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Abstract 

As a specific subtype of breast cancer, Triple-negative breast cancer (TNBC) is associated with 
worse prognosis and higher tumor aggressiveness than HER2-amplified or hormone receptor 
positive breast cancers. Circulating tumor DNA (ctDNA), as a non-invasive “liquid biopsy”, is an 
emerging original blood-based biomarker for early breast cancer diagnosis, monitoring treatment 
response, and determining prognosis. In TNBC patients, ctDNA has an inherent tendency to 
characterize tumor heterogeneity and metastasis-specific mutations providing a key alternative to 
tumor tissue profiling. Several studies have already demonstrated the potential of ctDNA in TNBC 
patients from early to advanced stages of the disease including diagnosis, therapy decisions and 
assessment of prognosis. This review provides a critical brief summary of the evidence that gives 
credence to the utility of ctDNA as a biomarker for its role into clinical management in TNBC. 
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Introduction 
Patients with triple-negative breast cancer 

(TNBC), which is negative for estrogen receptor (ER), 
progesterone receptor (PR), and human epidermal 
growth factor receptor 2 (HER2) expression, account 
for 15–20% of all breast cancer patients [1-3] and are 
generally considered to have poor prognosis [4, 5]. 
Early diagnosis and appropriate treatment can 
improve the prognosis. Given that TNBC patients are 
not respondent to endocrine therapy and HER2 
targeted therapy, chemotherapy is the mainstay 
treatment in both the early and advanced-stages [6, 
7].However, patients without complete response 
make up approximately 80% of TNBC [8], and there is 
a rapid recurrence and metastasis [9]. Therefore, it is 
essential to excavate novel biomarkers to guide the 

treatment and improve the clinical management of 
TNBC. Histopathological examination of tumor 
biopsy specimen was considered as the gold standard 
for diagnosing TNBC. However, this approach has 
several limitations. First, owing to tumor 
heterogeneity, a biopsy specimen may not be 
representative of the entire tumor, let alone distant 
metastasis [10]. In addition, tissue processing, 
fixatives, and storage may diminish DNA quality and 
affect later mutation detection [11]. In the end, biopsy 
is a very invasive method and not always feasible in 
clinical practice. Currently, TNBC patients have no 
unanimous biomarkers that would aid in diagnosing, 
treating, and determining the prognosis of TNBC [12]. 
Novel predictive biomarkers commited to patients 
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suffering from TNBC should be urgently needed. 
Plasma circulating tumor DNA (ctDNA), including 
genetic information about not only the primary tumor 
but also metastatic disease [13-15], could be used as a 
non-invasive practice and might be a good surrogate 
to the current solid biopsy and help in TNBC 
management. 

In contrast to tissue biopsy, “liquid biopsy” is 
performed on cancer-derived material captured in a 
blood sample. Because it acts as a repository of genetic 
material from throughout the body, circulating blood 
may provide material for more comprehensive 
mutation profiling. Furthermore, “liquid biopsy” 
provides a non-invasive means of obtaining timely, 
comprehensive information and could provide the 
foundation for real-time tumor monitoring. Finally, 
research shows that tissue and liquid biopsies have 
excellent concordance in terms of gene mutation 
status by using BEAMing that could be theoretically 
conducted in lieu of a biopsy [16]. Recently, 
Garcia-Murillas et al. [17] and Olsson et al. [18] 
showed that using ctDNA-based liquid biopsy for 
real-time disease monitoring may improve the clinical 
management of breast cancer. These studies have 
indicated that sufficient sensitivity and specificity 
were eventually confirmed in terms of predicting an 
early recurrence with ctDNA, which might make it a 
monitoring tool for early tumor detection, therapy 
modification, and prognostic evaluation. Several 
small clinical trials have investigated the potential use 
of ctDNA as a biomarker for early breast cancer 
screening, monitoring treatment response, and 
determining prognosis [17, 19-21]. In this review, we 
will highlight the latest research of ctDNA as a “liquid 
biopsy” in TNBC, and what role ctDNA plays in 
improving the clinical management of TNBC.  

Detection of ctDNA  
Malignant tumors can release significant 

amounts of DNA, including fragments as large as 
180–200bp, into the bloodstream via cell death– 
associated mechanisms such as necrosis and apoptosis 
[22-25]. Researchers can derive mutation information 
from such ctDNA by measuring its concentration and 
determining its nucleotide sequence [26]. Although 
highly sensitive and specific methods have been 
developed to detect ctDNA, ultrasensitive technolo-
gies that can detect the minimum amount of ctDNA in 
a sea of normal ctDNA are urgently needed for early 
cancer detection because of its very low levels of 
ctDNA. Such detection requires technology 
standardization coupled with accurate criteria to 
determine sample adequacy [27, 28].  

Screening  
Previous studies have indicated that an increase 

in ctDNA reflects an increase in tumor burden [29] 
and patients with early-stage breast cancer, therefore, 
may have only low concentrations of ctDNA. Owing 
to little information about genomic mutations it 
provided, ctDNA is rarely used as a biomarker for 
early diagnosis. In terms of early-stage TNBC, 
biomarkers as a means of screening disease was 
mainly investigated at the tissue DNA in TNBC [30, 
31].For example, Elena et al. analysis showed that the 
acquisition of TP53 mutations may lead to increased 
genetic instability and increase the likelihood of an 
microglandular adenosis (MGA) and/or atypical 
MGA (AMGA) to progress to TNBC [31]. In this 
context, they collected two pure MGAs and eight 
cases of MGA and/or AMGA associated with in situ 
or invasive TNBC and subjected to massively parallel 
sequencing. They found that TNBCs are often clonally 
associated with synchronously diagnosed ipsilateral 
MGA and/or AMGA, providing circumstantial 
evidence to indicate that MGA may constitutes a 
non-obligate precursor of TNBC.  

Although limited data are available for TNBC 
specifically, the validity of using ctDNA for the early 
diagnosis of breast cancer in general has already been 
studied. For example, Phallen et al. used massively 
parallel sequencing to detect ctDNA based on 
targeted error correction sequencing [21]. They 
assessed plasma samples from 200 patients with stage 
I or II colorectal, breast, lung, or ovarian cancer for 
somatic mutations. Thereinto, the authors found high 
concordance between ctDNA and breast tumor 
samples in terms of mutational status, which suggests 
that ctDNA analysis may provide a noninvasive 
means for early breast cancer screening. Similarly, a 
recent study demonstrated the possible implement-
tation of plasma tumor DNA detection in patients 
with early-stage breast cancer [32]. The authors 
assessed the feasibility of detecting PIK3CA 
mutations in the plasma of 29 patients before surgery 
and found 93% concordance between confirmed 
mutations in tumor tissues and mutations in 
pre-surgery plasma samples. The high level of 
sensitivity (93.3%) and specificity (100%) of the 
ddPCR in this study provides a proof of concept and 
confirms that ctDNA analysis is feasible for patients 
with early-stage breast cancer. Another study showed 
that quantitative analysis of the methylation pattern 
of plasma cell-free DNA (cfDNA) in breast cancer 
patients might be a valuable non-invasive tool for 
early detection [33]. Due to limited data, as a novel 
biomarker for the early detection of breast cancer, 
ctDNA needs further development and validation. 



 Journal of Cancer 2018, Vol. 9 

 
http://www.jcancer.org 

4629 

Monitoring treatment response 
Conventional chemotherapy with anthracyc-

lines, taxanes, and/or platinum agents is the current 
standard of care for TNBC patients [34]. 
Unfortunately, because of disease heterogeneity, not 
all TNBC patients have a good response to chemo-
therapy. Currently, whether treatment should be 
personalized for patients with different TNBC 
subtypes remains unclear [35, 36]. Moreover, there are 
no guidelines or regulatory approvals for the use of 
ctDNA-based liquid biopsies to monitor treatment 
response in TNBC patients. Therefore, ctDNA 
concentration and sequencing analysis requires 
extensive study before it can be used with confidence 
to make treatment decisions for TNBC patients.  

Early stage  
CtDNA can be detected in the plasma and serum 

of patients with advanced cancer [37] and thus may be 
a noninvasive source to characterize the somatic 
genetic features of their tumors [38-40]. Data about 
whether ctDNA analyses would be applicable to 
early-stage cancer are limited in part because the low 
tumor burden of early-stage disease makes the 
detection of ctDNA challenging [32, 41], as very low 
levels of plasma ctDNA are usually not discoverable 
[42, 43]. Nevertheless, in the setting of primary breast 
cancer, the clinical utility of ctDNA-based liquid 
biopsy remains unclear, as the percutaneous biopsy of 
breast tumors is preferred.  

However, using ctDNA for the dynamic 
detection of treatment response can establish the 
rationale for using ctDNA-based liquid biopsy to 
detect early metastasis, inform timely therapy 
modification, and avoid overtreatment in patients 
with early-stage breast cancer. Kim et al. [44] using 
gene expression profiling and ER protein assays, 
found that the low-level expression of ESR1 is 
correlated with tamoxifen resistance in ER-positive 
primary breast cancer and is associated with 
treatment outcome. In another study designed to 
monitor therapy response in patients with early-stage 
breast cancer. Olsson et al. [18] demonstrated that 
tumor-specific chromosomal rearrangements in 
ctDNA could be detected on average 11 months 
before the clinical observation of metastases.  

One study showed a remarkable correlation of 
methylated ctDNA with the primary breast tumor’s 
response to neoadjuvant chemotherapy [45]. The 
authors concluded that methylated ctDNA is more 
sensitive than carcinoembryonic antigen or cancer 
antigen CA15-3 as a marker of sensitivity to 
neoadjuvant chemotherapy. In clinical practice, TNBC 
typically display larger tumor size and higher 

proliferation at the time of diagnosis, and are often 
treated by neoadjuvant chemotherapy (NCT) before 
surgery. However, only 20–30% of patients with 
TNBC achieve pathological complete response (pCR) 
following NCT, meanwhile the response to NCT was 
highly divergent [46, 47]. Previous evidence suppor-
ting the association between O6-Methylguanine-DNA 
methyltransferase (MGMT) expression status and 
achievement of pCR following NCT in basal-like 
breast cancers (BLBCs) comes from Katsuya et al., 
who showed that attenuated expression of MGMT is 
predictive of a pCR [48]. In a study of 36 TNBC 
patients, Riva.F et al. using ddPCR, detected TP53 
mutations in all patients’ plasma before NCT, after 1 
cycle of neoadjuvant chemotherapy, before surgery, 
and after surgery to assess tumor response to NCT 
[49]. Notably, 27 of 36 patients (75%) had TP53 
mutations at baseline. During the treatment, all 
patients’ ctDNA levels declined, and no patients had 
detectable ctDNA after surgery. One patient with 
rising ctDNA levels experienced tumor progression 
during NCT. In this study, Riva.F et al. demonstrated 
that the detection and quantification of ctDNA is a 
very promising tool for assessing response to NCT. 
Another study drew similar conclusions. Chen, Y. H. 
et al. [50] followed 38 early-stage triple-negative 
breast cancers and utilized next-generation in 
matched tumor, blood and plasma to detect 
recurrence and metastasis as early as possible. Of 
those 33 patients who had primary tumor mutation, 4 
had ctDNA mutations. For those patients where 
ctDNA mutation was detected, recurrence was rapid. 
However, in next few studies, the results have been 
disappointing. Of the 84 TNBC patients treated with 
alkylating agents in the NCT setting, 58.3% have 
MGMT methylation in addition to the status of 
unmethylated (27.4%) or indeterminate (14.3%). 
Confirming these data, Caterina and colleagues found 
that although high methylation levels in FFPE 
samples were association with clinical response to 
therapy, no association between MGMT methylation 
status and pCR was found [51]. The association 
between gene mutations and NCT response was also 
seen in other primary tumor studies. Using next 
generation sequencing, 1,977 genes were analyzed 
from 56 pre-treatment TNBC biopsies before 
treatment. Lips et al. [52] found that TP53 mutations 
are the most frequent clonal event (55%), followed by 
TTN mutations (14%) and PIK3CA mutations (9%). 
However, few mutations were common among the 
samples, and they were unable to find any recurrent 
mutations associated with NCT response. Further, 
they observed no difference in the mutation rates 
between responders and non-responders. A similar 
finding was reported from a subsequent analysis 
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between TP53 mutations and the response to NCT in 
biopsy tissue from TNBC [53]. In this study, Silvia et 
al. [53] indicated that TP53 mutations did not predict 
the NCT response in TNBC patients. Furthermore, 
analysis of the predictive of PIK3CA mutation on 
TNBC agents was performed in a biomarker analysis 
of 81 patients with residual disease after NCT, with 
finding of PIK3CA mutation not associated with pCR 
[54].  

Advanced stage  
Measuring treatment response in patients with 

metastatic breast cancer is usually done by serial 
clinical evaluation, the assessment of the serum 
CA15-3 levels, and serial radiographic imaging. 
However, serial radiographic imaging is expensive, 
often inconclusive, and may not detect changes in 
tumor burden. CA15-3 assessment has low sensitivity, 
and changes in CA15-3 levels do not necessarily 
reflect tumor response or progression [55]. Tampellini 
et al. [56] revealed that CA15-3 alone is not usable as a 
biomarker for monitoring therapy response in 
patients with advanced breast cancer. 

Because no marker for monitoring therapy 
response in patients with metastatic breast cancer has 
yet reached wide clinical use, researchers hope to use 
ctDNA mutations as biomarkers for dynamically 
detecting treatment response. Dawson et al. [29] 
suggested that ctDNA analysis has great potential for 
the real-time monitoring of tumor burden and may be 
a better measure of treatment effectiveness in patients 
with metastatic disease. Several recent studies have 
investigated the ctDNA mutations associated with 
targeted therapy response in patients with 
HER2-positive breast cancer and endocrine therapy 
response in patients with ER-positive metastatic 
breast cancer [57-59]. For example, the ESR1 mutation 
has attracted special attention as a mechanism of 
endocrine therapy resistance in metastatic breast 
cancer. In a study evaluating the use of NGS- and 
ddPCR-based techniques to detect ESR1 mutations in 
the cfDNA of 48 patients with ER-positive breast 
cancer, Guttery et al. [57] demonstrated that ESR1 
mutations mainly arise following the treatment of 
metastatic disease and can predict resistance to 
aromatase inhibitor–based therapy. Similarly, the 
detection of cfDNA nucleotide alterations to assess 
response to anti–HER2‑targeted therapies has been 
investigated. In one study using NGS, 46 genes were 
detected from an assessment of 486 single-nucleotide 
variants [59]. Notably, only 7 genes considered 
relevant to targeted therapy resistance were detected 
in the treatment-resistant group. In addition, two 
patients in whom HER2 S855I mutations were 
detected derived sustained benefit from anti-HER2 

therapy. 
Overall, patients with TNBC do not benefit from 

endocrine or targeted therapy. Furthermore, TNBC, 
especially metastatic TNBC, treated with 
chemotherapy can progress without warning. Thus, a 
new sensitive hematological tumor biomarker of 
chemotherapy response in patients with metastatic 
TNBC is urgently needed. CtDNA analysis can 
represent an alternative to metastatic biopsies in 
molecular screening programs [60, 61]. Currently, 
ctDNA may be used to identify molecular alterations 
of immunotherapy effect in patients of metastatic 
TNBC. Results have reported that ctDNA detected the 
response of anti-PD1 immunotherapy of patients with 
nonsmall cell lung cancer, metastatic melanoma and 
other malignancies [62-66]. The programmed death 
receptor 1 (PD-1) is an inhibitory immune checkpoint 
receptor that can limit autoimmunity, regulate the 
activity of effector T cells in the periphery in response 
to an inflammatory stimulus [67, 68]. Research shows 
that programmed death 1 ligand 1 (PD-L1) is 
expressed in approximately 20% of TNBC, suggesting 
anti-PD-L1/anti-PD1 therapy may play a potential 
role in this patient population [69]. Furthermore, the 
above studies have shown a correlation between serial 
analysis of ctDNA and tumor response to anti-PD-1 
therapy. It therefore appears that ctDNA may be a 
useful test for predicting response to immunotherapy 
in metastatic TNBC. However, no studies have ever 
published in this field.   

Assessing prognosis  
Many studies have investigated the prognostic 

value of ctDNA in multiple cancers, including 
medullary thyroid carcinoma [70], pancreatic cancer 
[71], lung adenocarcinoma [72], gastric cancer [73], 
and hepatocellular carcinoma [74]. Although 
detectable levels of unmutated ctDNA in breast 
cancer patients have been related to prognosis, studies 
investigating the prognostic value of mutated cfDNA 
levels in breast cancer patients have provided mixed 
results. Visvanathan et al. found that a high 
cumulative methylation index in cfDNA was 
associated with shorter median PFS and overall 
survival (OS) of breast cancer patients. They also 
found that high cumulative methylation index levels 
at week 4 were related to worse PFS [75]. In a 
meta-analysis involving 3,915 breast cancer patients, 
Sheng et al. [76] found that ESR1 and PITX2 promoter 
methylation were linked to worse OS. In contrast, 
Huang et al. [77] found no association between 
plasma ctDNA levels and clinicopathological 
parameters. Another study also yielded ambiguous 
results. Iqbal et al. [19] found no significant difference 
in the OS durations of breast cancer patients based on 
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their baseline levels of ALU115, ALU247, and DNA 
integrity. 

With the rapid development of NGS 
technologies, the obstacle of identifying highly 
diluted ctDNA among normal germline cfDNA has 
been circumvented [78]. Recent evidence has shown 
that ctDNA sequencing may have prognostic value in 
predicting residual disease after neoadjuvant 
chemotherapy with high specificity [50]. Several novel 
biomarkers of TNBC, some of which remain 
controversial for assessing prognosis, must be 
elucidated. In early-stage TNBC, a previous subgroup 
analysis of a retrospective study in patients with 
TNBC who received adjuvant chemotherapy after 
surgery, low mRNA expression in patients with TP53 
missense mutation was associated with poor 
prognosis [79]. In this study, Ji-Yeon Kim et al. 
concluded that TP53 mutation and its expression were 
a potential prognostic marker of TNBC. An in-depth 
study of ctDNA mutation was performed by 
Takeshita et al. [80], who used ddPCR of cfDNA to 
determine the PIK3CA mutation status of 49 patients 
with early-stage TNBC. Of these 49 patients, 12 (24%) 
had PIK3CA mutations and were followed for a 
median time of 54.4 months. Takeshita et al. 
confirmed that PIK3CA mutations are correlated with 
relapse-free survival and breast cancer–specific 
survival and demonstrated that PIK3CA mutations in 
TNBC are related to PI3K pathway–dependent 
androgen receptor phosphorylation, which is 
considered to be an independent prognostic factor for 
TNBC. In metastatic TNBC, the prognostic value of 
ctDNA was contradictory. Madic et al. [81] found that 
the baseline ctDNA levels of patients with metastatic 
TNBC were not predictive of radiological tumor 
response and were not correlated with time to 
progression or OS duration. They noted that because 
the prognostic value of ctDNA is still under 
evaluation, further exploration in TNBC is urgently 
needed. However, recent findings of a retrospective 
cohort study assessing the prognostic effect of ctDNA 
to characterize somatic copy number alterations 
(SCNAs) and quantify tumor fraction (TFx) in 
metastatic TNBC.Using low-coverage (0.13) 
whole-genome sequencing (WGS), Stover et al. [82] 
profile SCNAs and TFx, they found that certain 
SCNAs including chromosomal gains in drivers 
NOTCH2, AKT2, and AKT3 were more frequent in 
metastatic TNBC versus primary TNBC. Moreover, 
gain or amplification at 18q11 and 19p13 identified a 
subset of TNBC with poor prognosis in the metastatic 
setting. In addition to evaluate SCNA differences in 
primary versus metastatic TNBCs, they also identified 
that patients with TFx≥10% had significantly inferior 
survival and remained significant independent of 

clinicopathologic factors. In view of the above results, 
although it is essential to continue a further study 
including larger numbers of specimens, we have 
abundant reasons to believe that ctDNA mutations 
can serve as a prognostic information for TNBC. 

Conclusion 
A highly sensitive ctDNA-based system is 

urgently needed in further studies for early detection 
and management of TNBC patients. Patients with 
TNBC have increased risk of relapse and inferior 
outcomes. Despite the aggressive biology and poor 
prognosis associated with TNBC, currently, there are 
no acknowledged ctDNA-based targeted treatment 
regimens available for patients with this disease 
subtype. This lack of targeted therapy and 
detrimental biology highlight the urgent need for a 
novel biomarker to facilitate a more tailored treatment 
approach to improve outcomes for patients with 
TNBC. Several studies have characterized genes and 
pathways in TNBC that may be targeted 
therapeutically [83-87], and these drug targets, 
coupled with improved ctDNA detection at all stages 
of disease, will improve the management of TNBC 
patients considerably. 

Currently, despite the great progress made in 
exploiting ctDNA for determining prognosis and 
assessing NCT response in patients of TNBC, ctDNA 
is rarely used for early disease screening and the 
detection of the response to treatment of advanced 
stage. The hope that the early detection of TNBC, 
when the disease is most amenable to cure, can afford 
opportunities for treatment while sparing patients 
from overtreatment has not yet been realized. Several 
studies with small samples have already 
demonstrated the use of ctDNA in the management of 
TNBC, but the extent to which the detection of ctDNA 
influences treatment decisions and affects survival 
outcomes remains unclear. Moreover, the amount of 
ctDNA can greatly vary as time goes on, demanding 
abundant molecular detection technologies able to 
detect them even when present at low levels. In the 
meantime, there is a great heterogeneity among the 
ctDNA data in different studies, technical platforms 
and patient populations. A standardization of cfDNA 
analyses in terms of sample collection, processing, 
and molecular techniques is needed. Finally, there is 
currently no industry standard or widespread clinical 
acceptance for the use of ctDNA, nor a uniformly 
agreed upon platform in TNBC. In the TNBC research 
setting, there are many barriers to universal clinical 
implementation of detection in ctDNA, including the 
need for plasma samples, cost of testing, lack of 
submitting an expense account, and poor 
understanding of the clinical implications associated 
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with tumor mutations. In order to advance our 
knowledge of this complicated and everchanging 
field, we desperately need large, international, 
multi-institutional cooperative trials that will allow us 
to enroll patients with less common germline 
mutations to accomplish the process of TNBC 
diagnosis to treatment to evaluate prognosis.  
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