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Abstract 

Objective: The goal of our study is to identify a competing endogenous RNA (ceRNA) network using 
dysregulated RNAs between HCC tumors and the adjacent normal liver tissues from The Cancer Genome 
Atlas (TCGA) datasets, and to investigate underlying prognostic indicators in hepatocellular carcinoma (HCC) 
patients. 
Methods: All of the RNA- and miRNA-sequencing datasets of HCC were obtained from TCGA, and 
dysregulated RNAs between HCC tumors and the adjacent normal liver tissues were investigated by DESeq 
and edgeR algorithm. Survival analysis was used to confirm underlying prognostic indicators. 
Results: In the present study, we constructed a ceRNA network based on 16 differentially expressed genes 
(DEGs), 7 differentially expressed microRNAs and 34 differentially expressed long non-coding RNAs (DELs). 
Among these dysregulated RNAs, three DELs (AP002478.1, HTR2A-AS1, and ERVMER61-1) and six DEGs 
(enhancer of zeste homolog 2 [EZH2], kinesin family member 23 [KIF23], chromobox 2 [CBX2], centrosomal 
protein 55 [CEP55], cell division cycle 25A [CDC25A], and claspin [CLSPN]) were used for construct a 
prognostic signature for HCC overall survival (OS), and performed well in HCC OS (adjusted P<0.0001, 
adjusted hazard ratio = 2.761, 95% confidence interval = 1.838–4.147). Comprehensive survival analysis 
demonstrated that this prognostic signature may be act as an independent prognostic indicator of HCC OS. 
Functional assessment of these dysregulated DEGs in the ceRNA network and gene set enrichment of this 
prognostic signature suggest that both were enriched in the biological processes and pathways of the cell cycle, 
cell division and cell proliferation.  
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Conclusions: Our current study constructed a ceRNA network for HCC, and developed a prognostic 
signature that may act as an independent indicator for HCC OS. 

Key words: competing endogenous RNA, hepatocellular carcinoma, bioinformatics, prognosis, TCGA. 

Introduction 
Liver cancer (LC) is the second main reason of 

cancer related death worldwide of males, and is more 
common in developing countries. It is estimated that 
about 782,500 new LC cases and 745,500 deaths 
occurred worldwide during 2012, and more than half 
of them were from China [1]. However, the incidence 
of LC ranks third in China in cancers in males, and is 
becoming the third main reason of cancer related 
death in China in both males and females [2]. Due to 
the universal childhood HBV vaccination program, 
and improved hygiene and sanitation, the incidence 
of LC in China is showing a decreasing trend and 
mortality rate [1, 2]. However, the 5-year survival rate 
of LC is still generally low [3]. The histological type of 
most LCs is hepatocellular carcinoma (HCC) [4].  

The rapid development of RNA-sequencing 
approach has led to the discovery of thousands of 
non-coding RNA (ncRNA) genes [5]. Non-coding 
RNAs, i.e. RNAs that cannot encode proteins, mainly 
include small RNAs and long-chain RNAs, and play 
extensive regulatory functions in many organisms 
such as bacteria, fungi, and mammals [6]. With the 
continuous development of RNA research, it has been 
found that mutations or the abnormal expression of 
non-coding RNAs are closely related to the 
occurrence of many diseases, and non-coding RNAs 
are also attracting more and more attention [7]. 
MicroRNAs (miRNAs) are small, short ncRNA 
molecules that regulate gene expression 
post-transcriptionally, whereas long non-coding 
RNAs (lncRNAs) are long ncRNAs that have also 
been identified as being involved in transcription 
regulation and the translation of target genes [7]. 
Numerous studies have reported that alterations of 
ncRNAs, including miRNAs and lncRNAs, are 
involved in tumorigenesis, progression, and 
metastasis of human cancers, as well as being 
therapeutic targets, and can also serve as diagnostic 
and prognostic biomarkers of cancer, including HCC 
[8-11]. LncRNAs or pseudogenes can serve as 
competing endogenous RNAs (ceRNAs), which can 
interact with miRNAs through miRNA response 
elements (MREs) to influence miRNA-induced 
targeted gene silencing [12]. The Cancer Genome 
Atlas (TCGA) is an open access database that includes 
33 types of cancers and genome-wide sequencing 
datasets for more than 10,000 tumor samples, 
including HCC [13]. With such a comprehensive 

genome-wide sequencing dataset for HCC, how to 
deep-mine these data remains a huge challenge. With 
the proposed of ceRNA hypothesis, it is necessary to 
construct a HCC ceRNA network using the 
dysregulated genes of TCGA hepatocellular 
carcinoma database, and develop diagnostic and 
prognostic biomarkers for HCC. The goal of our 
current study was to identify a ceRNA network using 
these genes which are dysregulated between HCC 
tumors and the adjacent normal liver tissues from 
TCGA datasets, and to investigate underlying 
prognostic indicators for predicting overall survival 
(OS) in HCC patients.  

Materials and Methods 
TCGA data source 

The expression of human RNA-sequencing 
(RNA-Seq; including lncRNAs and mRNAs) and 
miRNA-sequencing (miRNA-Seq) datasets were got 
from the TCGA website (https://portal.gdc 
.cancer.gov/, accessed November 5, 2017) [14], and 
the corresponding patients' clinical parameters were 
obtain from the University of California, Santa Cruz 
Xena browser (UCSC Xena, http://xena.ucsc.edu/, 
accessed November 5, 2017). Patients with complete 
clinical prognostic parameters who received RNA-Seq 
or miRNA-Seq were included in the corresponding 
subsequent prognostic analysis. Patients who do not 
meet these criteria are respectively excluded from 
corresponding differentially expressed RNAs survival 
analysis. All of the above data were sourced from the 
TCGA database, and the use and acquisition of these 
data are according to TCGA data access policies and 
publication guidelines (https://cancergenome.nih 
.gov/publications/publicationguidelines). Therefore, 
the present study did not require additional ethics 
committee approval. 

Identification of differentially expressed RNAs 
in HCC samples 

All the HCC primary tumor and adjacent normal 
liver tissues of RNA-sequencing dataset were used for 
differentially expressed RNAs screening, and the 
recurrent tumor tissues were excluded from 
differential RNAs screening. The level 3 raw count 
data of RNA-Seq and miRNA-Seq datasets were both 
normalized by the DESeq [15] and edgeR [16] package 
in the R platform; each RNA with a mean value 
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greater than 1 was included in the further analysis. 
The differentially expressed RNAs were screened by 
the DESeq and edgeR package using the R platform, 
and any RNAs overlapping between DESeq and edgeR 
were regarded as differentially expressed RNAs. 
Filter parameters of differentially expressed RNAs 
between HCC tumor and adjacent normal liver tissues 
were set as follows: a false discovery rate (FDR) <0.05; 
and a |log2 Fold Change (log2 FC)| > 2. A 
normalization dataset by DESeq was used for further 
analysis.  

Competing endogenous RNA network 
construction and functional assessment 

The ceRNA networks were constructed by 
differentially expressed genes (DEGs), differentially 
expressed miRNAs (DEMs), and differentially 
expressed lncRNAs (DELs) between HCC tumor and 
adjacent normal liver tissues. The lncRNA–miRNA 
interactions were identified by miRcode 
(http://www.mircode.org/, accessed November 5, 
2017), which is a comprehensive searchable map of 
putative miRNA target sites across the complete 
GENCODE annotated transcriptome [17]. Whereas 
the potential target genes of DEMs were identified by 
TargetScan (http://www.targetscan.org/, accessed 
November 5, 2017) [18], miRDB (http://www 
.mirdb.org/, accessed November 5, 2017) [19] and 
miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/, 
accessed November 5, 2017) [20]; the target genes 
overlapping in the three online tools were considered 
as DEM-targeted genes. Then, the overlapping of 
these miRNA-mRNA and lncRNA-miRNA 
interactions with DEGs, DEMs and DELs, 
respectively, were included in further ceRNA 
network constructions. The flow chart of the ceRNA 
network construction is shown in Figure S1. To 
further understand the potential biological processes 
and pathways of these DEGs in ceRNA network, 
functional assessment was performed by the Database 
for Annotation, Visualization, and Integrated 
Discovery v6.8 (DAVID v6.8, https://david.ncifcrf 
.gov/home.jsp; accessed December 14, 2017), which 
consists of an integrated biological knowledge base 
and analytical tools aimed at systematically extracting 
biological meaning from large gene/protein lists [21, 
22]. The directed acyclic graph of Gene Ontology (GO) 
terms was drawn by the Biological Networks Gene 
Ontology tool (BiNGO) in Cytoscape_v3.4.0 [23]. 
Gene-gene and protein-protein interactions of these 
DEGs in the ceRNA network were constructed by 
GeneMANIA (http://www.genemania.org/, acces-
sed December 15, 2017) [24, 25] and the Search Tool 
for the Retrieval of Interacting Genes/Proteins 
(STRING, https://string-db.org/, accessed December 

15, 2017) [26, 27], respectively.  

Construction of the HCC-specific differentially 
expressed RNA-based prognostic signature 

Further univariate Cox proportional hazards 
regression models were used to investigate the 
potential prognostic applications of these 
differentially expressed RNAs in the ceRNA network. 
Afterwards, these differentially expressed RNAs, 
which were significantly related to HCC overall 
survival (OS), were fitted into the optimal 
combination screening using a "step" function and 
used for further prognostic signature construction. 
These prognostic differentially expressed RNAs were 
included into the multivariate Cox regression model 
as dependent variables to calculate the relative 
contribution of these differentially expressed RNAs in 
a prognostic signature, and the weight of each 
differentially expressed RNA was assessed by the 
regression coefficient (β), which was generated from 
the multivariate Cox regression model. The HCC OS 
predicted risk score was calculated as follows: Risk 
score = ExpRNA1 × βRNA1 + ExpRNA2×βRNA2 + … ExpRNA 

× βRNAn (Exp: expression level) [28-33]. The prediction 
accuracy of prognostic signature in HCC OS was 
evaluated through the survivalROC package in R 
platform. Furthermore, we also identified the 
underlying application of prognostic signature in 
distinguishing different clinical parameters. In order 
to test the potential application value of prognostic 
signature in HCC OS, we also implemented a 
comprehensive survival analysis to evaluate the 
prognostic signatures, including stratified survival 
analysis, nomogram, and joint effect survival analysis.  

Gene set enrichment analysis 
To understand the underlying mechanism 

between different risk scores, gene set enrichment 
analysis (GSEA, http://software.broadinstitute.org/ 
gsea/index.jsp, accessed December 14, 2017) was 
employed to identify underlying mechanisms with 
different Molecular Signatures Database (MSigDB) 
gene sets, in which the c2 gene set 
(c2.all.v6.1.symbols.gmt) consisted of online pathway 
databases and the c5 gene set 
(c5.all.v6.1.symbols.gmt) consisted of genes annotated 
by Gene Ontology (GO) terms [34-36]. These 
enrichment results were at a significance level of 
P-value <0.05 and FDR <0.25 [34].  

Statistical analysis 
Kaplan-Meier survival curves were applied to 

assess the prognosis between two groups with a 
log-rank test; those clinical parameters with a P-value 
<0.05 were fitted into the multivariate Cox 
proportional hazards regression model as the 
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adjustment variables. The comparison of gene 
expression levels between different subgroups was 
performed using the independent sample t-test. The 
diagnostic value of different RNAs was assessed by 
receiver operating characteristic (ROC) curves, with 
area under curve (AUC) and 95% confidence interval 
(CI) used to evaluate the accuracy of ROC curves. The 
volcano plots and heat maps were draw by the ggplot2 
package in the R platform. P-value <0.05 was 
considered reached the statistically significant. All 
data statistical were conducted by SPSS version 20.0 
(IBM Corporation, Armonk, NY, USA) and R3.3.1. 

Results 
Data source and differentially expressed RNAs 
screening 

For RNA-Seq dataset, we excluded 3 recurrent 
tumor tissues from DEG and DEL screening, then, a 
total of 371 HCC patients' primary tumor and 50 
adjacent normal liver tissues RNA-Seq dataset were 
used for DEG and DEL screening. Whereas, for 
miRNA-Seq dataset, we also excluded 3 recurrent 
tumor tissues from DEM screening, then, there were 

372 HCC patients' primary tumor and 50 adjacent 
normal liver tissues miRNA-Seq dataset were used for 
DEM screening. By performed the DESeq and edgeR in 
the R platform, a total of 938 genes (Table S1, Figure 
1A–C, Figure S2), 38 miRNAs (Table S2, Figure 
1D–F, Figure S3) and 555 lncRNAs (Table S3, Figure 
1G–I, Figure S4) were identified as DEGs, DEMs and 
DELs, respectively. Then, a total of 370 HCC patients 
with complete clinical prognostic parameters, and 
received RNA-Seq were included in further DEGs and 
DELs survival analysis; the baseline information for 
these patients is summarized in Table S4 [32]. A total 
of 371 HCC patients with complete clinical prognostic 
parameters, and received miRNA-Seq were included 
in further DEMs survival analysis; the baseline 
information for these patients is summarized in Table 
S5 [30]. Survival analysis of clinical parameters 
suggests that tumor stage and radical resections were 
markedly correlate to HCC OS in the present study 
(both log-rank P<0.05, Table S4 and S5), and should 
be fitted into the multivariate Cox proportional 
hazards regression model as the adjustment variables. 

 

 
Figure 1. Differentially expressed RNAs analysis of TCGA HCC dataset. Notes: (A) DEGs identified using the DESeq package; (B) DEGs identified using the edgeR package; (C) 
Overlapping DEGs. (D) DEMs identified using the DESeq package; (E) DEMs identified using the edgeR package; (F) Overlapping DEMs. (G) DELs identified using the DESeq 
package; (H) DELs identified using the edgeR package; (I) Overlapping DELs. 
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Figure 2. The lncRNA-miRNA-mRNA ceRNA network. Diamonds represent DELs; balls represent DEGs; squares represent DEMs; red represent up-regulated; green 
represent down-regulated.  

 

Construction of the ceRNA network and 
functional assessment 

After the miRcode analysis was used for identify 
the lncRNA–miRNA interactions between DEMs and 
DELs, we obtained 83 DEL–DEM interactions for 
further ceRNA network construction. Meanwhile, 
target genes of DEMs were also investigated by three 
online tools (TargetScan, miRDB and miRTarBase), 
and 16 DEM–DEG interactions were used for further 
ceRNA network construction. The ceRNA network 
was constructed based on these 99 interactions and is 
shown in Figure 2; this included 16 DEGs, 7 DEMs 
and 34 DELs. We also investigated the potential 
function of these DEGs in the ceRNA network using 
DAVID v6.8, and found that these DEGs were mainly 
involved in cell cycle, cell proliferation, and cell 
division biological processes (Figure 3A). Whereas 
these DEGs were mainly involved in the cell cycle, 

microRNAs in cancer signaling pathways (Figure 3B). 
The directed acyclic graph of these genes also showed 
that these DEGs were significantly enriched in cell 
cycle biological processes (Figure S5, highlighted in 
red). Network investigation by GeneMANIA and 
STRING suggest that these DEGs form a complex 
interaction with each other, in particular 
co-expression interactions (Figure S6A–B). 

Construction of the HCC-specific differentially 
expressed RNAs-based prognostic signature 

To further identify the prognostic values of these 
genes in the ceRNA network, we first used an 
univariate Cox proportional hazards regression 
model to evaluate the relationship between these 
RNAs and HCC OS. There were 24 RNAs which were 
significantly associated with HCC OS, including nine 
DEGs, one DEM (Figure 4A–C), and 14 DELs (Table 
S6). Due to the miRNA-Seq and RNA-Seq dataset 
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from TCGA possibly having a batch effect in data 
merge and as there was only one miRNA correlated to 
HCC OS in the present study, we only used nine 
DEGs and 14 DELs for further prognostic signature 
construction. Therefore, these 23 RNAs were next 
screening by step function to investigate the optimal 
combination for HCC OS prediction; a combination 
consisting of three DELs (AP002478.1, HTR2A-AS1, 
and ERVMER61-1; Figure 5A–C) and six DEGs 
(enhancer of zeste homolog 2 [EZH2], kinesin family 
member 23 [KIF23], chromobox 2 [CBX2], centrosomal 
protein 55 [CEP55], cell division cycle 25A [CDC25A], 
and claspin [CLSPN]; Figure 5D–I) were considered 
the best combinations with the most significant 
P-value for HCC OS. Co-expression analysis revealed 
that these RNAs show a weak or moderate intensity of 
co-expression interactions, which were evaluated by 
the Pearson correlation coefficient (Figure S7). 
Afterwards, a multivariate Cox proportional hazards 
regression model was used for evaluate the relative 
weight for these genes in risk scores. The formula of 
the risk score was showed as follows: Risk score = 
expAP002478.1 × (0.1163) + expHTR2A-AS1 × (−0.1743) + 
expERVMER61-1 × (0.0839) + expEZH2 × (0.3437) + expKIF23 × 
(−0.2723) + expCBX2 × (0.1396) + expCEP55 × (0.2400) + 
expCDC25A × (−0.2002) + expCLSPN × (0.1522). Patients 
were grouped into two groups on the basis of the 
median value of risk score; those patients with a risk 
score less than the median value were defined as low 
risk, otherwise they were considered high risk. 

Survival analysis suggests that high risk patients were 
at a markedly increased risk of death in HCC 
(adjusted P<0.0001, adjusted HR = 2.761, 95% CI = 
1.838–4.147), and with a shorter OS (837 vs. 2456 days 
for high risk vs. low risk, Table S4, Figure 6A-B). The 
accuracy of this prognostic signature in HCC 
long-term OS predictions was evaluated by a 
time-dependent ROC curve, and indicated that this 
prognostic signature showed a good performance in 
HCC long-term OS prediction with an AUC of 0.774, 
0.730, 0.713, and 0.715 for 1-, 2-, 3-, and 5-year 
survival, respectively (Figure 6C). We also observed 
that the expression distribution of these nine RNAs 
were marked dysregulation between HCC tumors 
and adjacent normal liver tissues (Figure 7A), as well 
as between low risk and high risk groups' tumor 
tissues (Figure 7B). The ROC curve confirmed that 
these dysregulated RNAs in the prognostic signature 
may have potential diagnostic value in distinguishing 
HCC tumors from adjacent normal liver tissues 
(Figure 8A–I). The prognostic signature constructed 
in our current study also show a good performance in 
predicting HCC clinical parameters (Figure 9A–G), 
such as tumor stage (P=0.01, AUC = 0.591, 95%CI = 
0.521–0.661; Figure 9A), histological grade (P<0.0001, 
AUC = 0.661, 95% CI = 0.604–0.718; Figure 9B), 
α-fetoprotein (AFP, P=0.048, AUC = 0.581, 95%CI = 
0.504–0.659; Figure 9C), and radical resection 
(P=0.023, AUC = 0.610, 95%CI = 0.512–0.708; Figure 
9G).  

 
 

 
Figure 3. Functional assessment of the DEGs in ceRNA network. Notes: (A) GO term enrichment results of DEGs; (B) KEGG enrichment results of DEGs.  
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Figure 4. Diagnostic and prognostic value of hsa-mir-137 in TCGA HCC cohort. Notes:(A) Scatter plot of hsa-mir-137 expression level between HCC tumor and adjacent 
normal liver tissues; *** P<0.001. (B) Diagnosis ROC curve for hsa-mir-137. (C) The Kaplan-Meier curves for hsa-mir-137.  

 
Figure 5. The Kaplan-Meier curves of prognostic signature RNAs in prognostic signature. Notes: The order of Kaplan-Meier curves of prognostic signature RNAs were as 
follow: (A) HTR2A-AS1, (B) AP002478.1, (C) ERVMER61-1, (D) EZH2, (E) KIF23, (F) CBX2, (G) CEP55, (H) CDC25A, (I) CLSPN. 

 

Comprehensive survival analysis of the 
differentially expressed RNA-based prognostic 
signature 

We further investigated the effect of this 
prognostic signature on HCC OS by using a stratified 
analysis after adjusting for tumor stage and radical 
resection in multivariate Cox proportional hazards 
regression model. As shown in Figure 10A, we 
observed that this prognostic signature notably 
increased the risk of death in all favorable and 
adverse strata, excluding in patients with Child-Pugh 
B/C stage, without hepatic fibrosis and radical 

resection, and female HCC patients. These results 
indicate that this prognostic signature may act as an 
independent prognostic risk factor for HCC 
prognosis. The nomogram also supported the 
stratified analysis results, and suggests that the risk 
score contributed the most risk points to HCC 
prognosis (range 0–100, Figure 10B) compared to 
other clinical parameters.  

To further assess the combined effects of this 
prognostic signature and clinical features in HCC OS, 
joint effects survival analysis demonstrated that the 
combination of clinical features and prognostic 
signatures can significantly improve the value of 
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these traditional clinical parameters in HCC OS 
prediction (all log-rank P<0.0001, Figure 11A–G, 

Table 1).  

 

 
Figure 6. Prognostic risk score model in HCC patients. Notes: (A) From top to bottom are the risk score, patients’ survival status distribution, and 9 prognostic signature RNAs 
expression heat map between low- and high-risk groups. (B) Kaplan–Meier curves for low- and high-risk groups. (C) ROC curve for predicting survival in HCC patients by the 
risk score.  

 
Figure 7. Expression distribution of 9 prognostic signature RNAs between HCC tumor and adjacent normal liver tissues, and low- and high-risk groups. Notes: (A) Scatter plot 
of 9 prognostic signature RNAs expression level between HCC tumor and adjacent normal liver tissues. (B) Scatter plot of 9 prognostic signature RNAs expression level between 
low- and high-risk groups. 
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Figure 8. Diagnosis ROC curve of 9 prognostic signature RNAs between HCC tumor and adjacent normal liver tissues. Notes: The order of ROC curves of 9 prognostic 
signature RNAs were as follow: (A) HTR2A-AS1, (B) AP002478.1, (C) ERVMER61-1, (D) EZH2, (E) KIF23, (F) CBX2, (G) CEP55, (H) CDC25A, (I) CLSPN.  

 
Figure 9. The predictive values of the risk score for the HCC clinical features. Notes: ROC curve of risk score for clinical features: (A) tumor stage, (B) histological grade, (C) 
serum AFP, (D) MVI, (E) Child-Pugh score. (F) ishak fibrosis score, (G) radical resection.  
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Figure 10. The relationship between risk score and clinical features. Notes: (A) Stratified analysis results of risk score in HCC OS. (B) Nomogram for predicting the 1-,3- and 
5-year event (death) with risk score and clinical features. 

 

GSEA 
To explore the mechanisms between different 

risk score groups, the GSEA approach was used for 
identify the potential biological processes and 
pathways between low risk and high risk HCC 
patients. GSEA analysis results of the c5 gene set 
reveal that the phenotype of high risk may through 
involved in cell cycle, cell division, DNA repair and 
replication biological processes (Figure 12A–F, Table 
S7), whereas the results of the c2 gene set suggest that 
the phenotype of high risk may through involved in 
cell cycle, DNA replication, PLK1, liver cancer 
proliferation and survival signaling pathways (Figure 
12G–L, Table S8). These results are consistent with 
the functional enrichment results of DEGs in the 
ceRNA network by DAVID. It is suggested that the 
genes in this prognostic signature may cause 
differences between different risk phenotypes of HCC 

by affecting the basic state of cells, thus affecting the 
prognosis of HCC. 

Discussion 
The ceRNA hypothesis was considered to be a 

novel regulatory mechanism that works through 
miRNA competition [12, 37]. With further study of 
ceRNA crosstalk, previous studies have shown that 
ceRNA genes were mediated by miRNA in complex 
ceRNA networks, as well as miRNA interacted with 
lncRNA [38]. Since TCGA has complete RNA and 
miRNA sequencing data, it is most appropriate to use 
this database for ceRNA and prognostic biomarker 
mining. Extensive studies have used part of the TCGA 
database to investigate the ceRNA network for 
multiple types of cancer, including HCC [39], lung 
cancer [40, 41], colon cancer [42, 43], bladder cancer 
[44], gastric cancer (GC) [45], papillary thyroid cancer 
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[46] and pancreatic cancer (PC) [47]. A previous study 
by Zhang et al. identified a ceRNA network by using 
TCGA HCC dataset; however, the fold change of 
RNAs in their study was set as 3, which was not a 
conventional and strict criteria for differential 
expression RNAs [39]. Therefore, the results obtained 

in their study may not be reliable. The advantage of 
our current study is that we have set the differential 
expression RNAs as: |log2 FC|>2 (|FC| > 4), and 
identified a prognostic signature, which was based on 
RNAs from the ceRNA network, which may be a 
potential independent indicator for HCC OS.  

 
 

 
Figure 11. Joint effects survival analysis of OS stratified by risk score and HCC clinical features. Notes: Joint effects analysis stratified by risk score and following clinical features: 
(A) tumor stage, (B) histological grade, (C) serum AFP, (D) MVI, (E) Child-Pugh score. (F) ishak fibrosis score, (G) radical resection. 
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Table 1. Joint effects survival analysis of clinical features and the prognostic signature with OS in HCC patients 

Group Risk Score Variables Events/total(n=370) MST (days) Crude HR (95% CI) Crude P Adjusted HR (95% CI) Adjusted P£ 
  Tumor Stage c       
A Low risk Stage I 17/106 2532 1  1  
B Low risk Stage II 7/34 3258 1.273(0.527-3.075) 0.592 1.283(0.531-3.104) 0.58 
C Low risk Stage III+IV 13/33 1622 2.916(1.416-6.008) 0.004 2.894(1.405-5.936) 0.004 
D High risk Stage I 25/65 1372 3.473(1.872-6.442) <0.0001 3.446(1.857-6.393) <0.0001 
E High risk Stage II 19/51 1149 3.853(1.996-7.439) <0.0001 3.812(1.974-7.362) <0.0001 
F High risk Stage III+IV 35/57 419 6.419(3.577-11.520) <0.0001 5.839(3.211-10.617) <0.0001 
  Histological Grade d       
a Low risk G1 10/39 2131 1  1  
b Low risk G2 25/97 2456 1.045(0.501-2.177) 0.907 1.388(0.563-3.424) 0.476 
c Low risk G3+G4 7/46 NA 0.582(0.221-1.530) 0.272 0.830(0.278-2.476) 0.738 
d High risk G1 8/16 649 2.894(1.132-7.398) 0.026 3.186(1.034-9.819) 0.044 
e High risk G2 35/80 931 2.923(1.444-5.918) 0.003 3.209(1.318-7.813) 0.01 
f High risk G3+G4 41/87 757 2.814(1.406-5.633) 0.003 3.346(1.407-7.962) 0.006 
  Serum AFP e       
I Low risk ≤400 25/118 2532 1  1  
II Low risk >400 4/26 NA 0.651(0.226-1.873) 0.426 0.544(0.163-1.815) 0.322 
III High risk ≤400 37/95 1271 2.735(1.641-4.558) 0.00011 2.702(1.578-4.628) 0.0003 
IV High risk >400 18/38 931 2.630(1.427-4.850) 0.002 2.435(1.265-4.688) 0.008 
  MVI g       
i Low risk NO 39/168 2532 1  1  
ii Low risk YES 5/15 837 1.433(0.715-2.872) 0.311 1.165(0.523-2.5950 0.708 
iii High risk NO 71/155 899 3.162(1.878-5.323) <0.0001 3.034(1.742-5.284) <0.0001 
iv High risk YES 12/25 1135 3.347(1.891-5.925) <0.0001 2.686(1.334-5.407) 0.006 
  Child-Pugh score h       
① Low risk A 24/118 3258 1  1  
② Low risk B+C 4/14 1624 1.582(0.543-4.602) 0.4 1.636(0.560-4.776) 0.368 
③ High risk A 35/98 1372 2.713(1.607-4.582) 0.0002 2.635(1.542-4.5030 0.0004 
④ High risk B+C 5/8 394 5.261(1.998-13.856) 0.001 4.825(1.791-13.000) 0.002 
  Ishak fibrosis score b       
1 Low risk 0 14/45 2542 1  1  
2 Low risk 1/2/3/4/5/6 10/72 NA 0.510(0.224-1.162) 0.109 0.538(0.225-1.283) 0.162 
3 High risk 0 16/29 931 2.203(1.071-4.523) 0.032 1.903(0.893-4.054) 0.095 
4 High risk 1/2/3/4/5/6 24/65 1229 2.264(1.143-4.485) 0.019 2.640(1.288-5.411) 0.008 
  Residual tumor f       
11 Low risk R0 24/115 2456 1  1  
22 Low risk R1+R2+RX 12/50 3258 2.696(1.057-6.876) 0.038 2.579(0.904-7.355) 0.076 
33 High risk R0 36/91 1005 3.075(2.074-4.558) <0.0001 2.982(1.946-4.570) <0.0001 
44 High risk R1+R2+RX 24/58 1149 4.286(2.235-8.221) <0.0001 3.316(1.558-7.057) 0.002 

Notes: b Information of ishak fibrosis score was unavailable in 159 patients; c Information of tumor stage was unavailable in 24 patients; d Information of histological grade 
was unavailable in 5 patients; e Information of serum AFP was unavailable in 93 patients; f Information of radical resection was unavailable in 7 patients; g Information of 
micro vascular invasion was unavailable in 56 patients; h Information of Child-Pugh score was unavailable in 132 patients; £Adjusted for tumor stage and radical resection.  
Abbreviations: OS, overall survival; HCC, hepatocellular carcinoma; MST, median survival time; HR, hazard ratio; CI, confidence interval; AFP, α-fetoprotein; MVI, micro 
vascular invasion. 

 
 
The prognostic signature identified in the 

current study consisted of three DELs and six DEGs. 
Three DELs in the prognostic signature have not been 
reported in previous cancer studies, whereas among 
the six DEGs (EZH2, KIF23, CBX2, CEP55, CDC25A, 
and CLSPN), most have been reported in cancer 
prognosis and dysregulated in tumor tissue. 
Extensive studies have reported that the mRNA or 
protein expression of EZH2 was markedly increased 
in HCC tumor tissues [48-52], and that high 
expression of EZH2 can serve as a poor prognostic 
indicator in HCC [48, 52]. The results of EZH2 in our 
study are consistent with previous reports, and 
suggest that the mRNA expression of EZH2 was 
significantly up-regulated in HCC tumor tissues and 
that high expression of EZH2 was associated with 
unfavorable HCC OS. Cai et al. also reported that the 
immunohistochemistry of EZH2 may be a promising 
biomarker in distinguishing between HCC and 

non-malignant nodules in liver needle biopsies; our 
current study also confirmed that mRNA expression 
of EZH2 also has a diagnostic value in distinguishing 
HCC from the adjacent normal liver tissues, which 
was consistent with the study of Cai et al [48]. 
Multiple studies have revealed that EZH2 was the 
target gene for some non-encoding RNAs, and that 
altering the expression of them may affect the 
expression of EZH2, thereby affecting the HCC 
phenotype, such as cell proliferation and invasion [51, 
53, 54]. Similar results can also be observed in other 
cancers, as the overexpression of EZH2 is significantly 
associated with aggressive tumor behavior and 
unfavorable prognosis in Merkel cell carcinoma [55], 
non-small cell lung cancer (NSCLC) [56], prostate 
cancer (PCa) [57], osteosarcoma [58], endometrial 
cancer [59], Luminal A Breast Cancer (BC) [60]. 
However, the opposite effect of EZH2 has also been 
reported in colorectal cancer (CRC), suggesting that 
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the overexpression of EZH2 was significantly 
correlated with a better prognosis and serves as a 

useful prognostic biomarker for anti-EGFR therapy in 
CRC [61, 62].  

 

 
Figure 12. GSEA results of c5 and c2 reference gene sets in high-risk groups. Notes: GSEA results for c5 reference gene sets (A–F) and c2 reference gene sets (G–L). 
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The five remaining DEGs (KIF23, CBX2, CEP55, 
CDC25A, and CLSPN) in the prognostic signature 
were rarely reported in HCC. KIF23, which has been 
observed to be notably increased in tumor tissues and 
the high expression of KIF23 was correlated with 
unfavorable prognosis in patients with glioma [63, 
64], malignant pleural mesothelioma [65], lung cancer 
[66] and PC [67]. Functional experiments 
demonstrated that the knockdown of KIF23 
expression can suppress the proliferation of glioma 
cells in vitro [63]. The results of KIF23 in HCC in the 
current study are also consistent with previous 
studies; furthermore, we also investigated the 
diagnostic value of KIF23 in HCC and suggested that 
the mRNA expression of KIF23 shows a good ability 
to distinguish between HCC tumors and adjacent 
normal liver tissue. A similar effect also can be 
observed in CBX2; Clermont et al. reported that CBX2 
may play an oncogenic role in human neoplasms, and 
that the high expression of CBX2 was markedly 
correlated with an unfavorable OS in BC [68]. Another 
independent study by Liang et al. also validated these 
results in another independent cohort [69]. Clermont 
et al. also observed that CBX2 was recurrently 
up-regulated in metastatic PCa, and that patients with 
up-regulated expression of CBX2 had a significantly 
lower disease-free survival [70].  

A previous HCC bioinformatics analysis study 
based on the Gene Expression Omnibus database 
showed that CEP55 was up-regulated in HCC tumor 
tissue, and that the increased expression of CEP55 was 
correlated with a short OS and DFS [71], which were 
consistent with the results we obtained in current 
study. The overexpression of CEP55 in tumor tissue 
has also been reported in PC [72], head and neck 
squamous cell carcinoma [73], epithelial ovarian 
carcinoma [74], GC [75], and BC [76]. In addition, 
CEP55 also served as a poor prognostic indicator in 
PC [72] and epithelial ovarian carcinoma [74]. 
Functional investigation suggests that CEP55 may act 
as an oncogene in cancers, and that the 
overexpression of CEP55 can promote cancer cell 
proliferation or invasion in PC [72], epithelial ovarian 
carcinoma [74], GC [75], and BC [76].  

A study by Xu et al. demonstrated that CDC25A 
was up-regulated in HCC tumor tissue, and showed 
lower expression in liver cirrhosis and chronic 
hepatitis tissues [77]. The high expression of CDC25A 
was correlated with a markedly increased risk of HCC 
death and early recurrence, and could be serve as an 
independent prognostic indicator for HCC [77], in 
another words, the overexpression of CDC25A 
correlates with a more aggressive disease progression 
and an unfavorable prognosis in patients with HCC 
[78], which was in good agreement of our results. 

Furthermore, Wang et al. also reported that elevated 
CDC25A expression markedly associated with HCC 
tumor-node-metastasis staging, as well as venous 
invasion [79]. Functional exploration confirmed that 
the antagonism of CDC25A could inhibit the growth 
and invasion of HCC cells via cell cycle arrest at 
G0–G1 and suppress MT3–MMP expression, acting as 
an oncogene in HCC [80]. Similar carcinogenesis 
functions have also been observed in human gliomas 
[81]. However, functional investigation of another 
DEG, CLSPN, in the prognostic signature, 
demonstrated that CLSPN expression was markedly 
increased in cancer cell lines and tumor tissues, with a 
significant positive correlation with Ki-67, and may be 
a potential proliferation marker for cancers [82].  

By analyzing the function of DEGs in the ceRNA 
network via DAVID, and GSEA analysis between 
low- and high-risk groups, we found that these DEGs 
were relevant to cell cycle biological processes and 
pathways; GSEA analysis also revealed that high-risk 
scores were also significantly enriched in cell cycle 
progression. We infer that this ceRNA network and 
prognostic signature may influence cell homeostasis 
by regulating the cell cycle, thereby affecting cell 
proliferation and the invasion of liver cancer, which 
affects disease progression and prognosis. By 
reviewing the relative literature, we found that DEGs 
such as CCNB1 and CCNE1, play key roles in the 
control of cell cycle phase transition in hepatocytes 
and HCC cells [83-85]. Among the six DEGs in the 
prognostic signature, most were also involved in cell 
cycle processes. The tumor suppressor 
miR-101 dramatically repressed cell cycle progression 
in vitro through directly targeting EZH2 in HCC [86], 
and some non-coding RNAs also take part in HCC cell 
cycle regulation via targeting CDC25A [87, 88]. Chang 
et al. demonstrated that CEP55 protein levels are 
regulated through a p53-Plk1-CEP55 axis, which is 
related to the mechanisms of p53-mediated repression 
in cell cycle processes [89]. Also, p53-dependent 
mechanisms have been reported in KIF23, and may be 
a principal mechanism for G2/M cell cycle arrest in 
cancer cells mediated by p53 [90]. The function of 
CLSPN plays a role in controlling the rates of DNA 
replication during the normal cell cycle, and is 
required for normal rates of global replication fork 
progression [91].  

Due to the existence of a moderate intensity 
co-expression relationship between the above six 
DEGs, they are similar in terms of gene function, 
tumorigenesis and prognosis value. In the present 
study, these DEGs were notably increased in HCC 
tumor tissue, and the reduced expression of these 
genes predicted a better survival in patients with 
HCC, consistent with the previous studies of cancers. 
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As well as in terms of genes function, previous studies 
reported that these DEGs were involved in cell cycle 
processes, and our enrichment analysis also indicated 
that these DEGs were relevant to the cell cycle in 
HCC. 

In the present study, there were some limitations 
that need to be acknowledged. First, since all of the 
data in the current study were from TCGA, and the 
clinical information is incomplete, adjustment of the 
prognostic signature in the multivariate Cox 
proportional hazards regression model was not 
comprehensive, and cannot fully take into account 
these factors, which may affect HCC prognosis, but 
were not provided in the TCGA website. Second, as 
other public databases cannot provide a complete 
RNA-seq and miRNA-seq dataset in the same cohort 
of patients at the same time, and these datasets are not 
suitable to be used for ceRNA network construction; 
therefore, an additional verification cohort is needed 
to validate our results in future study. 

Despite these limitations, in the present study we 
identified a large number of DEGs, DEMs and DELs 
between HCC primary tumor and adjacent normal 
liver tissues. Also, a ceRNA network of HCC was 
constructed based on these dysregulated RNAs via 
the bioinformatics approach, and a prognostic 
signature for HCC OS was developed. These findings 
may help to advance the understanding of 
dysregulated RNAs participating in the 
hepatocarcinogenesis, development, and prognosis of 
HCC, and will provide the foundation to develop 
novel clinical diagnostic and therapeutic biomarkers. 

Conclusions 
Through the comprehensive analysis of HCC 

RNA-Seq and miRNA-Seq datasets from TCGA, we 
constructed a ceRNA network based on 16 DEGs, 7 
DEMs and 34 DELs, which may play a critical role in 
hepatocarcinogenesis. Furthermore, we also 
investigated a prognostic signature, which included 
three DELs and six DEGs, as a potential outcome 
predictor for HCC patients based on the ceRNA 
network. The potential mechanisms of this prognostic 
signature may be involved in the regulation of the 
cells' basic status, thus may affecting the clinical 
outcome of HCC. However, future functional 
investigations are still required to verify the 
mechanisms underlying the roles of these genes in 
HCC prognosis. 
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