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Abstract 

Background: Glioblastoma is the most lethal primary brain tumor in adults. Aberrant signal 
transduction pathways, associated with the progression of glioblastoma, have been identified recently 
and may offer a potential gene therapy strategy.  
Methods and Findings: We first used the sample level enrichment analysis to transfer gene 
expression profile of TCGA dataset into pathway enrichment z-score matrix. Then, we classified 
glioblastoma into five subtypes (Cluster A to Cluster E) by the consensus clustering and silhouette 
analysis. Principle component analysis showed the five subtype could be separated by first three 
principle components. Integrative omics data showed that mesenchymal subtype was rich in Cluster A, 
neural subtype was centered in Cluster D and proneural subtype was gathered in Cluster E, while 
Cluster E showed a high percentage of G-CIMP subtype. Additionally, according to analyze the overall 
survival and progression free survival of each subtype by Kaplan-Merie analysis and Cox hazard 
proportion model, we identified Cluster D and Cluster E received a better prognosis.  
Conclusions: We report a clinically relevant classification of glioblastoma based on sample level KEGG 
pathway enrichment profile and this novel classification system provided new insights into the 
heterogeneity of glioblastoma, and may be used as an important clinical tool to predict the prognosis. 

Key words: Glioblastoma, KEGG pathway, Sample level enrichment analysis, Classification, Prognosis. 

Background 
Glioblastoma is the most lethal and common 

malignant brain tumor in adults [1]. With a median 
survival time of only 14 months, the relative survival 
estimates for glioblastoma are quite low: less than 5% 
of patients survive 5 years post-diagnosis [2]. 
Histological heterogeneity of glioblastoma had been 
recognized by the early 1980s [3]. Recent works 
provided molecular definitions of these tumors: 
somatic mutations, copy number alterations, 
expression profiling, gene methylation, miRNA 
expression and cancer stem cells define molecular 
heterogeneity of glioblastoma at different aspects [4]. 
Recently, cancer genome studies suggested that 
distinct types of alterations in different genes tend to 
accumulate in pathways central to the control of cell 
growth and cell fate determination, while pan-cancer 
analysis of TCGA (The Cancer Genome Atlas) data 

established connections between aberrant signal 
transduction pathways and glioblastoma[5, 6]. 

A signal transduction pathway (STP) is a 
network of intercellular information flow initiated 
when extracellular signaling molecules bind to 
cell-surface receptors. Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway is a collection of 
manually drawn pathway maps representing our 
knowledge of the molecular interaction and reaction 
networks [7-9]. Signaling pathways are not isolated, 
but rather it is believed there is inter-pathway 
communications [10]. Furthermore, the molecular 
heterogeneity of cancers will result different signaling 
pathways status that may show clinical relevance [4]. 
For high-dimensional genetic data, it is reasonable to 
make pathways to be seen as low-dimensional 
projections of numerous gene. In this study, we 
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collected TCGA dataset as training set and Rembrandt 
dataset as validation set and analyzed individual 
KEGG pathway enrichment profile of glioblastoma by 
the sample level enrichment analysis as described by 
Gundem and identified five subtypes of this kind of 
tumor [11]. Principle component analysis then 
explained these five subtypes by first three principle 
components. Integrative omics data showed their 
functional annotation. Finally, we estimated the 
situation of overall survival and progression free 
survival of the five subtypes using Kaplan-Meier test 
and Cox hazard proportion model.  

Materials and methods 
Transcriptomic and clinical data 

No human subject was involved in the study. We 
utilized the publically available datasets from the 
cancer genome atlas (TCGA).  

The TCGA glioblastoma multiforme (GBM) gene 
expression data can be acquired from 
https://genome-cancer.ucsc.edu/proj/site/hgHeatm
ap/?datasetSearch=GBM. The dataset contains data 
on the expression levels of 17,814 genes in the tumor 
tissues and the normal tissues. A total of 529 tumors 
were included in TCGA dataset.  

The Rembrandt data set was acquired from 
https://wiki.nci.nih.gov/display/caIntegrator/caInt
egrator+Directory. The dataset contained data on 228 
cases of glioblastoma, 171 cases of Astrocytoma, 86 
cases of oligodendroglioma and 31 cases of normal 
tissue. We selected the 228 glioblastoma samples as 
Rembrandt glioblastoma dataset for validation. 

The data normalization and processing were 
conducted by R software with a Bioconductor 
package. Then the input cancer versus normal data 
were obtained by mean-centering expression value of 
each gene across all the samples and dividing the 
value by the standard deviation for the following 
sample level enrichment analysis [11].  

Sample level enrichment analysis and KEGG 
pathway module 

The sample level enrichment analysis (SLEA) is a 
novel methodology that has a more general use for 
enrichment analysis at the level of individual samples 
and is widely accepted recently [11-17]. The pathways 
or modules are represented as lists of genes, which 
can be obtained from the literature or online 
repositories such as Gene Ontology and KEGG, as 
well as determined through other high-throughput 
assays. Without using a priori phenotypic information 
about the samples, the SLEA calculates an enrichment 
score per sample per gene set using the z-test. This 
score is used to determine the relative importance of 

the corresponding module or pathway in different 
patient groups [11, 13]. 

In this study, the enrichment analysis for each 
sample was performed using Gitools version 1.6.0. We 
used the z-score method as described above. This 
method compares the mean (or median) expression 
value of genes in each module to a distribution of 
mean (or median) of 10, 000 random modules of the 
same size drawn from the expression values for the 
same sample. The result of this enrichment analysis is 
a z-score, which is a measure of the difference 
between the observed and the expected mean (or 
median) expression values for a gene set. The P value 
related to the z-score was corrected for multiple 
testing using Benjamini-Hochberg false discovery rate 
(FDR) method. A module is “positively enriched” in a 
sample if it has a positive z-score with a corrected 
P-value < 0.05 and is “negatively enriched” if the 
z-score is negative with a corrected P-value < 0.05[11, 
13, 17]. Besides the enrichment condition for 
individual samples, we also used the enrichment 
values for pathway clustering and principle 
component analysis as described [14, 17]. The results 
were visualized as heat maps in Gitools, which is 
useful for identification and interpretation of the 
enrichment patterns among the samples. 

The KEGG pathway modules were downloaded 
at http://www.genome.jp/kegg/pathway.html. We 
investigated a total of 294 signaling pathways in the 
KEGG databases. For each pathway, we identified all 
the related genes. By mapping the gene names in the 
gene sets identified using KEGG pathways and the 
gene names in the TCGA dataset and Rembrandt 
dataset, we extracted the gene expression profiles for 
each of the 294 pathways from the 529 tumor samples 
in training set and the 228 tumor samples in 
validation set.  

Identification of pathway enrichment-based 
subtypes 

Hierarchical clustering with agglomerative 
average linkage was applied through the R 
ConsensusClusterPlus package, as our basis for 
consensus clustering, to detect robust clusters [18, 19]. 
The distance metric was 1-(Pearson’s correlation 
coefficient) and the procedure was run over 1000 
iterations and a subsampling ratio of 0.8 using the 529 
GBM samples and enrichment z-scores of 294 KEGG 
pathways. Silhouette analysis was used as graphical 
aid to the interpretation and validation of clusters [20, 
21]. “Silhouette” of R was selected for calculating. As 
described by Verhaak, silhouette width is defined as 
the ratio of each sample’s average distance to samples 
in the same cluster to the smallest distance to samples 
not in the same cluster and only samples with positive 
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silhouette values were retained for further analysis as 
they best represented each subtype [21]. 

Principle component analysis  
The principle component analysis (PCA) was 

conducted by R software. Individual z-scores 
generated from SLEA were applied for analysis. A 
data set of 294 KEGG pathways in 529 glioblastomas 
was included. To reduce the dimensionality of the 
data, we first performed a “scree-plot” to determine 
how many principal components needed to explain 
most of the variance in the data. Thus, we plotted the 
transformed eigenvalue coefficients of each cluster 
against the first three principal components. Finally, 
we used combination of frequency distribution of 
each cluster from the first three principal components 
to describe the features of different subtypes.  

Statistical analysis 
We used the Chi-square test to analyze the 

impact of the clinical features on the enrichment 
conditions of each pathway. Kaplan–Meier survival 
analysis was used to estimate the survival 
distributions. The log-rank test was used to assess the 
statistical significance. The Cox proportional hazard 
model was selected for multifactor analysis. 
“Survdiff” and “coxph” from R Bioconductor package 

were used to calculate the significance and the hazard 
ratios for the log rank test and the Cox proportional 
hazards. “Survplot” was used for the Kaplan-Meier 
curves. P < 0.05 was considered as significant. 

Results 
KEGG pathway enrichment status in 
glioblastoma 

In our study, 17814 genes were projected to 294 
KEGG pathways from 529 glioblastoma samples. We 
used the enrichment rate to rank the pathways in 
glioblastoma. The top 50 positively enriched 
pathways were shown in Figure 1, and the top 50 
negatively enriched pathways were shown in 
Supplementary Figure 1. Among the 294 pathways, 
the most positively and the most negatively enriched 
pathways are the neuroactive ligand-receptor 
interaction pathway (42.0%) and the ribosome 
pathway (37.9%), respectively. The global enrichment 
rate of KEGG pathways were shown in 
Supplementary Table 1. From pathways ranking of 
both positive and negative enrichment rate, we found 
that more positively enriched pathways were more 
likely to be more enriched in the contrary direction 
(Supplementary Figure 2).  

 
Figure 1. The top 50 enriched KEGG pathways in glioblastoma. The enrichment rate of each pathway was generated from Sample Level Enrichment Analysis. The pathways were 
regrouped by their classification belonging. All the samples were classified by molecular subtypes. Each subtype showed a differential enrichment status, which reflected an 
intrinsic association between KEGG pathways and molecular subtypes. 
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Figure 2. Identification of five GBM subtypes based on individual KEGG pathway enrichment. (A) Consensus clustering matrix of 529 TCGA samples for k=3 to k=6. (B) 
Consensus clustering CDF for k=2 to k=10. (C) Relative change in area under CDF curve for k=2 to k=10. (D) Silhouette plot for identification of each clusters. 

 
After describing the global view of the pathway 

enrichment, we analyzed the relationship between the 
pathway enrichment and the clinical features 
including gender, age, molecular subtypes and 
G-CIMP subtypes. We found that age and gender had 
minimal impact on the pathway enrichment. Among 
the 294 KEGG pathways, only 2.38% were associated 
with age and 5.10% with gender. However, 24.5% 
were associated with the G-CIMP subtypes indicating 
that the G-CIMP status also interacted with the 
molecular phenotype at the signaling pathway level. 
The molecular subtypes showed an even stronger 
relationship with the pathway enrichment. 75.5% of 
the pathways showed significantly different 
enrichment among the classical, mesenchymal, neural 
and proneural subtypes (Supplementary Table 2).  

Consensus clustering identified five subtypes in 
glioblastoma 

With the low dimensional data generated from 
sample level enrichment analysis, consensus 
clustering of 529 samples and 294 pathways identified 
five clusters. The clustering stability increased 
significantly from k=2 to k=5, but not for k>5 (Figure 2 
A, B and C). Samples in each cluster were identified 
based on their positive silhouette width, indicating 
more similarity in their own class than in other classes 

(Figure 2 D). The results are visualized in Figure 3 (left 
panel). In addition, five characteristic pathway 
signatures were identified. 

Principal component analysis indicating 
independence of each subtype 

We first evaluated the variance of the principal 
components (PCs). 23 components were included to 
reach the cumulative variance proportion point (0.85) 
(Figure 4). The contribution rates of the first three 
components (PC1, PC2 and PC3) were 23.6%, 17.6% 
and 13.6%, respectively. The cumulative contribution 
rates of the top three were 55.8%. As seen in Figure 4 
C, the two-dimensional plot showed that the first two 
components could not only separate clusters A, B and 
C from each other, but also separate them from 
clusters D and E. But PC1 and PC2 could not 
discriminate cluster D from cluster E. PC1 and PC2 
accounted for 41.2% of the total variance. PC3, plotted 
against PC2 in Figure 4 D and against PC1 in Figure 4 
E, accounted for the majority of the variance between 
clusters D and E, but introduced little variance among 
clusters A, B and C. Thus, categorizing the pathway 
enrichment patterns of the glioblastoma by consensus 
clustering in our study accounts for most variance in 
the data set and demonstrates the subtypes generated 
from SLEA were independent from each other. 
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Figure 3. KEGG pathway enrichment data identified five subtypes of glioblastoma. (Left panel) Clusters based on differently enriched KEGG pathways and integrated view of 
EGFR amplification, IDH1 mutation, MGMT promoter melthylation, G-CIMP status and molecular subtypes across these five clusters. (Right panel) Kaplan-Meier estimates of 
overall survival and progression survival in patients with five subtypes. 

 

KEGG pathway enrichment based subtypes in 
validation dataset 

For 228 samples from Rembrandt dataset, 
patients of glioblastoma can also be classified into five 
subtypes based on KEGG pathway enrichment 
z-score profile. Pathway order from the TCGA 
samples was maintained in validation set and the data 
were visualized in supplementary figure 3A. By 
keeping the same pathway order as in training set, the 
glioblastoma sample groups were clearly regained.  

Functional annotation of each subtype  
According to the calculation of principal 

component loadings of the first three components, we 
identified 40 pathways as the annotation of the novel 
subtypes. 

As seen in Figure 5, we grouped the pathways 
mainly contributing to PC1 (absolute value of PC 
loadings>0.1) into PC1 module A (negative PC 
loadings) and PC1 module B (positive PC loadings). 
We found that clusters A and B were highly positively 

enriched in PC1 module A pathways, while clusters 
C, D and E were markedly negatively enriched in 
these pathways. In contrast, for the pathways in PC1 
module B, cluster A was hardly enriched, cluster B 
was highly negatively enriched, cluster C was highly 
positively enriched, and clusters D and E were 
moderately enriched. The pathways that mainly 
contributed for principal PC2 were listed under PC2 
module. The PC loadings of all these pathways were 
above 0.1, which meant they contributed to PC2 in the 
same direction. Clusters A and C were positively 
enriched in PC2 module, while clusters B, D and E 
were negatively enriched. 

PC3 module included pathways contributing to 
PC3. Using the same classification principles for PC1 
module, PC3 module was divided as module A and 
module B. This module can separate cluster D from 
cluster E. Cluster D was positively enriched in PC3 
module A pathways, negatively enriched in PC3 
module B pathways, while cluster E was vice versa 
(Figure 5). 
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Figure 4. Principle component analysis based on clusters generated by consensus clustering from SLEA data. A. Variance of principle components evaluated. B. Three 
dimensional plot of five clusters with top three principle components. C. PCA plot with PC1 and PC2. D. PCA plot with PC1 and PC3. E. PCA plot with PC2 and PC3. PC1: 
Principle component 1; PC2:  Principle component 2; PC3:  Principle component 3. The generated five clusters of glioblastoma were differently colored. 

 
As shown in Figure 3, the integrative view of the 

omics data showed that G-CIMP subtype was majorly 
gathered in cluster E, but was hardly found in other 
clusters. Samples of the mesenchymal subtype, the 
neuronal subtype and the proneural subtype were 
mostly enriched in clusters A,D and E, respectively. 
Samples of the classical subtype were found in every 
cluster. On the other hand, EGFR amplification, IDH 1 
mutation and MGMT promoter melthylation showed 
no difference among these five subtypes (Figure 3). 

Clinical correlations of each subtype 
The overall survival rate and the progression 

free survival rate of each subtype estimated by 
Kaplan-Meier were significantly different. The overall 
survival rates as well as the progression free survival 
rates of clusters D and E were much higher than the 
other three subtypes (Figure 3). Patients in cluster E 
had the best prognosis with a mean overall survival 
time of 836.8 days and a mean progression free 
survival time of 454.3 days. Patients in clusters A, B 
and C had the very poor prognosis. According to the 

estimated prognosis, we combined clusters D and E 
into one group and the rest clusters into the other 
group. The survival curves of combined groups 
showed that the prognosis of cluster D & E group was 
much better in both the overall survival time (cluster 
D & E group vs cluster A, B & C group:725.1+/-66.9 
days vs 520.9 +/- 34.6 days) and the progression free 
survival time (cluster D & E group vs cluster A, B & C 
group: 423.6+/-43.6 days vs 287.1+/-22.8 days) 
(Figure 6). These results were further validated in 
Rembrandt dataset (Supplementary figure 3 B,C and 
Supplementary figure 4). 

In addition, we introduced age, gender, 
karnorfsky performance scoring, G-CIMP subtypes, 
molecular subtypes, treatment modalities, surgical 
resection level and combined clustering groups into 
Cox hazard proportion model. This multi-factor 
analysis showed that cluster D & E group received a 
significantly better prognosis in both overall survival 
and progression free survival (Table 1A & Table 1B). 
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Table 1A. Cox proportional hazards model for overall survival. 

 Co.ef Std.Err. P Value Haz.ratio(95% CI) 
Combined pathway 
enrichment clustering 

-0.341 0.141 0.015 0.711 (0.540-0.937) 

G-CIMP -0.909 0.238 <0.001 0.403 (0.253-0.642) 
Treatment modality -1.479 0.233 <0.001 0.228 (0.144-0.360) 
Age 0.755 0.138 <0.001 2.129 (1.623-2.792) 
KPS -0.419 0.152 0.006 0.658 (0.489-0.886) 
No. of subjects = 366; No. of event = 278; No. of censored = 88. Log likelihood = 
2692.483. Method: Backward likewise 
Combined pathway enrichment clustering: 0=Cluster A,B &C group. 1= Cluster D 
& E group. 
Molecular subtype: 0= Non-proneural subtype. 1= Proneural subtype. 
G-CIMP: 0=Non-C-CIMP, 1=G-CIMP 
Treatment modality: 0= Without chemotherapy or radiotherapy, 1= Chemotherapy 
with/or radiotherapy. 
Age: 0=Age<65 years, 1= Age>65 years. 
KPS:0= KPS<70, 1=KPS>=70. 
Gender: 0=Female, 1= Male. 

 
 

Table 1B. Cox proportional hazards model for progression free 
survival. 

 Co.ef Std.Err. P Value Haz.ratio(95% CI) 
Combined pathway 
enrichment clustering 

-0.255 0.134 0.048 0.775 (0.596-1.009) 

Molecular subtype -0.319 0.157 0.042 0.727 (0.535-0.988) 
G-CIMP -1.194 0.244 <0.001 0.303 (0.188-0.489) 
Treatment modality -0.783 0.211 <0.001 0.457 (0.302-0.692) 
Age 0.435 0.124 <0.001 1.545 (1.211-1.972) 
No. of subjects = 368; No. of event = 328; No. of censored = 40. Log likelihood = 
3226.034. Method: Backward likewise 
Combined pathway enrichment clustering: 0=Cluster A,B &C group. 1= Cluster D 
& E group. 
Molecular subtype: 0= Non-proneural subtype. 1= Proneural subtype. 
G-CIMP: 0=Non-C-CIMP, 1=G-CIMP 
Treatment modality: 0= Without chemotherapy or radiotherapy, 1= Chemotherapy 
with/or radiotherapy. 
Age: 0=Age<65 years, 1= Age>65 years. 
KPS:0= KPS<70, 1=KPS>=70. 
Gender: 0=Female, 1= Male. 

 
 
 

 

 
Figure 5. KEGG pathways with absolute value of principal component loadings (PC loadings)>0.1 in first three components. PC 1 module can be divided into module A and 
module B according to PC loadings, which indicated they play different role in PC 1 at contrast direction. Pathways in PC 2 module are consistently positive. PC 3 module was 
also divided into two sub-modules. PC 1 module and PC 2 module were able to separate cluster A,B and C from each other and identify cluster D & E from cluster A,B & C 
obviously, but they can hardly discriminate cluster D and E from each other. Pathways in PC 3 module showed no differences among cluster A,B & C, but they can be used to 
separate cluster D from E. 
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Figure 6. Kaplan-Meier estimates of overall survival and progression free survival in patients with combined pathway enrichment clustering groups. Left panel: overall survival. 
Right panel: progression free survival. 

 

Discussion 
Glioblastoma is a heterogeneous disease [4]. 

Besides the morphological and clinical heterogeneity, 
molecular profiling variation also plays a role. 
Glioblastoma share common traits, e.g. recurrent 
mutations, deletions, amplifications, rearrangements 
and resembling gene expression; however they also 
display many genetic differences [4]. As the first 
cancer with comprehensive genomic profiles mapped 
by TCGA project, glioblastoma is also considered to 
be associated with aberrant signal transduction 
pathways [5, 6].  

Enrichment analysis is based on the idea that 
analysis of pathway-level differences among samples 
could have an advantage of reflecting the true 
oncogenic phenotypes achieved through consistent 
expression of a set of genes compared with the acute 
expression of a single gene [11]. The sample level 
enrichment analysis could make pathways seen as 
low-dimensional projections of numerous genes. The 
main advantage of SLEA is that every sample could 
generate a new enrichment map of gene sets. Based on 
the maps from different samples, a novel matrix will 
occur and it could be used for further analysis at the 
pathway level [11, 13]. In this study, we generated a 
novel data matrix of glioblastoma samples by SLEA, 
which contained the enrichment status of 294 
signaling pathways. According to the analysis, we 
found that the heterogeneity of glioblastoma can also 
be reflected on the pathway level. For example, 
compared with normal brain tissues, the enrichment 
status of Cytokine-cytokine receptor interaction 
pathway fluctuated dramatically among glioblastoma 
samples. This pathway was positively enriched in 
40.0% of all samples, and negatively enriched in 36.0% 
of them. We found that more than 75% of all the 

KEGG pathways had significantly different 
enrichment statuses among various glioblastoma 
molecular subtypes and 24.5% of all the pathways 
were associated with genomic melthylation status. 
Therefore the pathway status of glioblastoma is 
unstable among samples. Serdar Bozdag et al. also 
identified such instability. According to their analysis, 
some GBM subtype-specific or melthylation 
subtype-specific pathways were found [22]. These 
results provided an important clue that the pathway 
enrichment status of glioblastoma is associated with 
the molecular expression pattern or the genomic 
melthylation pattern. The heterogeneity of 
glioblastoma on the molecular level resulted in 
differently enriched pathways. 

Based on the heterogeneity of glioblastoma, 
recent development of molecular classification 
regrouped GBM samples into several molecular 
subtypes according to their transcriptomic and 
epigenetic profiles. Based on mRNA expression, 
micro-RNA expression, long noncoding RNA 
expression, DNA melthylation or computer-generated 
nuclear morphometric analyses of large-scale 
microscopic images, many different classification 
systems were established [21, 23-30]. However, none 
of these classification systems was discovered at the 
molecular network or pathway level. According to the 
consensus clustering analysis and Silhouette analysis, 
we identified a novel classification system for 
glioblastoma. Based on the pathway enrichment 
status, glioblastoma samples could be divided into 
five sub-groups from cluster A to cluster E. These 
subtypes represented the pathway-level differences 
among the samples. According to the principal 
component analysis, we found that the first three 
components were able to separate all five subtypes 
from each other. We established three pathway 
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modules containing 40 pathways as the annotation of 
each subtype by selecting the principal component 
loadings from the top three components (PC1, 2, and 
3). Different from PC2, PC1 and PC3 modules both 
contained module A and module B. These results 
provided a novel classification system for 
glioblastoma and suggested that differences at the 
pathway-level were an important aspect of 
glioblastoma heterogeneity. 

The G-CIMP and molecular signature subtypes 
were associated with this novel classification. G-CIMP 
positive samples were mainly enriched in cluster E 
and the average z-score of each pathway in this 
cluster was relatively small, which implied that the 
CpG island methylator phenotype influenced 
molecular expression pattern at the pathway level. On 
the other hand, the KEGG pathway enrichment based 
classification was also associated with the molecular 
signatures. These results implied that the 
transcriptomic and epigenetic profiles might affect 
pathway enrichment status of glioblastoma.  

An important advantage of the molecular 
classification is to predict prognosis of glioblastoma. 
Although the classification based on signature gene 
expression did not reveal significant survival benefits 
by Verhaak, the analysis from Kim et al. distinguished 
three groups with different survival characteristics 
and showed that specific gene expression variations 
and CNAs had an important role in signaling 
pathways associated with gliomagenesis and the 
clinical outcomes of glioblastoma patients [21, 26]. On 
the other hand, CpG island methylator phenotype is 
also assocaited with the prognosis [28, 31, 32]. 
Noushmehr et al. suggested that patients with 
G-CIMP tumors were younger at the time of diagnosis 
and had relatively longer survival time [28]. Li et al. 
revealed a novel proneural/G-CIMP+ subtype with 
distinct molecular and clinical features [32]. 
Additionally, micro-RNA and long noncoding RNA 
expression patterns are also associated with 
prognosis[29, 30] In our study, with Kaplan-Meier 
survival analysis and Cox hazard proportion model, 
the novel subtypes based on the KEGG pathway 
enrichment were correlated with clinical outcomes of 
glioblastoma patients. Patients in cluster D & cluster E 
showed a better clinical prognosis in both overall 
survival time and progression-free survival time. 
Based on these findings, we suggest that KEGG 
pathway enrichment based classification is prognostic 
for glioblastoma patients.  

Conclusion 
In our study, we have shown that glioblastoma 

can be divided into five subtypes based on the 
signaling pathway enrichment status. This novel 

classification system provided new insights into the 
heterogeneity of glioblastoma, and may be used as an 
important clinical tool to predict the prognosis. 
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