both ER and PR 
in the clinical practice [42].  

Taken together, joint ER, PR assessment 
differentiates breast cancer variants better than using 
either one alone. Breast cancer subtypes classified by 
the two receptors can be ordered by ER+PR+, 
ER+PR-, ER-PR+, ER-PR-, with ER+PR+ being the 
most favorable and ER-PR- the most aggressive 
cancers regarding tumor size, grade, stage, patient 
outcome and response to hormonal therapies [24, 44, 
45, 53-57, 65]. 

HER2  
The clinical implications of HER2 amplification 

have been recognized since 1987 [66]. Numerous 
subsequent studies have revealed that HER2 gene 
amplification or protein over-expression is associated 
with poor prognosis and good clinical outcome 
receiving systemic chemotherapy treatment [67-69]. 
The protein over-expression and gene amplification of 
HER2 occur in 13% to 20% of invasive ductal breast 
cancer, more than half of which (around 55%) are 
ER-PR- [66, 70, 71]. The prognostic value of HER2 
positivity is higher in node-positive than 
node-negative patients. Examining HER2 status has 
been established as a routine clinical practice before 
applying trastuzumab to advanced tumors or 
adjuvant treatment to potential HER2 positive early 
stage patients [72, 73]. Its predictive value on the 
outcome receiving anthracycline-based chemotherapy 
has been reported, with HER2 positivity being 
associated with favorable drug response [74-77]. It has 
also been suggested that HER2 positivity is predictive 
of better response to higher dose of anthracycline 
related regimens [78, 79], and to regimens containing 
taxane than those do not [80, 81]. Besides, HER2 
positivity is associated with relative but not absolute 
resistance to endocrine therapies [82], which is 
consistent with the inverse relationship of HER2 and 
ER/PR at the expression level [71]. Note that such 
resistance does not apply to estrogen depletion 
therapies such as aromatase inhibitors [83, 84]. 
Despite the aforementioned treatments and strategies, 
HER2 is an important target of a variety of novel 
cancer therapies, including vaccines and drug 
lapatinib which is directed at the internal tyrosine 
kinase portion of HER2 protein. 

A combination of various IHC markers 
including ER, PR and HER2, with or without 
additional markers such as basal and proliferation 
markers, has been used to define breast tumor 
subtypes, where the statuses of ER, PR and HER2 
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have been considered as the most important features. 
Using the dichotomized immunohistochemical 
evaluation of these three receptors, breast tumors 
could be classified into [ER+|PR+]HER2-, 
[ER+|PR+]HER2+, ER-PR-HER2+, and 
ER-PR-HER2-. [ER+|PR+]HER2- and 
[ER+|PR+]HER2+ are similar to luminal A and 
luminal B tumors defined by GEP nomenclature 
[85-89]. However, no unanimous consensus has been 
reached on such conversion between IHC and GEP 
classification. In Nielsen’s study, all HER2+ cases 
([ER+|PR+]HER2+, ER-PR-HER2+) are grouped as 
HER2 positive subclass [90], based on the evidence 
that HER2-amplified cases share similar genetic 
changes [91] and outcome [9, 18, 85] regardless of 
their hormonal statuses. 

Preclinical and clinical data suggest that HER2 
over-expression confers intrinsic resistance to 
hormonal treatment in ER+ or PR+ tumors, indicating 
that [ER+|PR+]HER2+ tumors may not benefit much 
from single-agent hormone therapy. Results from 
randomized clinical trials combining hormone 
treatment and targeted anti-HER2 therapy in 
[ER+|PR+]HER2+ postmenopausal patients indicate 
that this novel dual-targeting strategy could 
significantly improve patient outcome [92]. Konecny 
et al. find that HER2 expression is inversely correlated 
with that of ER, and suggest that the relative 
resistance of [ER+|PR+]HER2+ tumors to hormone 
therapy as compared with the [ER+|PR+]HER2- 
subtype is due to reduced ER or PR expression or high 
proliferation rates rather than HER2 positivity [82]. 
Other studies suggest that [ER+|PR+]HER2+ breast 
cancer might benefit more from anti-HER2 therapy 
plus chemotherapy [93]. It is reported that 
[ER+|PR+]HER2+ tumors have a good prognosis 
irrespective of the achievement of a pathological 
complete response (defined as the absence of any 
residual invasive cancer at the breast site and at the 
nearest axillary lymph node site [94]), whereas 
patients with ER-PR-HER2+ and ER-PR-HER2- 
tumors show the worst prognosis [95]. Hayes et al. 
have demonstrated that HER2+ tumors benefit from 
the addition of paclitaxel after adjuvant treatment 
with doxorubicin plus cyclophosphamide in 
node-positive breast cancer regardless of ER status, 
while ER+HER2- tumors gain little benefit from such 
treatment [81].  

All current evidences indicate that 
[ER+|PR+]HER2- tumors have the best prognosis and 
response to hormone therapy. ER-PR-HER2+ and 
ER-PR-HER2- tumors are poorly differentiated, show 
aggressive behavior and poor outcome, and are least 
likely to respond to hormone therapy. 

AR  
Besides ER, PR and HER2, androgen receptor 

(AR) has also been used in breast cancer subtyping. 
AR is the prevalent sex steroid hormone receptor 
expressed in 90% ER positive and 55% ER negative 
tumors [96, 97]. It is a potential prognostic marker and 
therapeutic target in breast cancer. It seems to play a 
similar role as HER2. Lakes et al. have classified 
ER-PR- tumors into ER-PR-AR+ (molecular apocrine, 
abbreviated as MAC) and hormone receptor negative 
carcinomas (ER-PR-AR-) [32, 98], and a considerable 
overlap is observed between ER-PR-HER2+ and MAC 
tumors [98]. MAC accounts for 13.2% of all breast 
cancer cases and is often characterized by KI67+ [98]. 
Despite the higher risk of ER-PR- tumors regarding 
patient relapse and death, MAC tumors have a 
favorable outcome comparable with [ER+|PR+] 
tumors [32, 98]. Also, patients with MAC tumors have 
a favorable outcome on treatment containing taxane 
[32, 98].  

Taken together, the classic breast tumor 
molecular subtypes are defined by hormonal and 
growth receptors according to the most prominent 
cancer hallmark, i.e., ‘sustaining proliferative 
signaling’. With the decreasing response to 
proliferative signals, breast tumors exhibit increasing 
aggressiveness and decreasing number of available 
targeted therapy. Among the three hormonal 
receptors (ER, PR, AR) and the growth receptor 
(HER2), ER plays a determinant role on 
differentiating breast tumors regarding their 
proliferation ability (corresponding to the ‘sustaining 
proliferative signaling’), while PR and AR exhibit a 
similar role with ER and HER2, respectively. 

Proliferation markers deteriorate 
[ER+|PR+]HER2- tumors 

More directly than hormonal receptors, 
proliferation markers have been used in breast tumor 
classification, especially among [ER+|PR+]HER2- 
tumors. It has been widely acknowledged that 
increased cell proliferation is a key determinant of 
clinical outcome among breast cancer patients [99, 
100]. Chemotherapy agents including CMF 
(cyclophosphamide, methotrexate, 5-fluorouracil), 
taxanes and anthracycline-based treatment all affect 
cell division or DNA synthesis. Thus, concurrent 
assessment of proliferation and conventional IHC 
markers provides additional predictive value and 
more precise clinical implications than using IHC 
alone. Worth noting that proliferation markers are 
informative in further differentiating HR positive 
tumors and of limited value in ER-PR-HER2- or HER2 
positive tumor classification [88]. 
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KI67 
The most widely used proliferation marker in 

breast cancer is KI67, which is predominantly present 
in cycling cells [101]. KI67 has been used to predict the 
neoadjuvant response [102-106] or outcome from 
adjuvant chemotherapy (endocrine therapy for ER 
positive tumors) for breast cancer. It has also been 
used in combination with other markers in breast 
cancer to provide prognostic and predictive values [9, 
105, 107]. Chang et al. have used KI67 in addition to 
ER, PR and HER2 to classify breast tumors, where 
[ER+|PR+] tumors are divided into three 
prognostically distinct subclasses based on the 
expression of KI67 and HER2 [9]. In their study, 
[ER+|PR+]HER2- tumors are classified into 
[ER+|PR+]HER2-KI67- and [ER+|PR+]HER2-KI67+ 
tumors, respectively, with [ER+|PR+]HER2-KI67+ 
being associated with poorer outcome regardless of 
systemic therapy [9]. This accords with the hallmark 
of cancer on ‘sustaining proliferative signaling’, with 
the more propensity on cancer cell proliferation the 
poorer patient clinical outcome. This classification 
subdivides the intrinsic luminal B tumors (as will be 
described in the next section) into two groups, i.e., 
[ER+|PR+]HER2-KI67+ and [ER+|PR+]HER2+ 
KI67+, demonstrating the importance of the combined 
use of KI67 with ER, PR, HER2 in differentiating 
tumors with positive hormone receptors. Further, the 
joint use of these four markers has been shown to 
provide as much information as some expensive 
molecular assays in breast cancer subtyping [92]. 

TOP2A  
Topoisomerase II alpha (TOP2A) catalyzes the 

breakage and reunion of double-stranded DNA, and 
thus leads to relaxation of DNA supercoils [108]. It 
plays crucial roles in a number of fundamental 
nuclear processes including DNA replication, 
transcription, chromosome structure, condensation 
and segregation [108], thus heavily affects cell 
proliferation. TOP2A expression is found correlated 
with that of KI67 [109, 110]. TOP2A aberration is 
frequently found in HER2-amplified breast cancer, 
accounting for approximately 30%-90% of such 
tumors. It has been suggested as a potential 
biomarker with aberrations being associated with 
increased responsiveness to anthracycline-based 
chemotherapy [108, 111-113].  

Cell cycle genes 
Aside from KI67, other proliferation markers 

have also demonstrated their importance in 
differentiating [ER+|PR+] tumors. Cell cycle genes 
are known to be associated with proliferation, whose 
over-expression is prognostic of poor clinical 

outcome. Loi et al. have identified a 97-gene 
signature, mostly comprising genes involved in cell 
cycle regulation and proliferation [114]. Using these 
genes they classified [ER+|PR+] tumors into two 
groups significantly differ in prognosis despite 
whether or not tamoxifen is given [115]. Perou et al. 
have reported that a cluster of genes, whose 
expression considerably vary among subtypes, are 
correlated with cellular proliferation rates [18, 87]. 

Taken together, over-expression of proliferation 
markers tend to accelerate the hallmark of ‘sustaining 
proliferative signaling’ among [ER+|PR+]HER2- 
tumors, leading to worse clinical outcome.  

Hallmark 2: activating invasion and 
metastasis 
Basal markers deteriorate ER-PR-HER2- 
tumors 

ER-PR-HER2- tumors are undeniably one of the 
most relevant subtypes among breast tumors given 
the lack of targeted therapies and their aggressive 
clinical behavior. These patients can be clustered into 
at least two distinct molecular classes, i.e., the basal 
phenotype and non-basal ER-PR-HER2- tumors [85, 
89, 90, 116-119], which differ in their behavior, 
outcome and therapeutic response. An expanding 
number of basal IHC markers have been used to 
define the basal tumors, among which cytokeratins 
(CK) 5/6, 14, 17, 8/18, EGFR are the most widely 
accepted [13, 85, 89, 90, 118-123]. Various 
combinations of these basal markers have been used 
to identify the basal subtype. The most pragmatic and 
widely accepted definition of the basal subtype is 
ER-PR-HER2- tumors with positive expression of 
CK5/6 and EGFR [85, 123]. Rakha et al. have 
proposed the use of CK5/6, CK14, CK17 and EGFR in 
characterizing basal tumors from ER-PR-HER2- 
cancers [118]. Matos et al., have reported the 
combined assess of P-cadherin, TP63 and CK5 in 
distinguishing the basal subtype from ER-PR-HER2- 
tumors via immunoprofiling [89]. The basal subtype 
has also been identified from double negative 
(ER-HER2-) tumors using basal markers. Nielsen et al. 
have used CK5/6 and EGFR to identify basal tumors 
from hormone receptor negative cancers regardless of 
PR status [90]. In addition to CK5/6 and EGFR, Livasy 
et al. have added CK8/18 and vimentin (VIM) in their 
panel to characterize such tumors within the 
ER-HER2- group [124]. Cytokeratins alone have been 
used to identify the basal subtype. For instance, 
CK5/6 and CK14 have been jointly assessed to 
identify the basal subtype [120], and CK14 alone is 
reported to define a proportion of breast tumors 
carrying morphological features strongly associated 
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with basal carcinoma [13]. The basal markers used for 
identifying the basal subgroup from ER-PR-HER2- 
breast tumors in various publications are summarized 
in Table 1. 

Despite the various inclusions of basal markers 
in triple negative breast tumor classification, markers 
of this class are associated with the cancer hallmark of 
‘invasion and metastasis’. Recent studies have shown 
that cytokeratins, P-cadherin and vimentin are closely 
linked with tumorigenesis and metastasis. 
Cytokeratins are proteins of keratin-containing 
intermediate filaments in the intracytoplasmic 
cytoskeleton of epithelial tissue. Vimentin is the major 
intermediate filament protein of mesenchymal cells 
[125]. It regulates the interaction between cytoskeletal 
proteins (including cytokeratins) and cell adhesion 
molecules (such as P-cadherin), and thereby 
participates in cell adhesion, migration, invasion and 
cell signal transduction in tumor cells [125]. TP63 has 
been reported to play a tumor suppressive role in 
cancer metastasis [126]. 

The basal tumors, accounting for 10% to 25% of 
breast cancers [127, 128], have a worse prognosis than 
the other ER-PR-HER2- breast tumors. These two 
subtypes have distinct molecular and biological 
characteristics and differ in their response to 
neoadjuvant chemotherapy [129, 130]. Thus, accurate 
identification of basal tumors from the ER-PR-HER2- 
subtype is required for precise therapeutic strategy 
making. It has been suggested that tumors expressing 
more than one basal keratin are more likely to have a 
dysfunctional BRCA1 pathway [131]. Consistent with 
this, several other studies have also suggested the 

predictive value of basal keratins on BRCA1 mutation 
[132, 133]. Preclinical models of tumors with 
dysfunctional BRCA1 have been shown to be 
exclusively sensitive to cross-linking agents and 
inhibitors of the poly (ADP-ribose) polymerase [134], 
indicating the efficient therapeutic treatment of 
tumors of this class. 

Though basal markers are primarily expressed 
among ER-PR-HER2- tumors and, particularly, the 
basal subtype, a small percentage of tumors with 
hormonal receptor positivity also exhibit basal marker 
expression (accounting 1% to 18% [ER+|PR+] 
tumors). This has led to the question that whether 
these patients belong to the luminal or basal tumors, 
and how the corresponding treatment should be 
given. It has been observed that [ER+|PR+] tumors 
with basal marker expression exhibit a poorer 
prognosis than the conventional luminal tumors [16]. 
This may suggest a potential link between luminal B 
and basal breast tumors [19, 20]. Aside from this, basal 
markers are also reported to be present in a small 
proportion of HER2 positive tumors, which are less 
responsive to Herceptin treatment than the 
conventional HER2 positive tumors [135].  

The poor prognosis of triple negative tumors is 
associated with the ‘activating invasion and 
metastasis’ hallmark. The ambiguities exhibited in 
tumor classification when basal markers are included 
suggest that breast tumors, regardless of which 
subtype they belong to, once harboring the ‘activating 
invasion and metastasis’ hallmark, exhibit either 
poorer prognosis (luminal tumors with basal markers) 
or drug resistance (HER2 positive tumors with basal 

markers). 

EMT, Stem cell markers 
deteriorate ER-PR-HER2- 
tumors 

Epithelial to mesenchymal 
transition (EMT) is a reversible 
biological process that involves the 
transition from motile, multipolar 
or spindle-shaped mesenchymal 
cells to planar arrays of polarized 
cells called epithelia. EMT is a 
necessary process for metastasis. 
Markers of EMT primarily include 
VIM, SNAI1, SNAI2, TWIST1, 
TWIST2, ZEB1, ZEB2, CDH1, 
CLDN3 (claudin 3), CLDN4 
(claudin 4), CLDN7 (claudin 7) 
[136, 137]. Molecules 
conventionally considered as stem 
cell markers include CD44, CD24, 
EpCAM, CD10, CD49, CD29, 

Table 1. Different immunohistochemical marker combinations used to define the basal 
phenotype in various publications. 

Journal 
article 

Immunohistochemical marker 
ER PR HER2 CK5/6 CK14 CK17 CK8/18 EGFR Vimentin P-cadherin TP-63 

Carey et 
al., 
2006[85] 

- - - +/-a       +/-a       

Cheang et 
al., 
2008[123] 

- - - +/-a       +/-a       

Rakha et 
al., 
2009[184] 

- - - +/-a +/-a +/-a   +/-a       

Matos et 
al., 
2005[89] 

      +           + + 

Nielsen et 
al., 
2004[90] 

-   - +/-a       +/-a       

Livasy et 
al., 2006 
[124] 

-   - +     + + +     

Rakha et 
al., 
2007[120] 

      +/-a +/-a             

Fulford et 
al., 
2006[13] 

        +             

a Positivity for at least one of the highlighted markers. 
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MUC1, THY1 and ALDH1A1 [138]. Availed by these 
markers, two groups of breast tumors, i.e., 
claudin-low and metaplastic breast cancer (MBC), 
could be further differentiated from ER-PR-HER2- 
tumors. Both subtypes share many similarities 
regarding tumor characteristics, genomic aberrations 
as well as drug response and clinical outcome. They 
are characterized by low expression of 
GATA3-regulated and cell-cell adhesion genes, 
enriched for EMT markers, and displaying stem cell 
characteristics [139, 140]. It is claimed that 
claudin-low and MBCs may arise from a more 
primitive cell than the precursor to luminal or basal 
tumors, and define a novel chemo-resistant 
ER-PR-HER2- disease exhibiting a signature similar to 
that of breast tumor-initiating cells [139]. Though both 
breast tumor subtypes share a significant similarity 
regarding the EMT and stem cell markers, MBC breast 
cancer are distinct from claudin-low tumors by 
harboring PIK3CA, AKT or KRAS mutations [139]. 
For example, PIK3CA mutations are detected in 47.4% 
MBCs while no such mutation is found among 
claudin-low tumors [139]. Also important is that these 
subtypes are not mutually exclusive, with a small 
proportion overlapping [139]. 

Claudin-low tumors are ER-PR-HER2- tumors 
characterized by low gene expression of tight junction 
proteins claudins 3, 4 and 7 as well as the 
calcium-dependent cell-cell adhesion glycoprotein 
CDH1 [141]. These tumors account for around 7% to 
14% of breast tumors [141]. Molecular 
characterization of the claudin-low subtype reveals 
that they are enriched for EMT, stem cell-like and 
tumor initiating cell (TIC) genomic signatures, lack of 
common epithelial cell features and show low 
expression of luminal and proliferation-associated 
genes [141]. Though claudin-low cancers show some 
chemotherapy sensitivity, patients harboring these 
tumors suffer from poor overall survival [141].  

MBC are aggressive ER-PR-HER2- tumors 
characterized by the co-existence of carcinoma with 
non-epithelial cellular elements [142], which accounts 
for 1% of breast cancer [143]. Tumors of this subtype 
are aggressive, chemoresistant, and associated with 
poor outcome [143]. MBC can be further classified into 
homogeneous spindle cell/sarcomatoid carcinoma, 
heterogeneous carcinosarcoma/carcinoma with 
sarcomatous differentiation (osseous, chondroid and 
rhabdod), and pure epithelial malignant tumors with 
metaplasia such as adenosquamous and pure 
squamous cell carcinomas [144]. Many pathologic and 
clinical parameters of MBCs are distinct from the 
other breast tumors. The incidence of nodal 
involvement among MBC ranges from 6% to 26%, 
which is less frequent than typical breast tumors 

[145-147]. These tumors tend to be present in an 
advanced stage, have a propensity for local recurrence 
and metastasize [143]. The recurrence rate for 
node-negative MBC ranges from 45% to 62% within 2 
to 5 years from the initial diagnosis, which is much 
higher than the 17% to 20% recurrence rate for 
invasive ductal carcinoma of comparable tumor size 
[148]. As contrary to the basal tumors where 
neoadjuvant chemotherapy is typically associated 
with high pathological complete response rate, MBCs 
rarely benefit from such a treatment [149]. The stem 
cell features and frequent genomic aberrations 
activating the phosphatidylinositol 3-kinase 
(PI3K)/AKT signaling may suggest the source of 
MBC chemoresistance [139]. Accordingly, the 
PI3K/AKT pathway has been suggested as a 
therapeutic target in MBC [139]. Further, EMT and 
stem cell-like features are likely to contribute to the 
poor outcomes of these tumors and suggest novel 
therapeutic strategies [139].  

Taken together, basal, EMT or stem cell markers, 
which represent the properties of the ‘activating 
invasion and metastasis’ hallmark, are more likely to 
be enriched in triple negative tumors. The more 
markers as such are enriched, the more aggressive the 
tumors are. 

Hallmark 3: Evading immune destruction 
Immune response genes rescue ER-PR-HER2- 
tumors 

The interferon-rich subtype is recently identified 
from ER-PR-HER2- tumors, which is characterized by 
the over-expression of interferon-regulated genes [93, 
150]. These tumors account for approximately 10% of 
breast tumor cases [93]. Among the 
interferon-regulated genes differentiating tumors of 
this subtype from the other ER-PR-HER2- cancers, 
STAT1 and SP110 are of the most importance, where 
STAT1 is the transcription factor mediating 
interferon-regulated gene expression [93], and SP110 
is reported to have the prognostic value [150]. The 
relapse free survival of interferon-rich breast tumors 
is somewhere between the basal cancers (comparable 
with ER-PR-HER2+) and luminal A tumors, and is 
comparable with luminal B tumors [93], suggesting 
that the easier tumors fire the immune system the 
better outcome the patients show, and the more 
effective the appropriate therapeutic strategy might 
achieve. 

Markers representing these three cancer 
hallmarks contribute to the current breast tumor 
classification. All conventional subtypes are 
summarized in Table 2. 
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Hallmark 4: Resisting cell death 
BCL2 shows dual roles on tumor outcome 
prognosis and prediction  

The protein BCL2 is a suppressor of apoptosis, 
which has been verified in a variety of in vitro and in 
vivo experiments [151-153]. Its expression is shown to 
be inversely correlated with that of TP53, and its 
function could be substituted by TP53 mutation [154]. 
The prognostic value of BCL2 has been investigated 
by many studies [155, 156]. It is found that moderate 
to strong BCL2 expression (abbreviated as BCL2+ 
tumors) is intensely associated with several favorable 
prognostic features, such as low mitotic count, low 
S-phase fraction size, low cathepsin D expression, 
high histological grade of differentiation, as well as 
lacking p53 expression and tumor necrosis [155]. Also, 
patients with BCL2+ tumors have a more favorable 
short-term but similar long-term breast cancer specific 
death as compared with those carrying BCL2- tumors 
[155]. Early studies report that BCL2 expression is 
associated with low-grade slowly proliferating ER+ 
breast tumors [157, 158], and the improved survival 
associated with such tumors is attributed to its 
correlation with ER status [159-161]. Several recent 
projects have suggested that BCL2 is a clinically valid 
and powerful prognostic marker for all types of 
early-stage breast cancer, independent of ER, HER2 
and adjuvant therapy received [156, 162]; and its 
strong correlation with hormonal receptor might 
contribute to the superior survival observed for 
BCL2+ breast patients [156]. The predictive value of 
BCL2 is reported for ER-PR-HER2- breast tumors, 
with ER-PR-HER2-BCL2- patients found beneficial 
from anthracycline-based regimen [163]. These 
indicate that ‘resisting cell death’ is not a determinant 

factor for breast tumors to be aggressive but is 
important for triple negative tumors to develop 
anthracycline resistance. 

Hallmark 5: Genome instability and 
mutation  
TP53 dysfunction increases tumor drug 
resistance  

The tumor suppressor TP53 plays a critical role 
in many cellular signaling controlling cell 
proliferation, survival, apoptosis and, most 
importantly, genomic integrity [154, 164]. It acts as a 
gatekeeper of the genome when cells experience stress 
conditions such as DNA damage, hypoxia and 
oncogene activation. Thus, TP53 deficiency may lead 
to uncontrolled proliferation of damaged cells as the 
genomic stability is hampered which leads to a faster 
mutation speed. Approximately 25% to 30% tumors 
have a mutation on TP53 [165-167], which has been 
reported as an important prognostic marker in breast 
cancer independent of tumor size, node status and 
hormone receptor content [164]. An interaction 
between TP53 and PR is revealed, where TP53-PR- 
tumors are found associated with the worst prognosis 
among all breast cancers [164]. It has been shown that 
p53 mutation adversely affects breast cancer response 
to tamoxifen [164]. Increasing evidences have 
suggested that TP53 dysfunction is responsible for the 
development of anti-oestrogen resistance among ER+ 
tumors [168, 169], and ER-TP53- tumors may suffer 
from chemotherapy treatment failure [165, 170, 171]. 
These evidences altogether suggest that ‘genome 
instability and mutation’ contributes to tumor drug 
resistance regardless of which subtype it belongs to. 

Table 2. Summary of the breast tumor molecular subtypes. 

Subtype Alias Biomarker status Grade Outcome Additional features PrevalenceΔ 
Luminal Luminal A* [ER+|PR+]HER2-KI67- 1|2 Good Luminal cytokeratin+, FOXA1+, ADH1B high; 

cell-cell adhesion genes high 
23.7%[9] 

Luminal B* [ER+|PR+]HER2-KI67+ 2|3 Intermediate Luminal cytokeratin+; TP53-; FGFR1 and ZIC3 
amp; ADH1B low; cell-cell adhesion genes high 

38.8%[9] 
[ER+|PR+]HER2+KI67+ |Poor 14%[9] 

HER2 positive HER2 
over-expression* 

ER-PR-HER2+ 2|3 Poor TP53-; GRB7 high; cell-cell adhesion genes high 11.2%[9] 

Triple negative Basal* ER-PR-HER2-, basal marker+ 3 Poor BRCA1-, TP53-; CDKN2A high; RB1 low; FGFR2 
amp; cell-cell adhesion genes high 

10-25%[1

28] 
12.3%[9] 

Claudin-low ER-PR-HER2-, EMT marker+, 
Stem-cell marker+, claudin- 

3 Poor GATA3-regulated genes, cell-cell adhesion genes 
low; CDH1 low; Claudins low 

7-14%[141

] 
Metaplastic breast 
cancer (MBC) 

ER-PR-HER2-, EMT marker+, 
Stem-cell marker+ 

3 Poor GATA3-regulated genes, cell-cell adhesion genes 
low; PIK3CA-, AKT- or KRAS- 

1%[143] 

Interferon-rich ER-PR-HER2-, interferon 
regulated genes+ 

3 Intermediate STAT1, SP110 high ~10%[93] 

Molecular 
apocrine cancer 
(MAC) 

Molecular apocrine 
cancer (MAC) 

ER-PR-AR+ 2|3 Poor KI67+ 13.2%[98] 

* Subtypes with detailed expression patterns and clinical implications discussed in the text, which take the majority of the breast tumor cases and are most commonly referred 
to. 
Δ The percentages could not be added up, as triple negative tumor subtypes are not mutually exclusive and the percentages are taken from different publications. 
Δ The prevalences shown here are for all breast tumor cases, which are taken from one particular publication (as indicated in the square brackets) and can vary by different 
studies. 
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Hallmark 6: Deregulating cellular 
energetics 
VRD provides novel view on breast tumor 
classification 

Higher level of circulating vitamin D metabolites 
is shown to be associated with decreased breast 
cancer risk [172-175], and the statues of vitamin D 
receptor (VRD), AR and ER are known to be 
correlated with tumor differentiation state [176]. 
Santagata et al. [176] have proposed a novel breast 
tumor classification method jointly assessing the 
statues of these three receptors, according to which 
breast carcinomas could be quantitatively classified 
into 4 categories, i.e., HR3 (ER+AR+VDR+), HR2 
(ER+AR+, AR+VDR+, ER+VDR+), HR1 (ER+, VDR+, 
AR+), and HR0 (ER-AR-VDR-). This classification 
differs from the conventional ER-PR-HER2 based 
grouping. For example, in the samples collected by 
Santagata [176]: among ER+ tumors, 75.1% are HR3, 
23.4% are HR2, 1.5% are HR1; for HER2+tumors, 
29.4% are HR3, 43.5% are HR2, 22% are HR1 and 5.1% 
are HR0; and of TNP tumors, 36.5% are HR0, 44.6% 
are HR1 and 18.6% are HR2. Tumors classified using 
these markers have different clinical outcomes, with 
HR3 tumors being associated with the best survival 
and HR1 and HR0 tumors the most aggressive [176]. 
An intriguing implication of this novel classification is 
targeting VDR and AR in conjunction with ER for 
patients receiving hormone therapy, which is 
potentially a more efficient therapeutic strategy [176, 
177].  

Discussion 
Among ER+ tumors, the traditional classification 

of breast tumors into four categories using ER, PR, 
and HER2 has been frequently challenged by samples 
with exceptional clinical associations. The role of KI67 
in characterizing these subtypes has been gaining 
attention, suggesting the prominent role of the 
‘sustaining proliferative signaling’ hallmark played in 
[ER+|PR+] tumors.  

Many ER-PR-HER2+ tumors overlap with 
ER-PR-AR+ (MAC), which are both associated with 
poor prognosis and tumors of grade 2 or 3. These 
seemingly imply a similar role played by HER2 and 
AR which, however, differ in that HER2 is a growth 
factor receptor and AR is a hormonal receptor 
involved in the control of male characteristics. Note 
that MAC tumors are also characteristic of KI67+ 
(Table 2), and KI67 is frequently recognized together 
with hormonal receptor positive tumors (above 
paragraph) and indicative of proliferation. Thus, the 
progressive nature of hormonal receptor (ER, PR, or 

AR) positive subtypes may be governed by 
‘sustaining proliferative signaling’. 

ER-PR-HER2- tumors are notorious for their 
poor diagnosis, lack of efficient therapeutic treatments 
and high heterogeneity. It has been suggested that ER 
status is shifted from positive to negative in up to 70% 
of tumors showing acquired resistance and as the 
disease progressed from primary to metastatic state 
[178-183]. This, on one hand, shows the more 
aggressive nature of ER- tumors than ER+ ones in 
general and, on the other hand, suggests a switch on 
cancer hallmarks during carcinogenesis as well as its 
connection with ER status. Basal markers, EMT 
markers, claudins, immune response genes have been 
revealed to identify basal [85, 89, 90, 116-119], MBC 
[139], claudin-low [139] and interferon-rich cancers 
[93, 150] from tumors of this kind. CK are the most 
widely used basal markers, which contribute to 
cell-cell adhesion, and claudins are a family of 
proteins that are the most important components of 
the tight junctions. These suggest that ‘activating 
invasion and metastasis’ drives the differences among 
basal tumors, MBC, and claudin-low cancers, despite 
the different markers used for their identification. 
Indeed, as shown by Table 2, these ER-PR-HER2- 
tumors are all associated with poor clinical outcome 
and of grade 3 cancers. Also, recall that MBC and 
claudin-low tumors share many similarities regarding 
their, e.g., genomic aberrations and drug response, in 
addition to clinical outcome. The interferon-rich 
subtype, as indicated by its name, may differentiate 
itself from the other ER-PR-HER2- tumors by ‘evading 
immune destruction’. 

Novel biomarkers keep emerging, with more 
and more cancer hallmarks unveiled critical in 
deciphering breast cancer heterogeneity. For example, 
BCL2 is related to ‘resisting cell death’, TP53 
represents the hallmark of ‘genome instability and 
mutation’, and VRD is associated with the level of 
circulating vitamin D metabolites and thus the 
‘deregulating cellular energetics’ hallmark. 

Concluding Remarks 
As a tumor consisting of a collection of different 

diseases, various biomarkers have been identified to 
categorize them into different subtypes. Despite the 
novel subtypes being kept identified, the dominant 
cancer hallmarks driving such heterogeneity stay 
invariant. In summary, the extent to which cells 
having ‘sustaining proliferative signaling’ is of 
particular importance in breast tumor classification, 
especially among HR positive tumors such as 
[ER+|PR+]HER2-, [ER+|PR+]HER2+, and MAC. 

In tumors lacking hormone receptors, i.e., 
ER-PR-HER2-, other cancer hallmarks take the role 
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and are often associated with more aggressive 
properties. Among these, ‘activating invasion and 
metastasis’ is of the most importance, based on which 
basal, claudin-low and MBC are differentiated from 
ER-PR-HER2- tumors. Also important for tumors of 
this kind is the emerging hallmark ‘evading immune 
destruction’, according to which a novel subtype, 
interferon-rich cancer, is identified. These 
ER-PR-HER2- subtypes, though distinct, are not 
mutually exclusive.  

Other hallmarks, such as ‘resisting cell death’, 
‘genome instability and mutation’ and ‘deregulating 
cellular energetics’ help to refine tumor classification 
and contribute, in particular, on predictive value.  

With the arrival of the times of precision 
medicine, precise molecular characterization of the 
heterogeneity of complex diseases such as breast 
cancer has become of particular importance. Though 
the basic receptors (ER, PR, HER2) classifying breast 
tumors stay the same, novel biomarkers and 
approaches in subtyping of such tumors have been 
kept reported. This, in turn, has led us to an 
overwhelming realm of breast tumor subtypes that 
are not mutually exclusive, complicating our 
understandings towards breast cancer classification. 
This, on one hand, is due to the inconsistent criteria 
used for breast tumor identification and, on the other 
hand, suggests that we may have lost the global view 
on unveiling breast tumor heterogeneity. Here, by 
reviewing the current biomarkers and their 
associations with cancer hallmarks, we claim that ‘the 
divergent outcome observed from cancer patients are 
driven by cancer hallmarks but not biomarkers; thus, 
biomarkers may vary among studies but cancer 
hallmarks driving such differences should stay 
invariant’.  

Among the 10 cancer hallmarks, 6 have been 
covered by the current studies on breast tumor 
classification. This suggests that further efforts in this 
area should be inclined to the rest four hallmarks, i.e., 
‘evading growth suppressors’, ‘enabling replicative 
immortality’, ‘inducing angiogenesis’ and 
‘tumor-promoting inflammation’, assuming that all 
cancer hallmarks contribute to breast tumor 
heterogeneity. 
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