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Abstract

Background: The functional significance of the proteasome activator subunit (PSME) gene family in the
pathogenesis of skin cutaneous melanoma (SKCM) remains to be elucidated.

Materials and methods: Clinical data for patients with SKCM, including expression levels of PSME genes,
were extracted from TCGA. GO term and KEGG pathway enrichment analyses were performed. Correlations
between the expression levels of PSME genes in SKCM were evaluated with the Pearson correlation coefficient.
Functional and enrichment analyses were conducted using DAVID. Univariate and multivariate survival analyses
adjusted by Cox regression were used to construct a prognostic signature. The mechanisms underlying the
association between PSME gene expression and overall survival (OS) were explored with gene set enrichment
analysis. Joint-effects survival analysis was performed to evaluate the clinical value of the prognostic signature.

Results: The median expression levels of PSMEI, PSME2 and PSME3 were significantly higher in SKCM than in
normal skin. PSMEI, PSME2, and PSME3 were significantly enriched in several biological processes and
pathways including cell adhesion, adherens junction organization, regulation of autophagy, cellular protein
localization, the cell cycle, apoptosis, and the Wnt and NF-kB pathways. High expression levels of PSMEI and
PSME2 combined with a low expression level of PSME3 was associated with favorable OS.

Conclusion: Knowledge of the expression levels of the PSME gene family could provide a sensitive strategy for
predicting prognosis in SKCM.
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Introduction

Skin cutaneous melanoma (SKCM) is considered
one of the most aggressive and lethal cancers of the
skin. In 2012, globally, there were an estimated
232,000 new cases of melanoma and 55,000
melanoma-related deaths.[1] In 2018, in the United
States, there will be approximately 91,270 new cases
of melanoma and 9,320 melanoma-related deaths.|[2]

Tumor stage is significantly associated with prognosis
in melanoma, whereby early diagnosis and treatment
results in favorable overall survival (OS) rates.[3]
Proteasome activator subunit 1 (PSMELI),
proteasome activator subunit 2 (PSME2), proteasome
activator subunit 3 (PSME3) and proteasome activator
subunit 4 (PSME4) are members of the proteasome
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activator subunit (PSME) gene family. Proteasome
activator 28 (PA28) consists of three subunits, PA28a,
PA28p and PA28y, encoded by PSME1, PSME2 and
PSMES3, respectively. Proteasome activators regulate
proteasome function but have also been associated
with several cancers and may have prognostic
significance. Previous studies showed elevated
expression of PSME1 in prostate cancer,[4] elevated
expression of PSME2 in gastric cancer,[5] and elevated
expression of PSME3 in breast cancer,[6-9] colorectal
cancer,[10] and laryngeal carcinoma.[11] In some
cancers, overexpression of PSME3 was associated
with poor OS.[6, 12] Currently, the functional
significance of PSME4 in the pathogenesis of cancer
remains to be elucidated.

The objectives of the present study were to 1)
identify associations between PSME gene expression
levels in SKCM and 2) develop a risk score that
includes clinical factors and the expression patterns of
PSME genes to predict prognosis in patients with
SKCM. In the present research, we were the first to
analysis the prognosis value of PSME gene family in
SKCM, made a nomogram model for predicting the
prognosis of SKCM patients, and used whole-genome
RNA-Seq dataset to explore prospective molecular
mechanisms through gene set enrichment analysis
(GSEA) approach.

Method and Materials

Data source

Clinical data for patients with SKCM, including
gender, age, survival time, mortality, and expression
levels of PSME genes, were extracted from The Cancer
Genome Atlas (TCGA). Boxplots of expression
profiles of the PSME genes in SKCM and healthy skin
were created using Gene Expression Profiling
Interactive Analysis (GEPIA, http://gepia.cancer-
pku.cn/, accessed on June 20, 2018).[13] After
exclusive the patients, which don’t have gene
expression data and complete prognostic information
including survival status and days, 458 cases were
included in ours research.

PSME gene family bioinformatics analysis and
correlation analysis

Gene ontology (GO) term enrichment analysis,
including molecular function (MF), cellular
component (CC), and biological process (BP), as well
as the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis were
performed. PSME gene co-expression networks
and/or pathways were predicted with GeneMANIA
(http:/ / genemania.org/, accessed June 22, 2018).[14]
Correlations between expression levels of PSME
genes in SKCM were evaluated with the Pearson

correlation coefficient. Functional and enrichment
analyses were conducted using The Database for
Annotation, Visualization, and Integrated Discovery
(DAVID) v.6.8 (https://david.ncifcrf.gov/tools.jsp,
accessed June 22, 2018).[15, 16]

Survival analysis

Prognosis of patients with SKCM was
determined by OS. Correlations between expression
levels of PSME genes in SKCM and patients” OS were
evaluated using the Kaplan-Meier method and the
log-rank test as well as Cox proportional hazards
regression with adjustment for age and tumor stage;
race was excluded as a variable due to small sample
size (94% of the included patients were White). PSME
genes were stratified by high or low expression
around the median OS. The prognostic impact of high
and low expression levels of each PSME gene was
assessed.

Prognostic risk score

A prognostic risk score was developed based on
the adjusted (age, tumor stage) expression levels of
the PSME1, PSME2 and PSME3 genes in SKCM.
Nomograms for predicting 1-, 3-, and 5-year survival
were used to evaluate the association between the
prognostic risk score and OS in patients with SKCM
and its potential clinical application;[17] a high score
was associated with poor prognosis.

Gene set enrichment analysis (GSEA)

The mechanisms underlying the association
between PSME gene expression in SKCM and
patients’ OS were explored with GSEA.
Pathway-based analysis in SKCM with high and low
expression levels of each PSME gene was conducted
using comparisons with the reference ¢5 (GO gene
sets: cb.all.v6.1.symbols.gmt) and c2 (KEGG gene sets:
c2.all.v6.1.symbols.gmt) gene sets from the Molecular
Signatures Database (MSigDB) [18] using GSEA v.3.0
(http:/ /software.broadinstitute.org/gsea/msigdb/in
dex.jsp, accessed June 25, 2018). The number of
permutations was set at 1,000. P<0.05 and a false
discovery rate (FDR) <0.25 were considered
statistically significant.

Joint-effects survival analysis

Associations between the expression levels of
combinations of PSME genes in SKCM and patients’
OS were assessed with joint-effects survival analysis.
PSME genes with prognostic value on multivariate
survival analysis were grouped as better OS, worse
OS, or other. The prognostic value of the expression of
combinations of PSME genes in each group was
evaluated using the Kaplan-Meier method and the
log-rank test.
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Statistical analyses

Statistical analyses were performed with SPSS
v.25.0 software (IBM, Chicago, IL, USA). Vertical
scatter plots and survival curves were generated in
GraphPad Prism v.7.0 (GraphPad Software, La Jolla,
CA, USA) and R 3.5.1 (http://www.R-project.org).
OS was calculated with the Kaplan-Meier method and
the log-rank test. Multivariate survival analysis was
evaluated with hazard ratios (HR), and 95%
confidence intervals (Cls) were calculated using Cox
proportional hazards regression with adjustment for
influential clinical characteristics including age and
tumor stage. P<0.05 was considered statistically
significant.

Results

Patients’ clinical characteristics

Demographic and clinical data obtained from
TCGA for 458 patients with SKCM are summarized.
The associations between demographic and clinical
characteristics and OS in patients with SKCM are
summarized in Table 1. Race, age and tumor stage
were significantly associated with median survival
time (MST; P=0.004, P=0.001, and P=0.001,
respectively).

Table 1. Clinical data for included patients.

Variables Patients No. of events MST HR (95% CI) Log-rank
(n=458) (%) (days) P

Race 0.004

White 435 208 (47.8%) 2454 Ref.

Others 13 8 (61.5%) 636 0.348 (0.171-0.709)

Gender 0.278

Male 284 146 (51.4%) 2454 Ref.

Female 174 72 (41.4%) 2030 0854 (0.642-1.136)

Age (years) 0.001

260 219 102 (46.6%) 1860 Ref.

<60 239 116 (48.3%) 3564 0.620 (0.470-2.136)

Tumor stage 0.001

0+I+1I+I/IInos 231 108 (46.8%) 3259 Ref.

TI+1V 191 91 (47.6%) 1960 0.600 (0.449-0.802)

Missing 36

Abbreviations: PSME, proteasome activator subunit; MST, median survival time;
HR, hazard ratio; CI, confidence interval.

Table 2. Univariate and multivariate survival analyses.

Boxplots showing the expression profiles of
PSME genes in SKCM or healthy skin are presented in
Figure 1. Findings showed that median expression
levels of PSME1, PSME2 and PSME3 were
significantly higher in SKCM than in healthy skin.

PSME gene family correlation analysis and
bioinformatics analysis

GO term analysis and KEGG pathway
enrichment analysis are shown in Figure 2A. The
PSME gene family was involved in the MAPK
cascade, NIF/NF-xB and Wnt signaling pathways and
the cell cycle, which are tumor-related processes. The
pathway and co-expression prediction among PSME1,
PSME2 and PSME3 is shown in Figure 2B.
Correlations between the expression levels of
individual PSME genes in SKCM investigated with
Pearson correlation coefficient are shown in Figure
2C. There were correlations between the expression
levels of all PSME genes except for PSME1 and
PSME3 and PSME2 and PSME3.

Survival analysis

Scatter plots showing the expression levels of
PSME genes in SKCM,, stratified as high expression or
low expression, are shown in Figure 3. Survival
analysis is summarized in Table 2 and shown in
Figure 4. On univariate survival analysis, a high
expression level of PSME2 (log-rank P=0.001,
HR=0.626, 95%CI=0.476-0.822; Figure 4B) and low
expression level of PSME3 (log-rank P=0.001,
HR=0.638, 95%CI=0.488-0.817; Figure 4C) in SKCM
were associated with better OS. On multivariate
survival analysis, a high expression level of PSME1
(log-rank P=0.009 HR=0.685 95% CI=0.516-0.910), high
expression level of PSME2 (log-rank P=0.001
HR=0.576 95%CI=0.431-0.769), and low expression
level of PSME3 (log-rank P=0.002 HR=0.634
95%CI=0.477-0.842) in SKCM were associated with
better OS.

Gene Patients (n=458) No. of events (%) MST (days) Crude HR (95% CI) Crude P Adjusted HR* (95% CI) Adjusted P*
PSME1 0.072 0.009
Low 229 124 (54.1%) 2030 Ref. Ref.

High 229 94 (41.0%) 3136 0.781 (0.596-1.023) 0.685 (0.516-0.910)

PSME2 0.001 0.001
Low 229 133 (58.1%) 1917 Ref Ref.

High 229 85 (37.1%) 3379 0.626(0.476-0.822) 0.576 (0.431-0.769)

PSME3 0.001 0.002
High 229 114 (49.8%) 1910 Ref. Ref.

Low 229 104 (45.4%) 3564 0.638 (0.488-0.817) 0.634 (0.477-0.842)

PSME4 0.423 0.410
Low 229 100 (43.7%) 2028 Ref. Ref.

High 229 118 (51.5%) 2993 0.896 (0.686-1.172) 0.888(0.669-1.178)

Notes: *, adjustment for age and tumor stage.

Abbreviations: PSME, proteasome activator subunit; MST, median survival time; HR, hazard ratio; CI, confidence interval.
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Figure 1. Boxplots showing PSME gene expression levels in SKCM and healthy skin. (A) PSMEI; (B) PSME2; (C) PSME3; (D) PSME4. Abbreviations: PSME, proteasome activator

subunit; GEPIA, gene expression profiling interactive analysis

Nomogram of SKCM risk score model

A nomogram substantiated that age, tumor
stage, and PSME2 and PSME3 expression levels in
SKCM created a prognostic signature that contributed
the most risk (range 0-100 points) for poor OS. Each
variable was assigned points based on the Cox
regression coefficients. These points were summed,
and the probability of survival was estimated by
drawing a vertical line between the Total Points axis
and the 1-year, 3-year and 5-year survival probability
axes (Figure 4E).

GSEA

Pathway-based analysis in SKCM with high and
low expression levels of each PSME gene is shown in
Figure 5 (A-I), Figure 6 (A-I), Figure 7 (A-I), Figure 8
(A-I), Figure 9 (A-I) and Figure 10 (A-I). In the GO
enrichment analysis, a high expression of PSME1 was

positively correlated with the apoptotic process
(Figure 5A), cell adhesion (Figure 5B), and the NF-xB
(Figure 5C) and Wnt signaling pathways (Figure 5E,
F). High expression of PSME2 was negatively
correlated with the apoptotic process (Figure 6B),
cell adhesion (Figure 6C, F), and the NF-xB signaling
pathway (Figure 6D). High expression of PSME3 was
positively correlated with the NF-xB (Figure 7C) and
Wnt signaling pathways (Figure 7E, F). In the KEGG
pathway, high expression of PSME1 was positively
correlated with cell adhesion (Figure 8A), apoptosis
(Figure 8 D, E), the cell cycle (Figure 8F), metastasis
(Figure 8I) and the Wnt and NF-xB signaling
pathways (Figure 8 B, C and G). High expression of
PSME2 was negatively correlated with cell adhesion
(Figure 9B), the cell cycle (Figure 9E), apoptosis
(Figure 9F) and the Wnt signaling pathway (Figure
9G). High expression of PSME3 was positively
correlated with metastasis (Figure 10A, D), the
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P53-induced cell cycle (Figure 10F, G), the cell cycle
(Figure 10H), and the Wnt signaling pathway (Figure
10C, I). The remaining results were presented in
Supplementary Table 1 and 2.

Joint-effects survival analysis

Based on the findings on multivariate survival
analysis, a joint-effects survival analysis was
performed to determine the combined effects of
PSME1, PSME2 and PSME3 in SKCM on OS in

patients grouped as summarized in Table 3. Results
are summarized in Table 4 and shown in Figure 11.
High expression levels of PSMEl1 and PSME2
combined with low expression level of PSME3 in
SKCM in Groups [, IV, VII, and X was associated with
better OS (all P<0.05). In contrast, low expression
levels of PSMEI and PSME2 combined with a high
expression level of PSME3 in SKCM in Groups III, VI,
IX and XII was associated with poor OS (all P<0.05).
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Figure 2. (A) GO enrichment and KEGG pathway analysis by DAVID; (B) Gene interaction networks among selected genes by GeneMANIA; (C) Pearson’s correlation
coefficients between PSMEI, PSME2 and PSME3 expression levels; and **P<0.001. Abbreviations: PSME, proteasome activator subunit; TCGA, The Cancer Genome Atlas;
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Figure 3. Scatter plots showing PSME I, PSME2 and PSME3 expression levels in SKCM Abbreviations: PSME, proteasome activator subunit; SKCM, skin cutaneous melanoma.

Table 3. Stratifications based on the expression levels of the
PSMEI, PSME2 and PSME3 genes.

Group Composition Group Composition

I high PSMEI+high PSME2 X high PSMET+high PSME2+low PSME3
i low PSMEI+high PSME2 XI
high PSME1+low PSME2

I Low PSME1+low PSME2
v high PSME1+ low PSME3
\% low PSME1+low PSME3
high PSME1+high PSME3
A% ! low PSME1+high PSME3
VI high PSME2+low PSME3
VIII  low PSME2+low PSME3
high PSME2+high PSME3
X low PSME2+high PSME5 XII

high PSME1+low PSME2+high PSME3
low PSME1+high PSME2+high PSME3
low PSME1+low PSME2+low PSME3
high PSME1+high PSME2+high PSME3
high PSME1+low PSME2+low PSME3
low PSME1+high PSME2+low PSME3

Low PSME1+low PSME2+high PSME3

Abbreviation: PSME, proteasome activator subunit.

Table 4. Joint-effects survival analysis.

Group Patients MST Crude Crude HR Adjusted  Adjusted HR*

(n=458)  (days) P (95% CI) p* (95% CI)

I 19 3195 0005 0.655 0.004 0.645
(0.487-0.881) (0.479-0.867)

i 66 3869 0075 0.702 0.071 0.697
(0.476-1.036) (0.470-1.032)

m 1% 1910 0012  Ref. 0.009 Ref.

v 11 4507 <0001 0.494 <0.001 0486
(0.334-0.730) (0.329-0.719)

vV 23 273 0070 0751 0.036 0718
(0.552-1.023) (0.527-0.979)

Vi1 1487 0002 Ref. 0.001 Ref.

VI 120 4570 <0.001 0.430 <0.001 0428
(0.296-0.624) (0.295-0.622)

VI 218 2454 0007 0.660 0.004 0.643
(0.488-0.893) (0.475-0.871)

X 120 1478 <0.001 Ref. <0.001  Ref.

X 98 4570 <0.001 0.048 <0.001 0440

Group Patients MST Crude Crude HR Adjusted  Adjusted HR*

(n=458)  (days) P (95% CI) pr (95% CI)
(0.296-0.678) (0.290-0.667)

XI 260 2454 0011 0.671 0.006 0.645
(0.492-0.914) (0.472-0.881)

XIT 100 1446 0.001 Ref. <0.001  Ref.

Notes: *, adjustment for age and tumor stage. Bold type highlights statistically
significant values (P<0.05).

Abbreviations: PSME, proteasome activator subunit; MST, median survival time;
HR, hazard ratio; CI, confidence interval.

Discussion

In this study, we used data from TGCA to
investigate the associations between PSME gene
expression levels in SKCM and developed a risk score
that includes clinical factors and the expression
patterns of PSME genes to predict prognosis in
patients with SKCM. PSME genes, including PSMEI,
PSME?2 and PSME3, encode the PA28a, PA28B and
PA28y subunits, respectively, of PA28, which
regulates function of the proteasomei.[19] In the
present study, PSME1, PSME2 and PSME3 expression
levels were significantly increased in SKCM
compared to healthy skin. GO enrichment analysis
showed that PSMEI is a negative regulator of cell
adhesion, PSME? is important for cell-cell adhesion
and junction organization, and PSME3 is associated
with NF-kB signaling. Importantly, the activation of
NF-xB can impart invasiveness and properties of
cancer initiation on cells, and may act as a target for
anti-cancer therapy.[20] GO term analysis also
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showed that PSME was associated with MAPK
cascade, which the pathway was found to be
correlated with melanoma.[21, 22] High expression
levels of PSME1 and PSME2 combined with a low
expression level of PSME3 in SKCM were associated
with favorable prognosis. Pathway-based analysis
revealed that PSME1 is associated with KEGG and
apoptosis pathways and that PSME2 and PSME3 are

significantly enriched in the canonical and planar cell
polarity Wnt signaling pathways, which have been
associated with cancer.[23, 24] Taken together, the
findings from the present study suggest that
expression levels of the PSME1, PSME2 and PSME3
genes in SKCM, individually and in combination,
may be used as potential biomarkers to predict
prognosis.
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Figure 4. Univariate survival analysis and nomogram. (A) PSMEI, (B) PSME2, (C) PSME3, (D) PSME4, (E) nomogram to predict survival in SKCM. Abbreviation: PSME,

proteasome activator subunit; SKCM, skin cutaneous melanoma.
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Figure 5. (A-l) GO enrichment analysis by low and high PSME] expression levels. Abbreviations: NES, Normalized enrichment score; FDR, false discovery rate; GSEA, gene set

enrichment analysis; GO, gene ontology.

For PSMEI, the findings from the present study
are in contrast to those from previous reports, which
demonstrated that PSME1 expression was increased
in primary and metastatic human prostate cancer,
PSME1 was a marker in mouse xenograft tumors,[4]
and PA28a protein was downregulated in
HBV-infected  well-differentiated  hepatocellular
carcinoma.[25] The disparate findings between the
present and some previous studies suggest that
PSME1 may play different roles in different types of
cancer.

Previous reports on PSME? are in accordance
with the results from the present study. Evidence
suggests that  PA28B protein regulates invasive-

ness and metastasis in gastric cancer, whereby the
invasive abilities of gastric cancer cells were enhanced
by the down-regulation of PA28p and inhibited when
PA28B was overexpressed,[5] and that PA28pB is
physically associated with N-a-acetyltransferase 10
protein, which regulates various pathways associated
with cancer cell proliferation, metastasis, apoptosis,
and autophagy.[26]

The role of PSME3 in cancer has been well
characterized. PSME3 knockout mice treated with
dextran sodium sulfate to induce acute colitis showed
decreased intestinal inflammation and
colitis-associated cancer compared to wild-type
mice.[27] In oral squamous cell carcinoma, high
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expression of PSME3 was correlated with worse OS,
while PSME3 silencing inhibited the growth,
proliferation and mobility of oral squamous cell
carcinoma cells in vitro and reduced tumor growth
and angiogenesis in mice in vivo .[12] Similarly,
PSME3 silencing attenuated the cell proliferation,
migration and invasive abilities of endometrial cancer
cells. In a model of skin tumorigenesis, PSME3
functioned as an oncogene, whereby the TPA-induced
overexpression of PSME3 was dependent on the
activation of the MAPK-p38 signaling pathway.[28] In
breast cancer, 5-year disease-free survival and OS in
patients with undetectable or low PSME3 expression
were significantly higher than in patients with high
PSME3 expression.[6] In colorectal cancer, PSME3

expression was higher in colorectal cancer tissue than
in healthy tissues.[10] Other studies indicate that
mutations in the TP53 gene, which encodes the tumor
suppressor protein p53, occur in various types of
cancer, and that PSME3 negatively regulates p53,
whereby the elimination of endogenous PSME3 in
human cancer cells abrogates MDM2-mediated p53
degradation, increases the activity of p53, and
enhances apoptosis.[29] Notably, p53 mutations show
a positive correlation with PSME3 expression in
various cancer cell lines.[30] In normal endometrium,
expression of PSME3 was increased in p53-positive
specimens compared to p53-negative specimens,[31]
and in laryngeal carcinoma, the expression of PSME3
was correlated with p53 and p21.[11, 32-34]
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Figure 7. (A-l) GO enrichment analysis by low and high PSME3 expression levels. Abbreviations: NES, normalized enrichment score; FDR, false discovery rate; GSEA, gene set

enrichment analysis; GO, gene ontology.

Despite the wealth of literature on the role of
PSME genes in cancer, to the authors” knowledge, the
present study is the first to develop a risk score that
includes clinical factors and the expression patterns of
PSME genes to predict prognosis in patients with
SKCM. The risk score can be used to stratify patients
with SKCM into groups at high or low risk for poor
prognosis. Univariate survival analysis showed that a
high expression level of PSME2 and low expression
level of PSME3 in SKCM were correlated with
favorable OS. Multivariate survival analysis showed
that high expression level of PSME1, adjusted by age
and tumor stage, in SKCM was also correlated with

favorable prognosis. Joint-effects survival analysis
showed that high expression levels of PSME1 and
PSME2 combined with a low expression level of
PSME3 in SKCM was associated with favorable OS. In
contrast, low expression levels of PSME1 and PSME2
combined with a high expression level of PSME3 was
associated with poor OS.

This study had several limitations. First, the
sample size was small. In particular, a more ethnically
diverse study population is required. In the present
study, the majority of subjects were White. Second,
clinical information, including information on sun
exposure and genetic factors, was lacking. Third, the
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patients in the current study were from a single
cohort, which may introduce bias. Findings from the
present study should be verified in a larger and more
diverse set of patients. Forth, our current study is a
bioinformatics research and most of the findings were
generated from public database and bioinformatics
analysis, which lack of verification through in vitro
and in vivo experiments. Finally, SKCM is the
melanoma of skin is a fairly rare disease and the
related resources are also rare, so this study lake of
validation methods to confirm the results including
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independent cohort. Therefore, results of current
study still need further verified.

Despite these limitations, to the authors’
knowledge, this is the first study to demonstrate that
high expression levels of PSMEl1 and PSME2
combined with a low expression level of PSME3 is
associated with favorable prognosis in SKCM. These
findings may have prognostic significance in SKCM.
The prognostic model constructed in this study may
have value in clinical applications.
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Figure 8. (A-l) KEGG pathway analysis by low and high PSME| expression levels. Abbreviations: NES, normalized enrichment score; FDR, false discovery rate; GSEA, gene set

enrichment analysis; KEGG, Kyoto encyclopedia of genes and genomes.
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Figure 9. (A-l) KEGG pathway analysis by low and high PSME2 expression levels. Abbreviations: NES, normalized enrichment score; FDR, false discovery rate; GSEA, gene set

enrichment analysis; KEGG, Kyoto encyclopedia of genes and genomes.

Conclusion

Findings from the present study indicate that a
high expression of PSME1 and PSME2 and low
expression of PSME3 are associated with favorable
prognosis and may act as potential prognostic
biomarkers in SKCM. The combined expression levels
of these genes could provide a sensitive strategy for
predicting prognosis in SKCM.
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Figure 11. Joint-effects survival analysis of the influence of combined PSME gene expression on OS stratified for PSMEI, PSME2 and PSME3 expression levels. (A) PSMEI and
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