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Abstract 

Insulin-like growth factor-1 (IGF-1) -induced epithelial-mesenchymal transition (EMT) plays a key 
role in the metastasis and drug resistance of non-small cell lung cancer (NSCLC). Sphingosine 
kinase-1 (SphK1) is also involved in EMT of NSCLC. However, the interaction between SphK1 and 
IGF-1 in the EMT of NSCLC is largely unknown. To clarify this issue, we examined the involvement 
of SphK1 in IGF-1-induced EMT using human lung cancer cell line A549, and its paclitaxel-resistant 
subline. Cell viability was evaluated by cell counting kit-8 assay; Migratory ability was examined using 
scratch wound healing test; Protein expression levels of SphK1, vimentin, fibronectin, N-cadherin 
and E-cadherin were detected by western blot analysis, respectively. The results showed that, IGF-1 
treatment of A549 cells stimulated the expression of SphK1, the activation of ERK and AKT, the cell 
migration, and the expression of EMT hallmark proteins, while inhibition of SphK1 by its specific 
inhibitor SKI-II suppressed all the above changes and increased the sensitivity of A549 cells to 
paclitaxel. Our data demonstrate that SphK1 acts as a downstream effector of IGF-1 and plays a 
critical role in IGF-1-induced EMT, cell migration and paclitaxel resistance of A549 cells, suggesting 
that SphK1 might be a potential therapeutic target for NSCLC. 
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1. Introduction 
Worldwide, lung cancer remains the leading 

cause of cancer-related mortality, and approximately 
85% of lung cancers are Non-small cell lung cancer 
(NSCLC) [1,2]. The major causes of mortality 
in NSCLC patients are metastasis and drug resistance, 
which are closely associated with 
Epithelial-mesenchymal transition (EMT) [3-6]. EMT 
is a process during which the epithelial cells lose their 
phenotype and acquire the characteristics of 
mesenchymal cells [5]. Accumulating evidence shows 
that insulin-like growth factor (IGF) -1 signaling 
pathway is involved in EMT and IGF-1-induced EMT 

plays an important role in the development and 
progression of many types of solid tumors, including 
NSCLC [7-11]. 

Recently, sphingosine kinase (SphK) -1, an 
oncogenic kinase, has attracted increasing attention 
because of its important functions in many processes 
of cancer cells [12-14]. A few studies showed that 
SphK1 might mediate the EMT of A549 cells, but the 
mechanisms remain ambiguous [15-16]. Both IGF-1 
and SphK1 have been shown to be involved in the 
EMT process of NSCLC. And a previous study 
provided the first illustration of SphK1 role as an 
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crucial regulator of neuroblastoma cells’ death by 
mediating IGF-1 [17]. These findings subsequently 
lead to a hypothesis that, there is probably a similar 
functional interaction between SphK1 and IGF-1 in 
the EMT process of NSCLC. However, little is known 
about this issue. In this study, we explored the role of 
SphK1 in IGF-1-induced EMT, migration and 
paclitaxel resistance of the human lung cancer cell line 
A549.  

Material and Methods 
2.1 Cells and antibodies 

A549 cell line was purchased from the American 
Type Culture Collection (Manassas, VA) and cultured 
in F-12K medium (Gibco) supplemented with 10% 
fetal bovine serum (FBS, Gibico), 100U/ml penicillin, 
and 100μg/ml streptomycin. Paclitaxel resistant-A549 
was generated by culturing A549 cells in complete 
F-12K medium containing 2 μM paclitaxel. When 
indicated, cells were treated with IGF-1 (Peprotech) or 
SphK1 inhibitor SKI-II (Sigma Cat# S5696).  

Antibodies used for immunoblot included 
anti-SphK1 (Cell Signaling Technology Cat# 3297), 
anti-phospho SphK1(Ser225) (ECM Biosciences Cat# 
SP1641), anti-Fibronection (Abcam Cat# ab32419), 
anti-N-Cadherin (Abcam Cat# ab76011), 
anti-E-Cadherin (Abcam Cat# ab40772), 
anti-Vimentin (Abcam Cat# 92547), anti-p-ERK1/2 
(Cell Signaling Technology Cat# 4377), anti-ERK (Cell 
Signaling Technology Cat# 4697), anti-p-AKT(S473) 
(Cell Signaling Technology Cat# 9271 ), anti-AKT 
(Abcam Cat# AB8805), anti-GAPDH (Beyotime Cat# 
AG019-1), and horseradish peroxidase-conjugated 
secondary antibodies (Nanjing SunShine 
Biotechnology Co., LTD.). 

2.2 Cell Proliferation Assay  
A549 or paclitaxel-resistant A549 cells were 

seeded at 3000 cells/well in 96-well plates and 
cultured overnight. SphK1 specific inhibitor SKI-II, 
Cisplatin or paclitaxel were then added to the wells at 
varying concentrations. The cells were further 
cultured for additional 3 days. After that, the cell 
viability was evaluated by using CCK8 kit (Dojindo, 
Cat# CK04) according to the manufacturer’s 
instructions.  

2.3 Cell Migration Assay 
Cell migration assay was performed using 

scratch / wound healing test. A549 cells were 
cultured to 90% confluence in 6-well plates. Scratches 
were made using a 200μl pipette tip. The cells were 
then cultured overnight under serum-starved 
conditions before being supplemented with IGF-1 or 
SKI-II. Culturing lasted for up to 96 hrs. Images of the 

cells were taken at selected time points to evaluate the 
wound-healing condition. 

3. Results 
3.1 IGF-1 stimulates SphK1 expression and 
activation in A549 

We investigated whether IGF-1 signaling 
pathway has an impact on the activity of SphK1 in 
NSCLC cells. A549 cells were treated with 200ng/mL 
IGF-1, the expression and phosphorylation of SphK1 
were examined by Western blot (Figure 1). The results 
revealed that the expression of SphK1 was increased 
gradually as early as 20 minutes after IGF-1 
stimulation. Meanwhile, phosphorylation of SphK1 at 
Ser225 was upregulated, which has been shown to 
increase the catalytic activity and translocation of 
SphK1 to the plasma membrane, and is crucial for 
oncogenic signaling [18]. 

 

 
Fig. 1. Stimulation of A549 cancer cells with IGF-1 induces overexpression and 
activation of SphK1. A549 cells were stimulated with 200ng/ml IGF-1 for indicated 
period of time. Cell lysates were then electrophoresed in 8% PAGE gel and 
immunoblotted using anti-SphK1 and anti-phospho-SphK1 (Ser225), respectively. 

 
On the other hand, inhibition of SphK1 activity 

by its specific inhibitor SKI-II [19] led to minor 
changes in the activation of either ERK or AKT. Upon 
IGF-1 treatment, extended activation of 
phosphorylation of ERK and AKT was indicated 
(Figure 2). The above results suggest that SphK1 
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functions downstream of IGF-1 in IGF-1 signaling 
pathway. 

3.2 SphK1 activation induces IGF-1-mediated 
EMT of A549 cells 

We further investigated whether inhibition of 
SphK1 by its specific inhibitor SKI-II changes the 
ability of IGF-1 to induce EMT in A549 cells. IGF-1 
treatment of A549 cells resulted in changes of EMT 
biomarkers, including the elevated expression of 
vimentin, fibronectin, N-Cadherin, and loss of 
E-cadherin expression. These changes were inhibited 
by SKI-II (Figure 3). These results suggest that SphK1 

activity is critical for IGF-1-induced EMT in A549 
cells. 

3.3 Inhibition of SphK1 alleviates 
IGF-1-induced cell migration of A549 

A549 cells were cultured in serum-starved 
medium, and treatment with IGF-1 at a concentration 
of 100ng/mL induced apparent cell migration. In a 
time-course scratch wound healing assay, treating 
cells with SKI-II at dosages that have no obvious 
impact on cell proliferation significantly inhibited 
IGF-1-induced cell migration (Figure 4).  

 

 
Fig. 2. IGF-1 activates both AKT and ERK, treatment of cells with SKI-II has no impact on IGF-1 induced ERK or AKT activation. A549 cells were stimulated with 200ng/ml IGF-1 
in the presence or absence of 10μM of SKI-II at various time points. IGF-1 activates both AKT and ERK as indicated by phosphorylation of the proteins. On the other hand, 
treatment of cells with SKI-II has no impact on the activation of either AKT or ERK. 

 
Fig. 3. IGF-1-induced EMT in A549 cells was dependent on SphK1 activity. IGF-1 treatment led to decreased E-cadherin expression and increased expression of N-Cadherin, 
Vimentin and Fibronectin, which are the markers of EMT. Pretreatment of the cells with 10μM of SKI-II reversed the changes of these EMT markers. 
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Fig. 4. Inhibition of SphK1 suppressed IGF-1-induced cell migration. IGF-1 exhibited potent migratory stimulating activity on A549 cells in a scratch wound healing assay. 96 hours 
post addition of 100ng/ml IGF-1, the scratch mark almost completed the seal, while little change was seen by 1μM or 10μM SKI-II. 

 
Fig. 5. Synergistic inhibition on A549 proliferation by SKI-II and paclitaxel. (A) A549 cells were treated with different combination of SKI-II and paclitaxel as indicated in the figure. 
Both agents showed dose-dependent inhibitory effects on cell proliferation and synergistic effect was observed in the tested range of concentrations. (B) Paclitaxel alone showed 
little effect on the proliferation of paclitaxel-resistant A549 cells at as high as 30μM. Addition of SKI-II sensitized the cells to paclitaxel in a dose-dependent manner. (C) No 
obvious synergistic effect was observed when A549 cell was treated by SKI-II and Cisplatin. 

 

3.4 Inhibition of SphK1 increases the sensitivity 
of A549 cells to paclitaxel 

In order to investigate whether SphK1 is 
involved in the sensitivity of A549 cells to paclitaxel, 
we evaluated the anti-proliferation effect of paclitaxel 
in the presence of different concentrations of SKI-II. 
The results showed that paclitaxel alone only 

demonstrated very weak cytotoxic effect on A549 
cells. Addition of SKI-II enhanced paclitaxel’s 
cytotoxicity in a dose dependent manner (Figure 5A). 
This synergistic effect was even more evident in 
paclitaxel-resistant A549 cell line. Treatment of cells 
with paclitaxel (30μM) showed little cytotoxic effect, 
while addition of SKI-II significantly restored the 
sensitivity of the cells to paclitaxel (Figure 5B).  
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4. Discussion 
Most of newly diagnosed patients with NSCLC 

are already at advanced stage, and the prognosis of 
them remains extremely poor. Therefore, there is a 
pressing need for optimal therapies [20,21]. Mounting 
evidence has demonstrated involvement of 
IGF-1-induced EMT in the metastasis and drug 
resistance, thus contributing to the gloomy prognosis 
of NSCLC patients [3-6]. This scenario promotes the 
efforts to develop the potential antitumor agents for 
NSCLC that target IGF-1 pathways.  

Our study found that, stimulation of A549 cancer 
cells with IGF-1 induced overexpression and 
activation of SphK1, decreased E-cadherin expression 
and increased expression of N-Cadherin, vimentin 
and fibronectin, which were dependent on SphK1 
activity, while SKI-II, the specific inhibitor of SphK1, 
could suppress the above effects. These results are 
consistent with the findings of a previous study, 
suggesting that SphK1 modulates EMT in colorectal 
cancer cells [22].  

The activation of IGF-I/AKT and IGF-I//ERK 
pathways contributes to the cell proliferation, 
migration, invasion, and drug resistance in lung 
cancer [23-26]. Our study showed that IGF-1 activated 
both AKT and ERK, but, treatment of cells with SKI-II 
had no impact on IGF-1 induced ERK or AKT 
activation. 

Drug resistance is one of the biggest obstacles to 
successful treatment and remains a major concern 
about cancer chemotherapy [27-29]. Paclitaxel is a 
widely used chemotherapy agent for NSCLC 
treatment. We investigated whether SphK1 activity 
plays a role in paclitaxel resistance. Cell viability 
assay showed that enhanced SphK1 activity was 
involved in paclitaxel resistance of lung cancer cells. 
Addition of SKI-II enhanced paclitaxel’s cytotoxicity 
in a dose dependent manner, and the synergistic effect 
was even more evident in paclitaxel-resistant A549 
cell line. Interestingly, this mechanism appeared to be 
drug-related as no synergistic effect was observed 
when SKI-II worked with Cisplatin (Figure 5C). It is 
necessary to further investigate what leads to such 
difference.  

A previous study reported that the change of 
SphK1 expression could affect cell migration, 
invasiveness and the expression of EMT-related 
hallmark proteins in A549 cells [15]. (Ni, et al., 2015) 
Our study confirmed the results of this study, and 
strengthened the evidence base for the role of SphK1 
in EMT of A549 cells; Besides, our study uncovered 
the functional interaction between SphK1 and IGF-1 
in the EMT process, and provided new evidence to 
SphK1 role as a downstream effector of IGF-1. 

5. Conclusions 
In summary, our study demonstrates that, 

SphK1 acts as a downstream effector of IGF-1 and 
plays a critical role in IGF-1-induced EMT, migration 
and paclitaxel resistance of A549 cells, suggesting that 
SphK1 might be a promising target for the 
development of a more effective lung cancer therapy, 
and for the prevention of tumor metastases and drug 
resistance. Based on this preliminary in vitro study, 
more in-depth studies are warranted to decipher 
IGF-1/SphK1 signaling pathway networks and 
develop potential target specific anticancer agents for 
NSCLC.  
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