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Abstract 

The tumor microenvironment (tumor cells are located in the internal and external environment) is 
vital for the occurrence, growth and metastasis of tumors. An increasing number of studies have 
shown that exosomes are closely related to the tumor microenvironment. The mechanisms 
involved, however, are unclear. The focus of this review is on the exosome-related tumor 
microenvironment and other relevant factors, such as hypoxia, inflammation and angiogenesis. Many 
studies have suggested that exosomes are important mediators of metastasis, angiogenesis, and 
immune modulation in the tumor microenvironment. Additionally, exosomes can be isolated from 
bodily fluids of cancer patients, including urine, blood, saliva, milk, tumor effusion, cerebrospinal 
fluid, amniotic fluid and so on. Consequently, exosomes are potential biomarkers for clinical 
predictions and are also good drug carriers because they can cross the biofilm without triggering an 
immune response. Collectively, these findings illustrate that exosomes are crucial for developing 
potential targets for a new generation of pharmaceutical therapies that would improve the tumor 
microenvironment. 
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Introduction 
It is acknowledged that cancer is the deadliest 

disease, responsible for disrupting human health 
worldwide. Cancer has long been widely studied by 
the scientific community, and more researchers are 
performing cancer research. Currently, there are 
many studies on cancer, but studies show that the 
effects of chemotherapy and radiation therapy on 
tumor cells themselves not only demonstrate adverse 
reactions but also unsatisfactory treatment effects. The 
main problem in current research is ignoring tumor 
microenvironment, the environment which tumor 
cells live in, which plays an important role in the 
evolution of cancer. The tumor microenvironment is a 
complex internal environment that is important for 
tumor survival and includes various stromal cells, 
extracellular matrix components and biological 
molecules. The important cellular components of the 
tumor microenvironment include fibroblasts, 
macrophages, inflammatory cells and important 

biomolecules, including various growth factors, 
inflammatory factors, and proteases [1-3]. Factors 
related to the tumor microenvironment, such as 
hypoxia [4], inflammation, angiogenesis [5] and 
exosomes, play pivotal roles in tumor development, 
invasion and metastasis [6]. Matrix cells in the tumor 
microenvironment communicate with cancer cells 
through non-cell material, such as exosomes, and play 
crucial roles in tumor evolution and progression [7-9]. 
Exosomes can function as transporters in the tumor 
microenvironment and as biomarkers in clinical 
diagnoses [10]. Exosomes can help miRNA to be 
released into the tumor microenvironment [11], and 
miRNA plays vital roles in many biological functions 
in the tumor microenvironment, such as mediation of 
proliferation, apoptosis, migration and invasiveness 
of tumor cells [12]. The mRNA distribution in 
exosomes of tumor patients can be used to identify 
tumor biomarkers and provide a more specific target 
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for the treatment and prediction of tumors. 

1. Tumor microenvironment 
During tumor development, the tumor 

microenvironment is a pivotal pathological 
environment and can even serve as a bridge. Tumor 
development, recurrence and metastases are not only 
determined by cancer cells but are also associated 
with non-tumor cells of the tumor microenvironment. 
It is increasingly recognized that the tumor 
microenvironment, which includes cells such as 
macrophages, dendritic cells, T cells, endothelial cells 
and fibroblasts, as well as extracellular matrix (ECM) 
components, proteases, and cytokines, plays a role in 
tumor evolution and metastasis [2, 8, 13]. The tumor 
microenvironment plays a vital role in the transition 
from invasion growth before tumor cells invade the 
matrix [14]. In most cases, the late-stage matrix 
supports the development of the tumor more than the 
early stage matrix [15]. Stephen Paget in 1889 
proposal that metastasis depends on cross-talk 
between selected cancer cells (the seeds) and specific 
tumor microenvironments (the soil) shows how 
cancer cells (the seeds) adapt to their environment 
(the soil). Therefore, this hypothesis is a good 
illustration of the relationships between cancer cells 
and the tumor microenvironment [16]. Traditional 
tumor studies focus on the tumor cells themselves, the 
seeds in the “seeds and soil” hypothesis, but 
neglect soil research, while the microenvironment, the 
soil of tumor cell growth and metastasis, is quite vital 
[17]. There is a large difference between the tumor 
microenvironment and normal tissue, and although 
the target hallmarks of the tumor microenvironment 
may improve cancer therapies, the tumor 
microenvironment is characterized by various 
pathologic responses, such as hypoxia, inflammation 
and angiogenesis [18-20]. 

2. Exosome-related tumor 
microenvironment 

We know that the tumor microenvironment is 
very important in cancer development and that 
exosomes are a significant component of the tumor 
microenvironment [10]. Exosomes are thought to be 
between 30 and 100 nanometers in size with a classical 
“cup” or “dish” morphology and are released by 
almost all cell types, non-tumor cells or tumor cells. 
Exosomes carrying a broad range of cargoes, 
including nucleic acids, heat shock proteins and 
various enzymes [7, 10, 21-25]. Exosomes can promote 
cancer metastasis and influence other cells as follows: 
(1) the exosomes that come from tumor cells induce 
epithelial mesenchymal transition and degrade the 

matrix; (2) tumor-secreted exosomes directly or 
indirectly disturb endothelial cells via activating 
macrophages; (3) circulating tumor cells (CSTs) and 
the tumor activate platelets to release exosomes, 
influencing immune cells; (4) exosomes that are 
attached to the tumor up-regulate adhesive molecules 
on endothelial cells; and (5) exosomes can disseminate 
tumor cells in a suitable niche to proliferate, forming a 
micro-metastasis [26].  

2.1 Exosome and cell-to-cell communication 
Exosomes are important components of 

extracellular vehicles that can mediate intercellular 
communication between tumor microenvironment 
components and play a role in the formation and 
development of tumors [27]. Presently, there are four 
main forms of communication between exosomes and 
cells: first, exosomes act as signaling complexes to 
stimulate target cells; second, exosomes transmit 
receptors between cells; third, exosomes transport 
functional proteins to receptor cells; and fourth, 
exosomes deliver genetic information to receptor cells 
via mRNA and miRNA [28]. Tumor cells can not only 
release more exosomes than normal cells but the 
contents of exosomes from tumors are also 
significantly different than those from normal cells. A 
large difference between exosomes from cancer cells 
and those from normal cells is that exosomes from 
cancer cells contain more miRNA than those from 
normal cells [29]. The two-way communication 
between tumor cells and the stroma or tumor can 
significantly affect the progression of disease and 
sensitivity of the tumor to treatment, and extracellular 
vesicles mediate the communication between cancer 
cells and the neighboring microenvironment [30]. 

2.2 Exosomes and pathways 
Exosomes that deliver epidermal growth factor 

receptor (EGFR) play a key role in regulating 
signaling pathways of endothelial cells because EGFR, 
which changes position, can effectively activate 
hepatocyte growth factor (HGF) by suppressing 
expression of its upstream miRNA (miR-26a/b). 
Additionally, up-regulation of liver HGF promotes 
gastric cancer liver metastasis, while down-regulation 
of liver HGF suppresses metastasis [31]. TGFβ type II 
receptor (TβRII) is a common component in exosomes 
from squamous cell carcinoma (SCC) tumor cells and 
can stimulate TGFβ signaling in the tumor 
microenvironment [32]. Tumor-associated macro-
phage (TAM)-derived exosomes from ovarian cancer 
can target the miR-146b-5p/TRAF6/NF-κB/MMP2 
pathway to suppress endothelial cell migration [33] 
(Figure 1). 
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Figure 1. Exosomes regulate signaling pathway of endothelial cells 

 

3. Other factors related to the tumor 
microenvironment 
3.1 Hypoxia and angiogenesis (VEGF) 

Hypoxia-inducible factor 1 (HIF-1) is thought to 
be the key effector of the cell response to hypoxia, 
which is involved in promoting angiogenesis-related 
transcription genes [34]. When breast cancer cells and 
cancer-associated fibroblasts are subjected to hypoxia, 
HIF-1a/GPER signaling participates in the regulation 
of VEGF expression [35]. An in vivo study showed 
that the tumor ascorbate levels are negatively 
associated with tumor growth and that HIF-1 and its 
target proteins can control angiogenesis [36]. 
Expression of vascular endothelial growth factor 
(VEGF) is found at high levels in some hypoxic 
tumors. In vitro experiments have shown that soluble 
vascular endothelial growth factor receptor-2 
(sVEGFR2) specifically binds to human vascular 
endothelial growth factor-A (VEGF-A), which inhibits 
tumor growth, and the high expression level of 
sVEGFR2 under hypoxic conditions plays a role in 
inhibition of the tumor angiogenesis [37]. It has been 
shown that the PTEN/PI3K/AKT signaling axis, 
which proceeds through the proteasome, controls 
hypoxia-induced HIF1a to avoid hypoxic degradation 
in macrophages and that this signaling pathway 
controls tumor-induced angiogenesis [38]. 

3.1.1 Angiogenesis 
The tumor vasculature is a key component of the 

microenvironment and not only influences tumor 
behavior but is also related to the treatment effect [39]. 
Angiogenesis is a process that is associated with 
trauma, embryonic formation and solid tumors. The 
influence of proangiogenic factor overproduction in 
tumors leads to deformed vessel structures. When 
tumor blood vessels are abnormal, blood perfusion is 
low after hypoxia perfusion, leading to a 
microenvironment that promotes metastasis and 
invasion [40]. In more than 80% of pancreatic ductal 

adenocarcinoma, the tumor-related transmembrane 
glycoprotein MUC1 is overexpressed, and increasing 
the expression levels of neuropilin-1 (NRP1, a 
co-receptor of VEGF) and its ligand VEGF lead to a 
proangiogenic tumor microenvironment [41]. PI3K 
modulates the tumor vasculature, either directly (by 
inhibiting endothelial cells) or indirectly (by 
inhibiting angiogenesis-promoting, tumor-associated 
myeloid cells and VEGF production by tumor cells) 
[42]. Identification of specific and non-redundant 
roles of class I PI3K isoforms in the tumor 
microenvironment has revealed the way that this hub 
regulates cancer progression [43]. Pro-inflammatory 
cytokines in the tumor microenvironment are known 
for their ability to either inhibit or promote cancer 
progression. Interleukin-31 (IL-31), which belongs to 
the pro-inflammatory IL-6 cytokine family, has been 
characterized in autoimmune disease and 
tumorigenesis, and IL-31 inhibits tumor growth partly 
via an anti-angiogenic effect [44]. In the tumor 
microenvironment, high expression of the 
extracellular matrix component tenascin-C (TNC) is 
related to decreased patient survival. TNC also has 
direct antiangiogenic effects on endothelial cells, and 
via tumor cells and cancer-associated fibroblasts, TNC 
regulates paracrine proangiogenic signal transduction 
[45]. TAp73, a member of the p53 family, regulates 
tumor angiogenesis by inhibiting proangiogenic and 
pro-inflammatory cytokines [46]. 

3.1.2 Hypoxia 
Oxygen homeostasis is required by the body to 

generate energy. A decrease in oxygen or excess 
oxygen can be deleterious for cellular adaptation and 
growth. Hypoxia has a role not only in pathological 
conditions but also in physiological conditions [47]. A 
hypoxic solid tumor microenvironment can promote 
tumor metastasis, epithelial mesenchymal transition 
and angiogenesis [48]. In various tumors, hypoxia is 
associated with a poor response to treatment, such 
that hypoxia-inducible factor 1 regulates many genes 
that have critical cellular functions, leading cancer 
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cells to adapt to the hypoxic environment [49]. It has 
been reported that the expression levels of HIF-1α and 
tumor-infiltrating lymphocytes (TILs) are positively 
correlated with the tumor microenvironment of 
esophageal squamous cell carcinoma and that patients 
with high levels of HIF-1α and TILs have the worst 
survival rates [50]. Thus, in gastric cancer cells, the 
hypoxic environment independently induces 
angiopoietin-like protein 4 and HIF-1α, which have 
adverse effects on the progression of the tumor [51]. 
Recent research has shown that in the tumor 
microenvironment, hypoxia and HIF-1α impact heat 
shock protein 70 (Hsp70) and the major 
histocompatibility class I chain-related proteins A and 
B (MICA/B), which are located on the cell membrane 
and, as ligands, affect the sensitivity of natural killer 
cell-mediated cytotoxicity [52]. Hypoxia-dependent 
and -independent alterations in immunological 
surveillance lead to different immune avoidance 
tactics [53]. There is some evidence that, in tumors, 
hypoxic induction factor (HIF) plays an inhibitory role 
in the regulation of the immune response [54, 55]. In 
hepatocellular carcinoma (HCC), transcatheter 
arterial chemoembolization (TACE) surgery increases 
the hypoxia status, and in HCC tissue, HIF-1α protein 
expression increases. HIF-1α stimulates the 
expression of COX-2 protein and positively regulates 
EMT, which promotes HCC invasion and metastasis, 
resulting in a poor prognosis [56]. Regarding 
pancreatic cancer, in a hypoxic tumor microenviron-
ment, expression of receptor for advanced glycation 
end products (RAGE) is mainly controlled by NF-κB, 
but not HIF-1α, and RAGE is positively regulates 
KRAS-driven HIF-1α signaling and hypoxia-induced 
autophagy via the RAGE-KRAS-HIF1α pathway [57]. 
Pancreatic cancer cells exist in the hypoxic 
microenvironment and contain numerous factors that 
impact tumor survival, proliferation and metastasis, 
such as HIF-1α, which up-regulates and then induces 
miR-21 overexpression, allowing cells to avoid 
apoptosis [58]. In some late glioblastoma hypoxia 
microenvironments, IL-1b has been found to inhibit 
the transactivation activity of HIF-1, inducing 
expression of adrenomedullin (AM), which helps 
glioblastoma cells fight apoptosis induced by hypoxia 
[59]. In the tumor microenvironment, either chronic or 
cycling hypoxia enhances the expression or function 
of Livin, which promotes anti-apoptosis and 
resistance to ionizing radiation and temozolomide in 
glioblastoma [60]. Cycling hypoxia contributes to the 
resistance to cytotoxic therapies through 
anti-apoptotic effects, cycling hypoxia-induced Bcl-xL 
expression via ROS-mediated HIF-1α and NF-κB 
activation, which plays an important role in the tumor 
microenvironment [61].  

3.2 Inflammation 
In many tumors, inflammatory infiltration is a 

marker that results in the continued release of 
pro-inflammatory, anti-inflammatory, and 
immunosuppressive cytokines in the tumor 
microenvironment [62]. The effect of the 
pro-inflammatory environment on cancer is to 
promote carcinogenesis by providing cytokines, 
growth factors and chemokines to maintain the cell 
proliferation rate, stimulate angiogenesis and inhibit 
cell apoptosis [63]. Inflammation acts as a 
double-edged sword; on the one hand, the protective 
response of inflammation can eliminate harmful 
stimuli and restore tissue homeostasis. On the other 
hand, uncontrolled inflammation leads to the 
development of malignancies [64, 65]. In many solid 
tumors, due to the inflammatory microenvironment, 
cells express a high concentration of macrophage- 
associated markers, which indicate a poor clinical 
consequence [66]. A study showed that, in the tumor 
microenvironment, the pro-inflammatory cytokine 
IL-6, which is produced by endothelial cells, promotes 
chemical resistance, indicating that the chemotherapy 
drug doxorubicin induces the release of acute IL-6 in 
vitro through reactive oxygen-mediated p38 
activation. Doxorubicin leads to endothelial 
senescence mainly through the senescence-related 
inflammatory factor IL-6, which functions in the 
PI3K/AKT/mTOR pathway [67]. Prostate-specific 
IL-6 can autonomously induce prostate oncogenesis 
by expanding local inflammation, activating the 
STAT3 pathway and increasing paracrine insulin-like 
growth factor (IGF) signaling to reprogram gene 
expression[68]. We know that G protein-coupled 
receptor family C group 5 member A (GPRC5A) is a 
lung tumor suppressor that can be induced by retinoic 
acid, and overexpression of GPRC5A in head and 
neck squamous cells can suppress the activation of 
IL-6-induced STAT3 and inhibit tumor growth [69] 
(Figure 2). 

4. Exosomes in cancer 
It has been reported that glioma-derived 

exosomes that contain linc-POU3F3 can regulate the 
tumor microenvironment and influence angiogenesis. 
HBMECs treated with exosomes that have increased 
amounts of linc-POU3F3 can upregulate Angio, 
bFGFR, VEGF and bFGF expression, and these gene 
and protein expression levels are mainly 
pro-angiogenesis factors in angiogenesis regulation 
[70]. Exosomes contain high levels of miR-210 in the 
hypoxic tumor environment, and exosome-released 
miR-210 from hypoxic cells can inhibit Ephrin-A3 and 
PTP1B, which are the target genes of miR-210 and 
have an intimate connection with VEGF expression 



 Journal of Cancer 2018, Vol. 9 

 
http://www.jcancer.org 

3088 

and endothelial cell recruitment [71]. Under hypoxic 
conditions, lung cancer cells produce more exosomes 
than under normoxic conditions, and the expression 
levels of miR-23a are up-regulated in these exosomes. 
Hypoxia lung cancer-derived exosomal miR-23a 
induces prolyl hydroxylase 1/2 and tight junction 
protein ZO-1 to activate vascular endothelial cells; in 
simple terms, hypoxia tumor cells increase 
angiogenesis and permeability by regulating the 
exosomal miR-23a →PHD1/2 →HIF-1α and →ZO-1 
regulatory pathway [72]. Studies have shown that 
small extracellular vesicles (sEVs) can be used as 
important media by senescent cells to promote tumor 
progression. The sEVs released by senescent cells 
carry EphA2, which can combine with ephrin-A1 and 
EphA2/ephrin-A1 to reverse signaling, eventually 
promoting cancer cell proliferation [73]. A special 
extracellular vesicle subgroup, microvesicles (MVs), 
from breast cancer cells activates VEGF receptors and 
promotes tumor angiogenesis, mainly via 90-kDa 
VEGF (VEGF90k), which interacts with Hsp90 and 
then combines with the vesicles. MV-associated 
VEGF90k is weakly expressed following exposure to 
bevacizumab, which is ineffective at blocking the 
activation of related VEGF receptors in MVs, and 
using an Hsp90 inhibitor that affects the release of 
VEGF90K from MVs can restore the sensitivity of 
VEGF90K to bevacizumab [74]. 

In in vivo and in vitro experiments of 
hepatocellular carcinoma (HCC), exosomes from 
HCC can induce sorafenib resistance, mainly via the 
HGF/c-Met/Akt signaling pathway, and inhibit 
sorafenib-induced apoptosis [75]. Compared with 
un-activated macrophages, exosomes from M2 
macrophages express a higher level of miR-21. In 
gastric cancer cells, exosomal transfer of miR-21 from 

M2 macrophages mediates the resistance to DDP as 
well as the down-regulation of PTEN and 
up-regulation AKT. The apoptosis-associated gene 
Bcl-2 is also increased along with miR-21 
overexpression [76]. miR-21 delivered by exosomes, 
comes from neighboring stromal cells in the omental 
tumor microenvironment, is transferred to ovarian 
cancer cells can conferring chemo-resistance. In 
ovarian cancer, APAF1 is the downstream target of 
miR-21, and their mRNA expression is inversely 
correlated. Additionally, APAF1 can mediate 
miR-21-induced paclitaxel resistance in ovarian 
cancer [77]. It has been reported that exosomes from 
breast cancer cells treated with paclitaxel (PTX) 
promote cell survival and chemo-resistance. 
PTX-treated cells generate exosomes enriched with 
survivin, and survivin from exosomes promotes cell 
survival [78]. It was discovered that shikonin inhibits 
the proliferation of MCF-7 cells by reducing 
tumor-derived exosomal miR-128, while miR-128 in 
exosomes negatively regulates the gene level of Bax in 
MCF-7 cells and promotes cell proliferation [79]. 
Exosomes involved in miR-7 can mediate apoptosis 
and inhibit tumor growth because miR-7 is a key 
sensitizer for TRAIL (TNF-related apoptosis inducing 
ligand)-induced apoptosis, and XIAP is the direct 
downstream of miR-7 [80]. It has been reported that 
miRNAs from exosomes can be used as 
intercommunication media between tumor cells and 
macrophages. TWEAK stimulation increases the level 
of miR-7 in both macrophages and macrophage- 
secreted exosomes. The level of miR-7 in recipient 
epithelial ovarian cancer (EOC) cells is increased due 
to EOC cell ingestion of the corresponding exosomes, 
and miR-7 eventually weakens EGFR/AKT/ERK1/2 
pathway signal conduction related to EOC transfer 

 

 
Figure 2. Hypoxia and angiogenesis, inflammation 
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[81]. Gemcitabine increases cancer-associated 
fibroblast (CAF)-derived exosome release, and these 
exosomes play a role in the up-regulation of Snail and 
miR-146a expression. Snail is a 
chemo-resistance-inducing factor in recipient 
epithelial cells that promotes proliferation and drug 
resistance [82]. Tumor cell-derived extracellular 
vesicles (EVs) can cause apoptosis of human 
mesenchymal cells, which leads to the destruction of 
the peritoneal cortex and promotion of metastasis of 
tumor cells. EVs from ascites of ovarian cancer 
patients carry MMP1 mRNA, which can induce 
apoptosis of interstitial cells [83]. In cancer, exosomes 
act as communicators between tumors and their 
microenvironment, and exosome secretion due to 
lung cancer cell regulation causes cancer cell 
migration via TGF-β and IL-10 [84]. Pyruvate kinase 
type M2 (PKM2) is an important enzyme of anaerobic 
glycolysis in tumor cells that plays a pivotal role in 
exosome release from tumor cells. Phosphorylated 
synaptosome-associated protein 23 (SNAP-23) is the 
phosphorylated substrate of PKM2 in tumor cells, 
which regulates the retention and release of 
exosomes, PKM2 phosphorylation and dimers not 
only transforms tumor cell metabolism from oxidative 
phosphorylation to anaerobic glycolysis but also 
promotes the secretion of exosomes in tumor cells by 
direct phosphorylation of SNAP23 [85] (Figure 3). 

5. Tumor-derived exosomal miRNA as 
biomarkers 

An early diagnosis is important for the prognosis 
of cancer. miRNAs in tumor-derived exosomes are 
potential diagnostic biomarkers for early-stage, 

non-small cell lung cancer (NSCLC) for 
next-generation sequencing compared with normal 
healthy cells. In NSCLC, miR-181-5p, miR-30a-3p, 
miR-30e-3p and miR-361-5p in exosomes are specific 
biomarkers for adenocarcinoma, and miR-10b-5p, 
miR-15b-5p and miR-320b in exosomes are specific 
biomarkers for squamous cell carcinoma [86]. miR-96 
in exosomes is a serum biomarker for lung cancer, and 
its expression is positively correlated with high-grade, 
metastatic lung cancer. Expression of LIM-domain- 
only protein 7 (LMO7) is inversely related to the grade 
in lung cancer, and LMO7 overexpression has an 
inhibitory effect on miR-96 [87]. In the tumor 
microenvironment, miR-25-3p and miR-92a-3p are 
released into the serum by liposarcoma (LPS) cells 
through extracellular vehicles, and these miRNAs can 
be used as potential diagnostic biomarkers. miR-25-3p 
and miR-92a-3p, in a TLR7/8-dependent manner, 
activate tumor-associated macrophages to induce IL-6 
secretion. In turn, IL-6 promotes LPS cell 
proliferation, invasion and transfer through 
interactions with the surrounding environment [88]. 

Conclusions 
Studies on tumors have mainly focused on the 

tumor cells, ignoring the microenvironment of tumor 
survival. The tumor microenvironment is a good soil 
for tumor growth, proliferation, invasion and 
metastasis [89]. Exosome are widely distributed in 
different body fluids and have a long half-life. 
Exosomes can influence the occurrence and 
development of tumors by interacting with various 
factors in the tumor microenvironment, such as 
hypoxia-, inflammation- and angiogenesis-associated 

 

 
Figure 3. Exosomes in cancer 
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factors. Exosomes are nano-scale vesicles that are 
secreted by cells. As carriers, exosomes from tumor 
cells carry genetic material and proteins to other cells, 
leading to important information transmission 
between cells [90]. Intercellular communication is an 
indispensable cornerstone for the maintenance and 
development of multicellular tissue. The tumor 
microenvironment is a local environment composed 
of tumor cells with local infiltrating immune cells and 
stromal cells as well as the active media secreted by 
them. 

Additionally, tumor-derived exosomes, through 
interactions with other cells of the tumor 
microenvironment, can regulate angiogenesis, tumor 
progression, metastasis and immune escape. The 
pathological processes mediated by exosomes give 
exosomes large potential as biomarkers [91]. 
Understanding the mechanism of exosomes is of great 
value for early screening, accurate diagnosis and 
prognosis assessment. Exosomes play an important 
role in tumor metastasis. They locate the position of 
transfer and activate specific cells to secrete specific 
cytokines to recruit cells to form the 
microenvironment before the tumor metastasizes. 
Exosomes induce transformation of epithelial 
mesenchymal cells and have the ability to migrate as 
well as promote the migration of tumor cells. Thus, 
miRNA can be transported to tumor cells to regulate 
the expression of corresponding genes that affect 
tumor cell growth. Through different proteins, 
miRNA can promote angiogenesis and induce 
immune escape, affecting the occurrence of metastatic 
tumor development.  

Exosomes that are secreted can be used as the 
medium of signal transduction in tumor sensitivity to 
chemotherapy drugs and participate in the tumor 
process. Studying the mechanism of drug resistance 
by exosomes is helpful to better understand and treat 
neoplasms. Exosomes can be stable in urine, blood, 
saliva, milk, tumor effusion, cerebrospinal fluid, 
amniotic fluid and other fluids, especially in the 
tumor microenvironment. Exosomes can move back 
and forth in fluid, allowing them to cross the biofilm 
and deliver drugs without triggering an immune 
response [92]. However, it is difficult to purify 
exosomes, which is a difficult problem to overcome 
for current research and application. 
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