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Abstract

Aim: To explore gene expression profiling in hepatocellular carcinoma (HCC) cells exposed to
swertiamarin.

Methods: Cell viability, apoptosis and invasion were examined in HepG2 cells after swertiamarin
treatment. Tumor growth of SK-Hep-1 cells xenografted in nude mice was monitored after swertiamarin
treatment. Total RNA was isolated from HepG2 cells treated with swertiamarin for microarray analysis.
The data of microarray were analyzed by bioinformatics.

Results: Swertiamarin treatment decreased the viability and invasion while increased the apoptosis of
HepG2 cells, and significantly inhibited the growth of SK-Hep-1 cells xenografted in nude mice. Pathway
and biological process analysis of differentially expressed genes (DEGs) in swertiamarin treated HepG2
cells showed that PI3k-Akt was the most significant regulated pathway. 47 targets of swertiamarin were
predicted by CGBVS while 21 targets were predicted by 3NN. Notably, 8 targets were predicted as the
targets of swertiamarin by both programs, including two prominent targets JUN and STAT3. A large
range of DEGs induced by swertiamarin could be regulated by JUN and STAT3.

Conclusion: Swertiamarin treatment led to significant changes in the expression of a variety of genes
that modulate cell survival, cell cycle progression, apoptosis, and invasion. Moreover, most of these genes
can be clustered into pathway networks such as PI3K, JUN, STAT3, which are predicted targets of
swertiamarin. Further confirmation of these targets will reveal the anti-tumor mechanisms of
swertiamarin and facilitate the development of swertiamarin as a novel agent for cancer prevention and
treatment.
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Introduction

Hepatocellular carcinoma (HCC) is a common  developments in surgery, radiotherapy, and
cancer in China and becomes the fourth leading cause =~ chemotherapy, current therapeutic approaches for
of cancer related deaths worldwide [1]. Despite recent =~ HCC are still not effective. Recently, great efforts have
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been taken to investigate herbs with potential
anti-cancer efficacy [2-4]. Nevertheless, herb extracts
are usually crude mixture of many compounds, and
the complexity of herbs hinders the development of
anti-cancer drugs. Therefore, it is important to isolate,
identify and elucidate the mechanism of action of
single compound from herbs as lead candidate for
cancer drug discovery.

Swertiamarin (STM) is a main bioactive
component in  Swertia mussotii Franch
(Gentianaceae), a commonly used Tibetan medicine,
and  exhibits broad bioactivities including
hepatoprotective effects [5-7]. In rat model of liver
injury  induced by  d-Galactosamine, oral
administration of STM caused significant antioxidant
and hepatoprotective effects [5]. Total iridoids and
xanthones (TIXS) were extracted from Swertia
mussotii Franch, and STM was identified as the main
component of TIXS. In mouse model of
alpha-naphthylisot hiocyanate induced liver damage,
oral administration of TIXS significantly reduced
levels of alanine aminotransferase, aspartate
aminotransferase and the total and direct bilirubins
[6]. Furthermore, in rat model of liver injury induced
by bile duct ligation, treatment with STM led to
significantly decreased serum levels of serum alanine
aminotransferase and aspartate aminotransferase,
significantly =~ improved liver histology, and
significantly reduced inflammation and cholestasis
[7]. However, the efficacy of STM on HCC treatment
has not been investigated.

The evaluation of anti-HCC efficacy of STM will
greatly help develop novel therapeutics for HCC. To
better understand the mechanism of action of STM in
HCC therapy, in this study we employed microarray
to screen differentially expressed genes in HepG2
hepatocellular carcinoma cells treated by STM.

Materials and Methods

Cell culture

HepG; and SK-Hep-1 cells were cultured in
Dulbecco’s modified Eagle’s Medium (DMEM)
supplemented with 10% fetal bovine serum and 1%
penicillin and streptomycin at 37°C in a humid
incubator with 5% CO,. STM (>95% purity) was
purchased from Sigma Aldrich (St. Louis, MO, USA)
and dissolved in dimethylsulfoxide (DMSO) to make
stock solution at 60 mg/ml.

Nude mouse model

Male BALB/c-nu nude mice (weight 18-22 g)
were purchased from Animal Center of Kunming
Medical University (No. SCXK-2015-0002) and animal
experiments were approved by Animal Care and Use
Committee of Kunming Medical University. Each

mouse received subcutaneous injection of 3x10°
SK-Hep-1 cells, and when the tumor grew the mice
were randomly divided into 2 groups (n=6): control
group received intratumoral injection of PBS; STM
group received intratumoral injection of 5 pg STM.
Tumor volume was measured every week for 8
weeks, and then the mice were sacrificed and
xenograft tumors were dissected to measure the
weight.

Cell viability assay

HepG:; cells were seeded into 96-well plates at a
density of 5,000 cells/well. After overnight incubation
in a humid chamber at 37°C, the cells were treated
with DMSO or different dose of STM. Viable cells
were evaluated using CCK-8 Assay kit (Dojindo,
Japan) according to the manufacturer’s instructions.
CCK-8 solution was added to the cells in 96-well
plates and the plates were incubated at 37°C for 4 h,
and then 150 pL DMSO was added to each well and
the plates were incubated at room temperature for 10
min. The optical density of each well was read at 450
nm using a microplate reader (Bio-Rad, Hercules, CA,
USA).

TUNEL assay

HepG. cells were seeded onto coverslips in
6-well plates. After overnight incubation in a humid
chamber at 37°C, the cells were treated with DMSO or
STM. The cells were fixed in 4% paraformaldehyde for
15 min, and then apoptotic cells were stained using
TUNEL kit (Roche Diagnostic, Indianapolis, IN, USA)
following the manufacturer’s instructions. Apoptotic
cells showed brown nuclear staining.

In vitro cell invasion assay

Transwell chamber (Costar, Cambridge, MA,
USA) was used to evaluate cell invasion. The upper
chambers were precoated with Matrigel overnight at
4°C. HepG; cells were treated with DMSO or STM,
and 100 uL of the cell suspensions were seeded in the
upper chambers, while the lower chambers were
filled with complete medium supplemented with 10%
BSA. After 24 h incubation, the cells on the upper
surface of the filters were wiped by cotton swabs and
the cells on the underside of the filters were fixed,
stained with crystal violet and observed under a
microscope.

Microarray

After HepG2 cells were treated with DMSO or
STM, total RNA from each sample was isolated using
Trizol (Invitrogen) and purified using mirVana
miRNA Isolation Kit (Ambion, Austin, TX, USA)
following the manufacturer’s instructions. RNA
integrity was determined by denatured agarose gel
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electrophoresis. DNA microarray was performed
according to standard protocol.
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Figure 1. STM inhibited HCC. A. Chemical structure and the origin of STM. B.
STM decreased the viability of HepG2 cells in a dose-dependent manner. C. STM
increased the apoptosis of HepG2 cells. D. STM decreased the invasion of HepG2
cells. The data were presented as mean * SD (n=3). *** P<0.001. Scale bar: 20 pym. E.
Tumor tissues dissected from nude mice which received subcutaneous injection of
SK-Hep-1 cells. F. Tumor growth curves of each group of nude mice which received
subcutaneous injection of SK-Hep-1 cells. G. The weight of tumor tissues dissected
from nude mice nude mice which received subcutaneous injection of SK-Hep-1 cells.
The data were presented as mean * SD (n=6). *P<0.05, **P<0.01, ***P<0.001.To
select the differentially expressed genes, we used threshold values of 22 and <-2-fold
change and Benjamini-Hochberg corrected p value of 0.05. The data were Log2
transformed and median centered by genes using the Adjust Data function of
CLUSTER 3.0 software. Finally, tree visualization was performed using Java Treeview
(Stanford University School of Medicine, Stanford, CA, USA).

CapitalBio cRNA Amplification and Labeling Kit
(CapitalBio) was used to produce fluorescent dye
labeled c¢DNA. The labeled c¢DNAs were then
hybridized to Agilent human mRNA Array which
was designed with eight identical arrays per slide (8 x

60K format). After hybridization at 42°C overnight,
the arrays were washed with 2X SSC and 0.2% SDS at
42°C for 5 min, followed by washing with 0.2X SSC
and 0.2% SDS at room temperature for 5 min. The
array data were analyzed for data summarization,
normalization and quality control by using the
GeneSpring software V13 (Agilent).

Statistical analysis

The data were presented as mean * standard
deviation (SD). Data from two samples were
compared using t test and data from multiple samples
were compared using single factor analysis of vari-
ance. P<0.05 was considered statistically significant.

Results
STM inhibits HCC

The origin and the structure of STM were shown
in Fig. 1A. STM inhibited the viability of HepG2 cells
in a dose dependent manner (Fig. 1B). Moreover, STM
significantly increased the apoptosis of HepG2 cells
compared to vehicle treated cells (Fig. 1C).
Furthermore, STM significantly inhibited the invasion
of HepG2 cells compared to vehicle treated cells (Fig.
1D). To further confirm that STM inhibits HCC, we
chose poorly differentiated and more malignant HCC
cell line SK-Hep-1 to establish in vivo HCC model. We
found that STM significantly inhibited the growth of
SK-Hep-1 derived tumor in nude mice (Fig. 1E, F, G).
Collectively, these data demonstrate that STM inhibits
HCC.

Microarray analysis of differential genes in
HepG2 cells exposed to STM

To reveal the molecular mechanism by which
STM inhibits the malignant phenotypes of HepG2
cells, we performed microarray analysis to screen
differential genes in HepG2 cells exposed to STM.
Compared to cells exposed to vehicle control, XXX
genes were significantly upregulated and XXX genes
were significantly downregulated in HepG2 cells
exposed to STM (FC >2, P < 0.01, and AUC =1, Fig.
2A, Supplemental Table 1). Among the most
significantly downregulated genes we selected 7
genes for PCR verification, and the results showed
good correlation with microarray data (Fig. 2B).

Pathway and biological process analysis of
differentially expressed genes

Next we performed pathway analysis to identify
significant pathways of differentially expressed gene
(DEGs) in accordance with KEGG (Fig. 3A). We also
classified the DEGs into different biological processes
(Fig. 3B). Among the significant pathways of DEGs,
PI3K-Akt signaling pathway showed the highest P
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Figure 2. The differential expressed genes in HepG2 cells treated by STM. A. Differential expressed genes (DEGs) identified in STM treated HepG2 cells. The x-axis
is log2 ratio of gene expression levels between two cells; the y-axis is p value based on —log10. The red dots represent the very significantly DEGs (P<0.01 and absolute value of
log2(FC)>1 ); the blue dots represent the other DEGs (P<0.01 and absolute value of log2(FC)<=1 ); the gray blue dots represent the transcripts whose expression levels did not

reach statistical significance (P>0.01). B. PCR analysis of seven DEGs.

value, thus we further analyzed the expression
changes of the DEGs involved in PI3K-Akt signaling
pathway. The DEGs upregulated by STM were
indicated by red while those downregulated by STM
were indicated by green (Fig. 4).

Prediction of targets of STM

To understand the mechanism underlying the
anti-cancer activity of STM on HepG2 cells, we
predicted the targets of STM. Chemical
genomics-based virtual screening (CGBVS) could
predict compound-protein interactions (CPls) by
using a support vector machine [8]. K Nearest
Neighbor with K=3 (BNN) is another powerful
program to predict and characterize drug-target
associations [9]. We found that 47 targets of STM were
predicted by CGBVS while 21 targets of STM were
predicted by 3NN. Notably, 8 targets were predicted
as the targets of STM by both programs (Fig. 5).
Network analysis of these 8 targets and the most
DEGs showed the potential functional interaction
between them, which may then regulate the result
gene (effector gene) to execute the activity of STM

(Fig. 6).
Regulation network of JUN and STAT3

Among the 8 predicted targets of STM, JUN and
STATS3 are two important transcription factors known

to regulate the expression of a wide variety of
downstream target genes. Therefore, we performed
network analysis of the DEGs whose expression is
regulated by JUN and STAT3. We found that a large
range of DEGs with different expression changes
induced by STM could be regulated by JUN and
STATS3 (Fig. 7).

Discussion

STM is a secoiridoid glycoside mainly isolated
from Enicostemma species and has demonstrated a
wide variety of biological activities such as
anti-inflammatory,  anti-pyretic,c, ~ anti-microbial,
anti-malarial, and anti-diabetic activity [10-16].
However, the anti-tumor activity of STM has seldom
been reported. In this study, we first evaluated the
anti-tumor activity of STM on HCC cells. Next we
explored gene expression profiling of HepG2 cells
treated by STM and performed bioinformatics
analysis to elucidate the molecular mechanism and
identify potential targets of STM to inhibit HCC.

Cell proliferation is known to be crucially
regulated by cell cycle control. Chemoradiotherapy
agents mainly inhibit tumor growth via the regulation
of the expression and function of cell cycle regulatory
proteins [17,18]. Notably, a previous study reported
that STM inhibited the proliferation and increased the
apoptosis of fibroblast-like synoviocytes and this was
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related to the upregulation of caspase 3, an important
effector of apoptosis, by STM in fibroblast-like
synoviocytes [19]. These findings are consistent with
our data that STM inhibited the proliferation and
increased the apoptosis of HepG2 cells. However, we
did not find caspases in the list of DEGs. Instead, we
found that BCL2L13 (BCL2-like 13), an apoptosis
facilitator, was upregulated by STM in HepG2 cells. In
addition, we found that cyclin-dependent kinase
inhibitor 1A (CDKN1A, also known as p21),
cyclin-dependent kinase inhibitor 1B (CDKN1B, also
known as p27), cyclin-dependent kinase inhibitor 1C
(CDKN1C, also known as p57) were all upregulated
by STM in HepG2 cells (please see supplemental table
1). Collectively, these results suggest that STM
inhibits HCC cell growth via the blockage of cell cycle
progression and the induction of cell apoptosis.
MMPs are crucially involved in the degradation
of extracellular matrix and facilitate tumor invasion
and metastasis. STM has been shown to downregulate
the expression of MMP1 and MMP3 in fibroblast-like

synoviocytes [19]. In this study, we did not find
MMP1 and MMP3 in the list of DEGs. Instead, we
found that MMP2 expression was downregulated by
STM in HepG2 cells. Thus we speculate that STM may
mainly downregulate MMP2 to inhibit the invasion
ability of HepG2 cells. The differential regulation of
MMPs by STM in different cell types may be due to
cell type specificity. Further studies are needed to
reveal the anti-metastasis mechanism of STM in HCC.

Using two different programs CGBVS and 3NN,
we identified 8 targets of STM that were predicted by
both programs. Among the 8 predicted targets of
STM, JUN and STAT3 attracted our attention because
they regulate the expression of a wide variety of
downstream target genes which could modulate cell
proliferation, apoptosis and invasion [20-22].
CDKNI1A expression is known to be repressed by
JUN but its expression was significantly upregulated
by STM in HepG2 cells (please see CDKN1A in bright
red in Fig. 7A). On the other hand, MMP2 expression
is known to be activated by JUN but its expression
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was significantly downregulated by STM in HepG2
cells (please see MMP2 in bright green in Fig. 7A).
These results indicate that JUN is a target of STM and
its activity is inhibited by STM. Similarly, MMP2
expression is known to be activated by STAT3 but its
expression was significantly downregulated by STM
in HepG2 cells (please see MMP2 in bright green in
Fig. 7B). In addition, STM attenuated inflammation
via inhibiting JAK2/STAT3 signaling in adjuvant
induced arthritis [23]. STAT3 is known to be activated
to regulate cell survival and apoptosis in response to
stress [24,25]. Therefore, STAT3 is another target of
STM and its activity is inhibited by STM. Moreover,
STW was shown to  attenuate carbon
tetrachloride-induced liver fibrosis via the inhibition
of TGF81/SMAD pathway [26]. In addition, a recent
study revealed a common pathway that regulated

PISK-AKT SIGNALING PATHWAY

both MMPs and Smad4 in vulvar squamous cell
cancer [27]. While we did not find SMAD, TGF£81 was
shown in Fig. 7B. Next we will perform functional
studies to verify the predicted targets of STM, which
will explain how STM exerts anti-tumor efficacy in
HCC.

In conclusion, STM treatment led to significant
changes in the expression of a variety of genes that
modulate cell survival, cell cycle progression,
apoptosis, and invasion. Moreover, most of these
genes can be clustered into pathway networks such as
PI3K, JUN, STAT3, which are predicted targets of
STM. Further confirmation of these targets will reveal
the anti-tumor mechanisms of STM and pave the way
for the development of STM as a novel agent for
cancer prevention and treatment.
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