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Abstract 

Human papillomavirus (HPV) is a DNA virus that infects epithelial cells and has been implicated in 
the development of cervical cancer. Few therapeutic strategies have been designed for the 
treatment of cervical intraepithelial neoplasia, a precursor of cervical cancer. In these early stages, 
the HPV E2 protein is the most important viral factor involved in viral gene expression and plays 
crucial roles during the vegetative viral cycle in epithelial cells. Papillomavirus E2 binds specifically 
to palindromic ACCN6GGT sequences, referred to as the E2 binding sites (E2BS), which are 
concentrated within the viral long control region, and which are responsible for regulation of the 
HPV protein’s expression. Here, we consider E2BS as a candidate sequence to induce the 
expression of antiviral therapeutic genes selectively in HPV-infected cells expressing the E2 
protein. This study focuses on the use of an HPV-specific promoter comprised of four E2BS to 
drive the expression of IL-12, leading to an antitumor effect in an HPV-positive murine tumor 
model. The therapeutic strategy was implemented via viral gene therapy using adenoviral vectors 
with recombinant E2 and IL-12 genes and E2BS-IL-12. We demonstrate that the HPV-specific 
promoter E2BS is functional in vitro and in vivo through transactivation of HPV E2 transcription 
factor. 
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Introduction 
Cervical cancer (CC), which is associated with 

persistent infection with high-risk human 
papillomavirus (HPV), is one of the most important 
neoplasias in global public health1. The high incidence 
of mortality and morbidity caused by this cancer, 
exceeded only by breast cancer in some populations2,3, 
warrants special attention toward the development of 
new strategies for control and treatment at early 
stages to prevent disease evolution.  

One approach that has been extensively 
investigated is gene therapy 4,5, which has been shown 

to have antitumor activity through induction of cell 
death. Most gene therapy studies have been based on 
therapeutic genes under the control of ubiquitous 
promoters such as CMV, SV40, heat shock, etc., which 
induce low specific toxicity in normal cells and 
tissues, as well as in cancer cells6,7. The targeted 
expression of therapeutic genes is essential to 
minimize the toxic effects due to the use of the 
recombinant protein 7-10 and to maximize the 
therapeutic effect. One gene therapy approach that 
has been used to target HPV-cancer cells in murine 
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tumor models takes advantage of the HPV16 Long 
Control Region (LCR) DNA sequence to manipulate 
gene expression in HPV-infected cells and uninfected 
cells. However, the LCR of HPV is activated in both 
HPV16-infected cells and non-infected cells11,12. 
Nevertheless, other HPV-specific sequences that are 
controlled only by HPV proteins may have 
applications in therapies for precancerous lesions and 
cervical cancer.  

The HPV E2 proteins have the same functions in 
the more than 100 characterized papillomavirus 
genotypes and are key regulators of the viral life 
cycle13,14. E2 protein functions are mediated through 
protein-protein interactions and through the binding 
of E2 to a palindromic DNA sequence ACCN6GGT, 
referred to as the E2 binding site (E2BS)15-17. E2BS 
merits consideration as a candidate sequence to drive 
the expression of therapeutic genes only in 
HPV-infected cells that express the HPV E2 protein. 
The construction of an HPV-specific promoter to 
induce expression of immunoregulatory cytokines, 
such as IL-12, is a promising approach with potential 
applications in the treatment of precancerous lesions 
before HPV integration.  

Interleukin 12 (IL-12) is a cytokine with multiple 
immune functions, including the stimulation of 
antitumor immune responses, but it has not yet 
become a standard therapeutic agent in clinical care18. 
Numerous preclinical studies demonstrated the 
benefit of IL-12 in several different tumor models, and 
these positive results led to clinical trials19-24. In 
cervical cancer a predominance of the Th2-type 
cytokine profile is observed in association with a 
diminished Th1-type cytokine profile 25-28. The shift to 
Th2-type cytokines during the course of cervical 
cancer development is reflected in an increased serum 
concentration of Th2-type cytokines while 
concentration of the tumor-infiltrating T-lymphocytes 
decrease as the lesion progresses28-30. Therefore, 
upregulation of cytokines such as IL-12, which favors 
the development of Th1 cells, through an 
HPV-specific promoter represents a promising 
approach to induce activation of the immune 
response in precancerous lesions, as well as to inhibit 
Th2-type cytokines, in order to prevent progression of 
the malignancy.  

The objective of this study was to utilize an 
HPV-specific promoter comprised of four E2BS’s to 
induce expression of IL-12 and produce antitumor 
effects in an HPV-positive murine tumor model. The 
therapeutic strategy was implemented through viral 
gene therapy using adenoviral vectors with 
recombinant E2, IL-12 genes and E2BS-IL-12. We 
demonstrated that the HPV specific-promoter E2BS 
was functional in vitro and in vivo due to 

transactivation by the HPV E2 transcription factor.  

Materials and Methods 
 Cell Culture. The BMK-16/myc murine cell line 

was kindly donated by Dr. Sophie Hallez (Université 
Libre de Bruxelles, Rhode-Saint-Genèse, Belgium). 
This cell line was established by co-transformation of 
baby BALB/c kidney cells with the c-myc gene and 
the HPV 16 genome, as previously described31. The 
C-33 A (ATCC) and AD293 (Stratagene, Calif., USA) 
were grown in a DMEM medium (Invitrogen, 
Carlsbad, Calif., USA) and supplemented with 10% 
fetal bovine serum, penicillin/streptomycin (50 
ug/ml), 2 mM L-glutamine and 250 ng/ml fungizone 
(Invitrogen) at 37°C in 5% CO2. 

 Plasmids. The E2-pCMVp16 plasmid (which 
contains the open reading frame (ORF) of the gene 
encoding the HPV16 E2 protein) and pC18SP1Luc 
plasmid (which contains four response elements to 
the E2 protein of HPV16 and a SP1 luciferase reporter 
gene site) were donated by Dr. G Veress (School of 
Medicine, University of Debrecen, Hungary)32 The 
plasmid pNGVL3-mIL-12, which contains clones of 
the two subunits (p35 and p40) of mouse. Plasmids 
were propagated in DH5-α bacteria and were purified 
by alkaline lysis; integrity was verified on 0.8% and 
1% agarose gel. 

Construction of Recombinant Adenovirus. 
Using the AdEasy system, recombinant bacterial 
adenovirus was generated with defective replication. 
The pAdtrack-CMV plasmid was used to clone the 
IL-12 gene with the cytomegalovirus promoter (CMV) 
as the promoter sequence. The plasmid pAdTrack was 
used to clone the IL-12 gene with 4 E2 binding sites 
(E2BS) as the promoter sequence. Briefly, the 
recombinant adenovirus AdCMVmIL-12 was 
generated by cleaving the two subunits (p35 and p40) 
of the IL-12 gene from the plasmid pNGVL-3-mIL-12 
at the restriction sites Bgl II and EcoR V. The gene was 
cloned into these same sites in the IL-12 
pAdTrack-CMV vector, and clones were selected with 
kanamycin. The adenoviral vector AdE2mIL-12 
expressing IL-12 under control of the four E2BS as its 
promoter sequence was generated as follows. The 
E2Sp1 promoter was cleaved at the sites BamH I/Hind 
III from the plasmid pC18SP1Luc and was cloned into 
the pCDNA3 vector to be sequenced and was 
sub-cloned into the pAdTrack vector at the Hind 
III/EcoR V sites. The vector generated, pAdTrack 
SP1E2, was cloned into the EcoR V and Bgl II sites and 
the two subunits of IL-12 were released at the same 
sites of the aforementioned pNGVL3-mIL-12 
construction. Thus the pAdTrack-E2mIL-12 plasmid 
was generated and the poly-adenylation sequence 
was amplified by PCR from the original vector 
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mIL-12, and was cloned into the unique Bgl II site 
(pAdTrack-E2mIL-12), with orientation verified by 
PCR. The plasmids generated were recombined with 
the plasmid pAdenoEasy 1 in BJ5183 E. coli to 
generate a recombinant plasmid. Finally, recombinant 
plasmids were cut with the restriction enzyme Pac I 
and transfected into AD293 cells to generate the 
adenoviruses AdCMV, AdCMVmIL-12 and 
AdE2mIL-12. Virion production was monitored by 
detection of the green fluorescent protein (GFP) 
produced by the virus, which was visualized by 
vertical epifluorescence microscopy. Cells were 
harvested in the presence of 5 mL of buffer A (10 mM 
Tris HCL, 0.5 M NaCl2, pH. 8.0), then were 
centrifuged at 3,000 rpm and lysed (by heat and cold). 
The lysate was centrifuged at 3,000 rpm for 5 min at 4° 
C, and the supernatant was used for large-scale 
production of recombinant adenoviruses. T75 twenty 
culture dishes with 100% confluence of AD293 cells 
were infected with 1 mL of the supernatant. Five days 
after infection the cells were harvested with shaver 
(scraper) in the presence of 10 ml of buffer A. The cells 
were lysed by heat and cold and centrifuged at 3,000 
rmp. Virions were purified from the supernatant by 
CsCl gradient ultracentrifugation (32,000 rpm, 18 h at 
4° C), dialyzed and stored at -70° C. Viral titers (PFU) 
were determined by plaque assays in AD293 cells 
according to the protocol of Vogelstein33 Western blot 
analysis was used to verify production of E2 and IL-12 
protein in AD293 and BMK-16/myc cells. 
Additionally, we generated an adenovirus expressing 
GFP (AdCMVGFP) as a control. 

Tumor growth inhibition assay. Tumor model: 
preclinical evaluation was carried out in an HPV 
16-positive murine tumor model.34  5x105 BMK-6/myc 
cells were injected subcutaneously into the back of 
Balb/c mice at a previously shaved site. Each group of 
five mice (provided by the animal facility of the 
National Institute of Public Health, strain from 
Charles River Laboratories, Wilmington, MA, USA), 
had their tumor volume measured in mm3 every 3 
days (V = larger diameter X smaller diameter2)/2 and 
their survival was reported. Tumor volume was 
studied to determine the therapeutic effect of the 
recombinant adenovirus. Tumor volume of 20 to 30 
mm3 was considered time zero and the subsequent 
effect of adenovirus on tumor growth and mouse 
survival was measured. Administration of 
recombinant adenovirus was as follows: each group 
of five mice with a tumor volume of 20-30 mm3 had 
5X105 PFU of recombinant virions containing either 
AdCMVE2HPV16, AdCMVmIL-12 or AdCMVGFP, 
administered intra-tumorally in a final volume of 30 
ul in 1X PBS. Another group of five mice had 5x103 
PFU of each adenovirus (AdCMVE2HPV16, 

AdE2mIL-12) co-administered intra-tumorally in a 
final volume of 30 uL. All mice were monitored for a 
period of 28 days; tumor inhibition was determined 
by measuring tumor volume (mm3) every three days 
with a digital caliper and survival curve. 

 Western Blot Assay. BMK-16/myc cells, C-33 A 
and AD293 were harvested at 48 h after the infection 
with recombinant adenovirus and were lysed in cold 
RIPA lysis buffer (20 mM Tis-HCl, pH 7.4, 10 mM 
NaCl, 10 mM KCl, 3 mM MgCl2, 0.5% triton X-100, 
0.5% NP-40 and protease inhibitors). The proteins 
were then collected by centrifugation. Protein 
concentrations were determined using the BCA 
protein assay kit (Pierce, Rock- ford, Ill., USA), 
according to the manufacturer’s instructions. 
Approximately 50 ug of total protein were 
electrophoresed in SDS-PAGE 10% and the resolved 
proteins were transferred to nitrocellulose 
membranes (Amersham Biosciences, Piscataway, N.J., 
USA). The blots were blocked in 5% dry non-fat milk 
in TBS (20 mM Tris-base, pH 7.6, 137 mM NaCl and 1 
M HCl) with 0.05% Tween-20 for 2 h. Later, the 
membrane was washed with PBS 1X and incubated 
with the appropriate antibody for 16 h at 4°C. The 
membrane was incubated with the secondary 
antibody for 30 to 45 min at room temperature. The 
detection was carried out using ECL Western 
Lightning Chemiluminescence Reagent Plus 
(PerkinElmer Life Sciences, Boston, Mass., USA). The 
antibodies were diluted in 2.5% dry non-fat milk in 
Tween-20 TBS solution. The antibody dilutions used 
were anti-actin (dilution 1:1,000), anti-IL-12, p40, 
(dilution 1:500), anti-goat HRP (dilution 1:10,000) and 
anti-mouse (dilution 1:8,000; Santa Cruz 
Biotechnology, Santa Cruz, Calif., USA). 

 Immunohistochemistry. Biopsies of 
tumor-bearing mice treated intratumoral with the 
recombinant adenovirus were paraformaldehyde- 
fixed. Serial frozen tissue sections were cut into 10 μm 
generated by transversal cryo-sections fixed in 
acetone and methanol for 10 min and washed in PBS 
for 3 min at room temperature. After the tissues were 
blocking for 30 min with 5% BSA and wash in PBS 
0.2% Tween 4 times for 5 min, and were 
permeabilized with 0.2% Triton for 10 min. The 
incubation of the primary antibodies was done 
overnight at 4ºC, follow with a wash in PBS 0.2% 
Tween 4 times for 5 min at room temperature. Slides 
were then incubated with conjugated secondary 
antibody 30 min to 1 hr at room temperature. 
Fluorescence was visualized with Zeiss Axioskop 
Epifluorescencet microscope (Zeiss, Germany). 
Images were acquired using a Micro-Manager- 
Examiner 1.2, 20X. The antibody dilutions anti-IL-12 
p40 (dilution 1:500), serum anti-HPV16 E2 protein 
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(dilution 1:250)34 and conjugated secondary antibody 
anti-goat Cy3 (1:1000) for IL-12 and Anti-mouse 
(1:1000) by HPV 16 E2 (Jackson ImmunoResearch 
LABORATORIES, INC. (West Grave, PA.USA).  

Statistical Analysis  
Data were analyzed and provide average (X) and 

standard error (s). Additionally, an analysis of 
Student´s t-test STATA 9.1., was done to determine 
differences between the experimental groups. A P 
value of ≥0.05 significance values was used for all 
statistical tests.  

Results 
Generation of recombinant adenovirus. AD293 

cells were infected with 50 MOI of the recombinant 
adenovirus: AdCMVGFP, AdCMVE2HPV16, 
AdCMVmIL-12 and AdE2mIL-12 for large-scale 
production and the virions was monitoring by the 
detection of GFP expression. As shown figure 1, GFP 
expression was visible 48 hr after the infection in 
80-90% of the cells showing cell rounding and small 
amounts of clumping with cytopathic effects.  

 

 
Figure 1: Production of recombinant adenovirus monitored by GFP expression. AD293 cells transfected with 50 MOI of each recombinant adenovirus (AdCMVGFP, 
AdCMVE2HPV16, AdCMVmIL-12 and AdE2mIL-12); 24 hr later the cells infected were observed on Epifluorescence microscopy and the expression of GFP protein was 
monitored. The cells showed cell rounding and small amounts of clumping with cytopathic effects. Control: AD293 cells no infected. 
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Figure 2: Antitumor effect of recombinant adenovirus AdCMVIL-12 in a murine tumor model. A). Detection of IL-12 protein by western blot BMK-16 / myc cells infected with 
adenovirus AdCMVmIL-12. B). Antitumor effect of AdCMVmIL-12 treatment compared to AdCMVGFP treatment compared to no treatment. Data are presented as X ± SE. *P 
<0.05: AdCMVmIL-12 and AdCMVGFP versus controls. **P <0.01: AdCMVmIL-12 and AdCMVGFP versus controls (Student´s t-test) 

 
Expression of AdCMVIL-12 in vitro and 

antitumor effect in vivo. In BMK-16/myc cells 
transduced with AdCMVmIL-12, we detected the p40 
subunit of IL-12, which has a molecular weight of 40 
kDa, by Western Blot (Fig. 2A); IL-12 p40 was not 
detected in uninfected cells. Detection of p40 protein 
was dose-dependent and correlated with the MOI of 
AdCMVmIL-12 with which epithelial cells were 
infected. We found that intratumoral injection of 
AdCMVmIL-12 into tumor-bearing mice was 
associated with a decrease in tumor size over time. In 
80% of mice almost complete resolution of tumor was 
observed and this was maintained up to 30 days after 
injection (Fig. 2B). In contrast, the tumor-bearing mice 
injected with AdCMVGFP showed only a slight 
reduction in tumor growth, and continued to have 
sustained growth, while the untreated mouse controls 
showed continuous growth of tumor.  

In vitro and in situ activity of an HPV-specific 
promoter in epithelial cells. Prior to its application in 
the in vivo tumor model, we evaluated the 
HPV-specific promoter comprised of four E2 
protein-binding sites which induces IL-12 expression 
using recombinant adenovirus AdCMVE2HPV16, 
which expresses the HPV 16 E2 protein.18 

BMK-16/myc cells were co-infected with 
AdE2mIL-12 (50 MOIs) and increasing concentrations 
of AdCMVE2HPV16 and was detected the E2 protein. 
Induction of the p40 subunit of IL-12 was detected at a 
concentration of 10 MOIs of the recombinant 
adenovirus AdCMVE2HPV16, but detection of p40 
subunit of IL-12 was more evident at 50 and 100 MOIs 
after AdCMVE2HPV16 infection (Fig. 3A). These 
results demonstrate the functional activity of this 
HPV E2-specific promoter in an in vitro system. 
Addition, the in vitro activity of the HPV E2-specific 
promoter was evaluated in HPV-negatives epithelial 
cells. The AD293 and C-33 A cells were co-infected 
with AdE2mIL-12 (50 MOIs) and of AdCMVE2HPV16 
(50-100 MOI). Twenty hours after the AdE2mIL-12 
infection, neither of the cells expressed the HPV E2 
and p40 (IL-12) proteins. However, when the cells 
were infected with AdCMVE2HPV16, the induction 
of the p40 subunit of IL-12 was detected, and it was 
determined that it was relate to the expression of the 
HPV E2 protein in HPV-negatives cells and that it was 
dose-dependent (Fig. 3B). Furthermore, the in situ 
activity of HPV E2-specific promoter was evaluated in 
the in tumor-bearing mice injected intratumorally 
with co-administration of the adenovirus 
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AdCMVE2HPV16 and AdE2IL-12 (Fig. 4). The p40 
subunit of IL-12 was detected in tumor tissues 48 
hours after the administration with both recombinant 
adenovirus and the detection was more evident that 
the mice treated with AdCMVmIL-12.  

Coinjection with AdE2IL-12 and 
AdCMVE2HPV16 induces tumor inhibition in vivo. 
Coinjection of AdE2mIL-12 and AdCMVE2HPV16 
into tumor-bearing mice produced a complete 
regression of tumor in the time period assessed. 
Approximately five days after treatment with both 
adenoviruses, reduction in tumor growth was 
observed (Fig. 5). There was no difference in tumor 
inhibition between the group of mice treated with the 
AdE2mIL-12 and AdCMVE2HPV16 coinjection and 
the group of mice treated with the AdCMVmIL-12 
alone, in the tumor volume analyzed. On the other 
hand, the group of mice treated with 

AdCMVE2HPV16 alone showed an inhibition of 
tumor growth, which was maintained up to 15 days 
after the injection, at which point tumor growth 
resumed although at a slower pace.  

Survival curves of tumor-bearing mice treated 
with recombinant adenovirus. We detected a slight 
increase in the survival of mice treated with 
AdCMVGFP and AdE2mIL-12 adenoviruses 
compared to controls (Fig. 6). A survival advantage 
was detected in mice treated with AdCMVE2HPV16 
(57% more than control) but the greatest effect on 
survival was observed with treatment with 
AdCMVmIL-12 and co-injection of AdE2mIL-12 and 
AdCMVE2HPV16. Coinjection of both viral vectors 
had tumor inhibitory effects in 4 of 5 (80%) mice, and 
we observed a significant survival of mice compared 
with the control group.  

 
 

 
Figure 3: Transcriptional induction of IL-12 by HPV 16 E2 protein through the HPV E2-specific promoter. A). BMK-16/myc cells (HPV 16 positives) were co-infected with 
adenovirus AdE2mIL-12 (MOI 50) and with increasing doses of adenovirus AdCMVE2HPV 6 (5-100 MOI), 48 hrs after treatment, presence of mIL-12 protein was detected by 
western blot. B). HPV-negative AD293 and C-33A cells were co-infected with AdE2mIL-12 (50 MOIs) and AdCMVE2HPV16 (50-100 MOI); 48 hrs after infection, HPV 16 E2 
protein and p40 protein (IL-12) were detected the by Western blot. 
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Figure 4: Antitumor Effect of HPV 16 E2 gene and IL-12 by recombinant adenoviral vectors evaluated in an HPV 16-positive murine tumor model. BALB / c mice with a tumor 
induced by administration of BMK-16 / myc cells were treated with recombinant adenoviral vectors AdCMVE2HPV16, AdCMVmIL-12, AdE2mIL-12, AdCMVGFP and 
co-administration of AdE2mIL-12 adenovirus and AdCMVE2HPV16. Subsequently, tumor growth was assessed at different over time. Data are presented as *X ± SE. P <0.0001 
compared between groups. Data are presented as X ± SE. *P <0.05: AdCMVmIL-12 and AdCMVGFP versus controls. **P <0.01: AdCMVmIL-12 and AdCMVGFP versus controls 
(Student´s t-test). 

 
Figure 5: Detection of in situ of the proteins expressed by recombinant adenovirus and the activity of HPV E2-specific promoter. Tumor-bearing mice were injected intratumoral 
with 5X105 PFUs of recombinant adenovirus AdCMVE2HPV16, AdCMVmIL-12, AdE2mIL-12 and AdCMVGFP and was the proteins mIL-12 and HPV 16 E2 were detected by 
immunohistochemistry. Additionally, other group of tumor-bearing mice was injected with 5x103 PFU of each adenovirus (AdE2mIL-12, AdCMVE2HPV16) and the activity of 
HPV E2-specific promoter was evaluated. Magnification: X20. BLM: Bright field microscopy, EM: Epifluorescence microscopy. 
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Figure 6: Survival of tumor-bearing mice treated with recombinant adenoviruses. 

 

Discussion 
In the present study, we demonstrate that in vivo 

application of an HPV E2-specific promoter to induce 
expression of IL-12 in HPV 16-positive tumor-bearing 
mice using viral gene therapy, lead to significant 
inhibition of tumor growth and increased survival in 
this murine tumor model. 

In precancerous cervical lesions, the HPV E2 
protein appears to play a role in the viral life cycle by 
regulating the transcription and replication of viral 
genes.14-16 These biological functions of E2 are 
mediated through the binding of a palindromic DNA 
sequence, ACCN6GGT, referred to as the E2 binding 
site (E2BS) in all papillomavirus.15-17 This observation 
led us to hypothesize that E2BS of HPV would be a 
candidate sequence to drive the expression of 
therapeutic genes and inhibit cancer development in 
precancerous cervical lesions. We found that an HPV 
E2-specific promoter that drives the expression of 
IL-12 had functional activity in vitro and in vivo 
mediated by the viral gene. In the in vitro system, we 
determined that the HPV E2-specific promoter is 
trans-activated by the HPV 16 E2 protein and is 
dose-dependent on HPV 16 E2 protein concentration. 
Additionally, we demonstrated that the HPV 
E2-specific promoter would not be activated in cells 
HPV-negatives (C-33 A), and that the presence of the 
HPV E2 protein was necessary to promote the 
activation. However, it is necessary to evaluate the 
HPV E2-specific promoter in other epithelial cells and 

in vivo HPV-negative systems. In our experimental 
system, we used the four E2 transcriptional elements 
with two SP1 transcriptional elements as a promoter 
to drive IL-12 expression by means of recombinant 
adenovirus. This technique stands in contrast with 
other systems that employ complete sequences in the 
HPV genome such as the LCR, which can be regulated 
by the E2 protein, or general transcription factors 
expressed in both HPV-infected and un-infected 
cells32. 

In vivo analysis of the HPV E2-specific 
promoter’s ability to induce IL-12 expression in 
tumor-bearing mice, demonstrated the promoter’s 
functionality. Treatment was associated with the 
inhibition of tumor growth and increased survival in 
the HPV 16 positive murine tumor model. 80% of 
tumor-bearing mice coinjected with the adenoviral 
vectors AdCMVE2HPV16 and AdE2mIL-12 showed 
almost complete tumor suppression 30 days after 
injection. This result is significant, as the viral 
sequence (E2BS) may have potential therapeutic 
applications. On the other hand, we observed a partial 
antitumor effect after injecting the recombinant 
adenovirus in the animal tumor model. This effect 
was detected until 10 days after the administration, 
later the tumor growth depends on the effect of the 
therapeutic genes. It is documented that the single 
administration of the recombinant adenovirus to the 
tumor tissue favors the activation of specific immune 
responses, involving the recruitment and activation of 
inflammatory cells to viral antigens 35-37. Therefore, the 
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activation of the immune response depends of the 
production of the viral antigens, which is restricted by 
the replication incompetent adenovirus. The local 
immune response generated by the recombinant 
adenovirus, involving the expression and 
presentation of viral antigens by the tumor cells, 
together with the activation of T cells promotes the 
antitumor effect, but this effect is transitory. Also, an 
antitumor effect was observed when the 
tumor-bearing mice were treated with 
AdCMVE2HPV16, a significant reduction was 
observed in corporation with the control (p<0.01). 
Previously, we shown the ability of the HPV 16 E2 
protein (using the recombinant adenovirus 
AdCMVE2HPV16) inhibited cell growth and promote 
cell death by apoptosis in both human and murine 
HPV 16 transformed epithelial cells as well as we 
observed anti-tumor effects in vivo HPV 16 
tumor-bearing mice.34 Nevertheless, the antitumor 
effect of the AdCMVE2HPV16 was lower than the one 
observed with AdCMVmIL-12 and with the 
co-administration of AdCMVE2HPV16 and 
AdE2mIL-12. The activation of immune response by 
the IL-12 protein produced by the AdCMVmIL-12 and 
AdE2mIL-12 has greater antitumor effect than the 
HPV 16 E2 protein produced by AdCMVE2HPV16. 
However, not differences in the antitumor effect were 
observed using AdCMVmIL-12 or co-administration 
of the AdCMVE2HPV16 and AdE2mIL-12. The 
production of the IL-12 protein by the adenoviruses 
induces the same antitumor effect using the same 
tumor volume; perhaps differences on growth tumor 
inhibition using the AdCMVmIL-12 or 
co-administration of the AdCMVE2HPV16 and 
AdE2mIL-1 can be observed in larger tumor. Which 
present a greater range to observed differences in the 
production of the IL-12 protein related with the 
increase to the tumor growth inhibition.  

The antitumor effect of gene therapy using IL-12 
has been demonstrated in a number of preclinical 
models in relation with the recombinant protein 
use.21-24 However, most of these studies used 
ubiquitous promoters to regulate expression of the 
therapeutic genes, which causes low-specific toxicity 
to normal tissues.7,8 For this reason it is necessary to 
develop novel cancer-specific promoters selective for 
HPV-infected cells, to ensure expression of the 
therapeutic gene in infected cells and avoid gene 
activation in normal cells and tissues. 

The HPV E2-specific promoter represents a 
sequence with potential therapeutic implications in 
cervical precursor lesions,38-40 at which point the HPV 
genome exists as an extrachromosomal element and 
the E2 protein is continuously expressed. However, in 
malignant cervical lesions, the chromosomal 

integration of HPV frequently results in disruption of 
the E2 open reading frame and consequent loss of E2 
protein,15,16 in which case the HPV E2-specific 
promoter would not be functional. The therapeutic 
application of the AdE2mIL12 in cervical precursor 
lesions, with the intrinsic expression of HPV E2 
protein, could favor the activation of the cellular 
immune response in early stages and prevent 
progression malignancy. This therapeutic strategy 
will be applicable in cervical precursor lesions 
associated with someone HPV genotypes. All the 
papillomavirus express the E2 protein and interact 
with the E2BS, and will be could potentially activate 
the expression of IL-12 (of the AdE2IL-12) and 
stimulation of the cellular immune response. 
Furthermore, It is necessary to consider that the 
toxicity associated with the in vivo administration of 
adenovirus vectors and the pre-existing immunity to 
the prevalent adenovirus serotypes acquired as a 
result of natural infections,41 have the potential to 
modulate vector efficacy and safety.41-43 As these, 
vectors have been improved; the gene delivery 
technologies have rapidly evolved and thus it is 
important to investigate other options such as noviral 
biological agents, including liposomes, exosomes, 
ex-vivo gene transfer, DNA nanostructures, 
mesenchymal stem cells, and nano-biopolymers.44-49 
Also, the systemic therapy for cancer carried out with 
IL-12 is associated with toxicity; therefore, the local 
application using gene therapy should results in a 
much higher local IL-12 concentration, and 
consequently a greater beneficial effect in terms of 
tumor immunity.24 Furthermore, combining a gene 
transfer with other breakthroughs from biomedical 
research and novel biotechnologies opens new 
avenues for the treatment of cervical cancer and 
precancerous lesions with gene therapy.  

In summary, we have demonstrated that the 
HPV E2-specific promoter driving the expression of 
IL-12 has functional activity in vitro and in vivo, and 
has the capacity to significantly inhibit tumor growth 
in an HPV 16 positive murine tumor model. Further 
investigation is being carried out to optimize gene 
delivery methods, dosing and administration. 
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