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Abstract 

Background: Hepatocellular carcinoma (HCC) has high morbidity and mortality and lacks effective 
biomarkers for early diagnosis and survival surveillance. Origin recognition complex (ORC), consisting of 
ORC1–6 isoforms, was examined to assess the potential significance of ORC isoforms for HCC 
prognosis.  
Methods: Oncomine and Gene Expression Profiling Interactive Analysis (GEPIA) databases were used to 
examine differential isoform expression, stage-specific expression, calculate Pearson correlations and 
perform survival analysis. A human protein atlas database was utilized to evaluate the protein expression 
of ORCs in liver tissue. The cBioPortal database was used to assess isoform mutations and the survival 
significance of ORCs in HCC. Cytoscape software was employed to construct gene ontologies, metabolic 
pathways and gene-gene interaction networks.  
Results: Differential expression analysis indicated that ORC1 and ORC3–6 were highly expressed in 
tumor tissues in the Oncomine and GEPIA databases, while ORC2 was not. All the ORCs were showed 
positive and statistically significant correlations with each other (all P<0.001). ORC1–2 and ORC4–6 
expressions were associated with disease stages I–IV (all P<0.05), but ORC3 was not. Survival analysis 
found that ORC1 and ORC4–6 expressions were associated with overall survival (OS), and ORC1–3 and 
ORC5–6 expression were associated with recurrence–free survival (RFS; all P<0.05). In addition, low 
expression of these ORC genes consistently indicated better prognosis compared with high expression. 
Protein expression analysis revealed that ORC1 and ORC3–6 were expressed in normal liver tissues, 
whereas ORC2 was not. Enrichment analysis indicated that ORCs were associated with DNA metabolic 
process, sequence-specific DNA binding and were involved in DNA replication, cell cycle, E2F-enabled 
inhibition of pre–replication complex formation and G1/S transition. 
Conclusions: Differentially expressed ORC1, 5 and 6 are candidate biomarkers for survival prediction 
and recurrence surveillance in HCC. 
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Introduction 
Liver cancer is one of the most common cancers 

worldwide. Hepatocellular carcinoma (HCC) is the 
most frequent type, comprising roughly 70% to 85% 

of all primary liver cancers [1]. HCC ranks as the sixth 
most common malignancy in the world and accounts 
for approximately 7% of all malignancies [2]. HCC is 
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diagnosed in more than 740 000 new cases each year 
and is the third leading cause of malignancy-related 
deaths, with increasing incidence each year [3]. Many 
risk factors have been identified for HCC, including 
chronic hepatitis B or C virus infection, type 2 
diabetes mellitus, alcohol ingestion and metabolic 
syndrome, among others [4]. Although these factors 
are well known, the prevention and surveillance of 
HCC is still burdensome and the prognosis remains 
unsatisfactory. Even with early diagnosis of HCC, it is 
difficult to treat advanced stage HCC due to its extra- 
and intrahepatic characteristics, including metastatic 
potential [5] and resistance to chemotherapeutic 
approaches such as hepatic artery infusion 
chemoembolization [6], transcatheter arterial 
chemoembolization [7] and the drug sorafenib [8]. To 
improve the rate of early diagnosis of HCC and 
monitor recurrence after hepatectomy, many efforts 
have been made to develop new biomarkers for early 
diagnosis and recurrence prediction, including 
osteopontin, midkine, golgi protein-73 and 
α-fetoprotein-L3 [9], but almost none of which have 
been widely accepted for clinical application.  

Origin recognition complex (ORC), encoded by 
the latheo gene, is involved in the initiation of DNA 
replication and is composed of six isoforms, ORC1–6 
[10, 11]. The ORC1 gene, also called HsOrc1 in 
humans, is weakly expressed in quiescent cells, but 
can be upregulated by cell growth signals [11]. The 
transcription of ORC1 is dependent on the E2F 
transcription factor [11]. In contrast, ORC2 expression 
is regulated differently from ORC1 [11]. Cohen et al. 
examined the localization of ORC1 in human 
leukemia cells and found that it was localized to the 
pericentriolar region during anaphase [12]. 
Phosphorylation of ORC2 and HBO1 induced by 
polo-like kinase 1 leads to gemcitabine resistance in 
pancreatic cancer [13]. Phosphorylation of ORC2 by 
polo-like kinase 1 promotes DNA replication under 
stress conditions [14]. Knockdown of ORC3 increased 
the level of mRNP-bound Nxf1, while knockdown of 
ORC5 decreased the association between Nxf1 and 
mRNP [15]. ORC6 is crucial for the formation of 
pre-replicative complex interactions with ORC 
chaperone proteins that promote chromatin binding 
of ORC [16].  

ORC and the mini-chromosome maintenance 
(mcm) complex are well known to be involved in 
DNA biosynthesis in the cell cycle pathway. Our 
previous results indicated that the MCM complex is 
not only associated with the overall survival (OS) of 
HCC, but can also serve as both a diagnostic and 
prognostic biomarker for HCC [17]. Therefore, we 
conducted the present study to explore potential 
significance of ORC in HCC.  

Material and methods 
Oncomine database analysis 

The Oncomine database (https://www. 
oncomine.org/resource/main.html) was first used to 
profile ORC1–6 isoform expression in multiple cancer 
types, including liver cancer, bladder cancer, breast 
cancer, cervical cancer, colorectal cancer, gastric 
cancer and esophageal cancer. The Oncomine 
database was then used to compare ORC1–6 isoform 
expression in HCC and normal liver tissues in several 
datasets, including the Chen liver [18], Roessler liver 
and Roessler liver 2 [19], Mas liver [20], Wurmbach 
liver [21] and Guichard liver [22] datasets. Criteria for 
the inclusion and exclusion: all the enrolled objects 
were surgical resection and pathological diagnosed of 
HCC.  

Gene Expression Profiling Interactive Analysis 
(GEPIA) database analysis  

The GEPIA2 database (http://gepia2.cancer–
pku.cn/#index) was used to explore transcripts per 
million and further determine ORC1–6 isoform 
expression in HCC and normal liver tissues [23]. 
Survival analysis, including OS and disease–free 
survival (DFS), was employed to examine the 
prognostic significance of ORC1–6 isoforms in HCC at 
median cutoff. In addition, Pearson correlation 
analysis identified correlations between each two 
ORC isoforms in tumor tissues, and analysis by stage 
determined the associations between ORC isoform 
expression and disease stage. 

Human protein atlas (HPA) and cBioPortal 
database analysis  

The HPA database (http://www.proteinatlas. 
org/) was utilized to identify protein expression of 
ORC isoforms in liver tissue in a tissue-based map of 
the human genome [24]. Brown color indicated higher 
expression compared with nattier blue. The cellular 
location of the ORCs was identified using the HPA 
database with a subcellular map [25]. Meanwhile, the 
cBioPortal database (http://www.cbioportal.org/) 
was used to identify the types of ORC isoform 
mutations, including mutation, amplification, and 
deep deletion, and to determine prognosis 
significance of isoforms in the presence and absence 
of mutations [26, 27]. An interaction network between 
ORC isoforms and other genes was constructed using 
the cBioPortal database as well. 

Gene ontology (GO), KEGG pathway 
enrichment analysis and interaction network 
construction 

ORC1–6 isoforms underwent enrichment 
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analysis of GO terms and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways. GO terms, 
including biological processes (BPs), cellular 
components (CCs) and molecular functions (MFs), 
were enriched and visualized using the BinGO plugin 
in Cytoscape software [28, 29]. KEGG pathways were 
enriched and visualized using the ClueGO plugin in 
Cytoscape software [30]. Gene-gene interaction and 
protein-protein interaction networks were 
constructed using the geneMANIA plugin in 
Cytoscape software [31] and the STRING website 
(https://string–db.org/) [32].  

Statistical analysis 
Gene expression analysis by stage and 

differential analysis utilized one-way analysis of 
variance. Survival analysis was performed using the 
log-rank test and Cox test. Cox proportional hazard 
ratios and 95% confidence intervals were included in 
the survival plots. A p-value ≤ 0.05 was considered 
statistically significant. 

Results 
Gene expression analysis 

Studies about ORC isoforms in multiple cancers 
are shown in Figure 1. The significance of ORCs has 
been explored in many types of cancers, especially 
breast cancer, colorectal cancer, leukemia and lung 
cancer (Figure 1). The expression levels of ORC 

isoforms in HCC and normal liver tissues are shown 
in Figure 2. All isoforms were highly expressed in 
HCC tissues compared with normal liver tissues 
(Figure 2A–F). Expression level changes and the 
p-values of changes in ORCs were subsequently 
analyzed. Detailed changes between HCC and normal 
liver tissues in multiple datasets are presented in 
Table 1. Validation studies of the expression levels of 
ORCs in HCC were performed in the GEPIA 
database, which indicated that ORC1 and ORC3–6 
presented high levels of expression in tumor tissues, 
while ORC2 showed the opposite results (Figure 3).  

Protein expression and cellular locations  
Protein expression and cellular locations of 

ORCs were analyzed in the HPA database. Protein 
expression analysis found that ORC1 and ORC3–5 
showed moderately positive expression in normal 
liver tissues (Figure 4A, C–E); ORC6 showed weakly 
positive expression (Figure 4F), whereas ORC2 was 
not expressed in liver tissue (Figure 4B). ORC1 was 
detected in the nucleus, plasma membrane and 
cytosol (Figure 4G); ORC2 was detected in 
nucleoplasm and cytosol (Figure 4H); ORC3 was 
detected in nucleoplasm (Figure 4I); ORC4 was 
detected in the nucleus and nucleoli (Figure 4J); ORC5 
was detected in nucleus and cytosol (Figure 4K); and 
ORC6 was detected in the nucleus and nucleoli 
fibrillar center (Figure 4L). 

 

Table 1. Analysis of ORC isoform expressions in HCC and NR.  

Gene  Reporter Types FC P value T test  Reference 
ORC1 IMAGE:194236 HCC vs. NR 1.477 1.34E-4 3.724 Chen liver (Reference 55) 
 205085 _at HCC vs. NR 1.156 0.001 3.287 Roessler liver (Reference 56) 
 205085 _at HCC vs. NR 1.133 3.21E-9 5.933 Roessler liver 2 (Reference 56) 
 205085 _at HCC vs. NR 1.052 0.021 2.109 Mas liver (Reference 57) 
 205085 _at HCC vs. NR 1.271 0.007 2.613 Wurmbach liver (Reference 58) 
ORC2 204853 _at HCC vs. NR 1.322 2.78E-5 4.620 Mas liver (Reference 57) 
ORC3 IMAGE:260336 HCC vs. NR 1.789 6.71E-14 8.037 Chen liver (Reference 55) 
 210028_s_at HCC vs. NR 1.511 1.80E-31 12.701 Roessler liver 2 (Reference 56) 
 210028_s_at HCC vs. NR 1.249 3.77E-4 3.609 Mas liver (Reference 57) 
 210028_s_at HCC vs. NR 1.316 0.002 3.083 Roessler liver (Reference 56) 
ORC4 203351_s_at HCC vs. NR 1.366 2.25E-19 9.367 Roessler liver 2 (Reference 56) 
 203351_s_at HCC vs. NR 1.287 0.011 2.417 Roessler liver (Reference 56) 
 203352 _at HCC vs. NR 1.082 1.22E-5 4.268 Roessler liver 2(Reference 56) 
ORC5 204957 _at HCC vs. NR 1.445 2.97E-22 10.185 Roessler liver 2 (Reference 56) 
 211212_at HCC vs. NR 1.217 2.02E-13 7.513 Roessler liver 2 (Reference 56) 
 07-103594861 HCC vs. NR 1.053 1.71E-7 5.439 Gurchard liver (Reference 59) 
 204957 _at HCC vs. NR 1.293 0.015 2.245 Roessler liver (Reference 56) 
 211212_at HCC vs. NR 1.132 0.042 1.797 Roessler liver (Reference 56) 
 204957 _at HCC vs. NR 1.275 0.009 2.575 Wurmbach liver (Reference 58) 
ORC6 219105_x_at HCC vs. NR 1.690 4.12E-5 4.728 Roessler liver (Reference 56) 
 219105_x_at HCC vs. NR 2.002 1.26E-6 4.166 Wurmbach liver (Reference 58) 
 219105_x_at HCC vs. NR 1.476 6.75E-23 10.623 Roessler liver 2 (Reference 56) 

Note: HCC: hepatocellular carcinoma; NR: normal; FC: fold change; ORC1: origin recognition complex 1; ORC2: origin recognition complex 2; ORC3: origin recognition 
complex 3; ORC4: origin recognition complex 4; ORC5: origin recognition complex 5; ORC6: origin recognition complex 6. 
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Figure 1. Analysis of ORC1–6 isoforms in multiple cancers. 

 
Figure 2. Expression of ORC1–6 isoforms in normal liver and HCC tissues. A–F: Expression of ORC1–6 isoforms in normal liver and HCC tissues. 
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Figure 3. Expression and transcripts of ORC1–6 isoforms in normal liver and tumor tissues. A–F: Expression of ORC1–6 isoforms in normal liver and tumor tissues; 
G–L: Transcripts of ORC1–6 isoforms in normal liver and tumor tissues. 

 

OS and DFS analysis 
OS analysis indicated that ORC1 and ORC4–6 

expression were associated with prognosis (Log-rank 
test results: P<0.001, P=0.026, P=0.004, and P<0.001 for 
Figure 5A, D–F, respectively), whereas ORC2 and 
ORC3 were not associated with prognosis (Log-rank 

test results: P=0.1 and P=0.19 for Figure 5B–C, 
respectively). Moreover, low expression of ORC1 and 
ORC4–6 were consistently associated with better 
prognosis compared with higher expression.  

DFS analysis indicated that ORC1–3 and ORC5–
6 expression were associated with prognosis 
(Log-rank test results: P=0.019, P=0.017, P=0.047, 
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P=0.035 and P<0.001, respectively, for Figure 5G–I, K–
L), but ORC4 expression was not associated with 
prognosis (Log-rank test, P=0.1; Figure 5J). Moreover, 
all five ORCs consistently revealed that low 
expression was associated with better prognosis 
compared with high expression. These results 
suggested that ORC isoforms may act as oncogenes in 
HCC.  

Pearson correlation and stage analysis 
Pearson correlation analysis was performed for 

ORC isoforms in HCC samples. Analysis findings 
demonstrated that each two ORC isoforms were 
positively correlated (Figure 6). In addition, all 
correlations were statistically significant (P<0.05). 
Furthermore, analysis by disease stage found that all 
ORCs exhibited higher expression with progression 
from stage I to stage III (Figure 7). However, stage IV 
always induced the lowest expression compared with 
stages I, II and III for all the ORCs. To summarize, 
ORC3 was not significantly different among stages I–
IV (P=0.0818, Figure 7C), but the other isoforms were 
significantly associated with stages I–IV (P=0.0001, 
P=0.00283, P=0.0405, P=0.0268 and P=8.94e–6, 
respectively; Figure 7A–B, D–F).  

Mutation analysis and interaction network 
Mutation analysis in the cBioPortal database 

indicated that all of the ORCs had mutations (Figure 
8A–F). Specifically, ORC1 had amplification more 
than 12% in HCC and intrahepatic cholangio-
carcinoma (ICC) and mutation less than 2% HCCs 
(Figure 8A); ORC2 had amplification more than 1% 
and mutation less than 1% (Figure 8B); ORC3 had 
amplification, mutation and deep deletion more than 
2.5% together (Figure 8C); ORC4 had mutation and 
deep deletion more than 1.5% together (Figure 8D); 
ORC5 had mutation and amplification more than 1% 
together (Figure 8E); ORC6 had amplification and 
deep deletion more than 1.5% together (Figure 8F). In 
addition, survival analysis including OS and DFS 
with and without mutations of ORC isoforms 
suggested that mutations did not associate with either 
OS or DFS (Figure 8G–H). We then constructed an 
interaction network using the ORC isoforms, which 
demonstrated that ORCs acted in concert with PSM 
family members such as PSME1, PSMB6 and PSMC4 
to control expression of RRM2, POLE, POLE2, E2F3 
and TK1, and showed controlling state changes of 
REV3L, CDC7, MCM7, ATR, PSMB3 and others 
(Figure 8I).  

 

 
Figure 4. Protein expression and localization of ORC1–6 isoforms in liver tissue and cell lines. A–F: Protein expression of ORC1–6 isoforms in liver tissues; G–L: 
Localization of ORC1–6 isoforms in cell lines.  
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Figure 5. OS and RFS plots of patients expressing ORC1–6 isoforms in HCC. A–F: OS plots of patients expressing each of the ORC1–6 isoforms in HCC; G–L: RFS 
plots of patients expressing each of the ORC1–6 isoforms in HCC.  

 

Enrichment analysis and interaction network 
of gene-gene and protein-protein interactions 

We further explored metabolic pathways and 
GO terms of ORCs. Enrichment of GO terms indicated 
that ORCs were involved in chromosomal part, the 
nuclear origin of ORC, the nuclear lumen and 
macromolecular complexes, etc. in CCs (Figure 9A); 
DNA-dependent DNA replication, DNA metabolic 
processes and cellular biosynthetic processes, etc. in 
BPs (Figure 9B); DNA binding, sequence-specific 
DNA binding and L-ornithine transmembrane 
transporter activity, etc. in MFs (Figure 9C). Pathway 

results indicated that ORCs were involved in DNA 
replication, cell cycle, E2F-enabled inhibition of 
pre-replication complex formation and the G1/S 
transition, etc. (Figure 10A). The gene–gene 
interaction network suggested that ORCs were 
co-expressed interactively with MCM2-8, MCM-10, 
CDC6-7 and CDC45, etc. (Figure 10B). ORCs showed 
interactions in the pathway with MCM members and 
CDC members. The protein–protein interaction 
network suggested that all of the ORCs were 
co-expressed and have determined interactions in 
experiments and databases (Figure 10C). 
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Figure 6. Pearson correlation plots among ORC1–6 isoforms in HCC tissues. A–E: Pearson correlation plots between ORC1 and ORC2–6 isoforms; F–I: Pearson 
correlation plots between ORC2 and ORC3–6 isoforms; J–L: Pearson correlation plots between ORC3 and ORC4–6 isoforms; M–N: Pearson correlation plots 
between ORC4 and ORC5–6 isoforms; O: Pearson correlation plots between ORC5 and ORC6. 

 
Figure 7. Analysis of the expression of ORC1–6 isoforms at different disease stages. A–F: Analysis of ORC1–6 isoform expression at each disease stage. 
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Figure 8. Analysis of mutations, survival plots and interaction networks of ORC1–6 isoforms in HCC and ICC. A–F: Analysis of mutations of ORC1–6 isoforms in 
HCC and ICC; G–H: OS and RFS in patients expressing ORC1–6 isoform mutations; I: Interaction network among ORC1–6 isoforms. 

 

Discussion 
Our present study explored the potential 

prognostic significance of ORC1–6 isoforms in HCC. 
We discovered that ORC1–6 were highly expressed in 
HCC tissues compared to normal liver tissues. In 
addition, we found that ORC1 and ORC4–6 
expression were associated with OS and that ORC1–3 
and ORC5–6 expressions were associated with DFS. 
Low expression of these genes consistently indicated 
better prognosis compared with higher expression. 
These results suggest that ORC isoforms may act as 
oncogenes in HCC. Protein expression analysis 
revealed that ORC1 and ORC3–6 were also expressed 
in normal liver tissues. Combining ORC expression 
and survival analyses, we conclude that ORC1, 5 and 
6 are candidate biomarkers for survival prediction 
and recurrence surveillance. Enrichment analysis 
indicated that ORCs were associated with DNA 
replication, chromosomal part, DNA metabolic 
process, DNA binding and sequence-specific DNA 
binding, and were also involved in DNA replication, 
cell cycle, E2F-enabled inhibition of pre-replication 
complex formation and the G1/S transition. Further 
investigation to validate the above findings is 
warranted.  

ORC, consisting of six subunits, functions as the 
initiator in recognizing replication start sites and 
interacts with subsequent replication factors [33]. It 
was first discovered in Saccharomyces cerevisiae as a 

multi-protein complex that was connected to the 
autonomously replicating sequence [34]. The ORC 
plays a pivotal role in the initiation of DNA 
replication in all eukaryotic systems [16]. Molecular 
interactions within the eukaryotic replication origin 
occur within the overall structure [12]. In addition, 
melting of the DNA double helix facilitates a 
conformational change in the ORC-related 
post-replicative state which can prevent the 
re-initiation of replication at the specific binding site 
[35]. In eukaryotes, ORC is associated with chromatin 
at multiple sites [36-38] and these sites may be 
candidate replication origins, which initiate the 
assembly of the pre-replication complex at the G1 
phase of the cell cycle [39, 40].  

In addition to its main role in the formation of 
the pre-replication complex on chromosomes prior to 
DNA replication, subunits of ORC have been reported 
to be involved in several chromosome-associated 
processes [33, 41]. Hemerly et al. found that ORC1 
controls centriole and centrosome re-duplication, as 
well as the initiation of DNA replication in human 
U2OS cells [42]. ORC2 and other ORC isoforms were 
first reported as essential for DNA replication 
initiation by connecting to replication origin sites to 
form the pre-replication complex at late G1 and early 
S phase in mammalian cells [41]. ORC2 was found 
localized to the centrosome and centromere, which 
was essential for proper chromatin segregation at the 
G2/M phase [43]. Wang et al. found that ORC2 was 
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modified by the small ubiquitin-like modifier (SUMO) 
at the G2/M phase of the cell cycle and that 
SUMOylation of ORC2 was crucial for the smooth 
transition into mitosis [44]. ORC2 also localized to the 

telomeric region and plays a pivotal role in telomere 
homeostasis [45, 46]. Depletion of ORC2 leads to 
mitotic arrest because of defects in chromosome 
condensation [43].  

 

 
Figure 9. Enriched biological processes, cellular components and molecular functions networks of ORC1–6 isoforms. A–C: Networks of ORC1–6 isoforms showing 
enriched cellular components (A), biological processes (B) and molecular functions (C). 
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Figure 10. Enriched KEGG pathways, gene-gene and protein-protein interaction networks of ORC1–6 isoforms. A: Enriched KEGG pathways of ORC1–6 isoforms; 
B: Gene-gene interaction network of ORC1–6 isoforms; C: Protein-protein interaction network of ORC1–6 isoforms. 

 
ORC3 interacts with HP1 at the heterochromatin 

foci to promote the organization of higher chromatin 
structure [47]. ORC4 and ORC6 can directly interact 
with ENY2, which is bound to type C2H2 zinc fingers 
of insulator protein Su (Hw) and CTCF in Drosophila 

[48-50]. Moreover, protein Su (Hw) opens chromatin 
regions and accelerates the recruiting of the ORC to 
chromatin [51]. ORC5 interacts with the histone 
acetyltransferase GCN5/KAT2A, making origins of 
replication more accessible for activation [47]. 
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Multi-mono-ubiquitylation of ORC5 facilitates this 
kind of interaction, enabling opening of the local 
origin chromatin environment and stimulating origin 
activation [52].  

ORC6 is the most divergent and evolutionarily 
least conserved subunit among all the ORC proteins 
[16]. ORC6 interacts with other chaperone proteins, 
such as high mobility group protein A1a, which may 
be helpful for targeting ORCs to specific chromatin 
regions in addition to functioning in the assembly of 
the pre-replicative complex [53]. ORC6 binds to the 
outer kinetochore during mitosis and localizes to the 
midplane of cell division in anaphase where it is 
required for cytokines through a connection with 
septin protein [16]. Thomae et al. found that 
replication competence was significantly associated 
with the potential of mutant forms to cooperate with 
human ORCs, suggesting an active role of ORC6 in 
origin activation [16]. They also observed that ORC6 
was abundantly expressed in correlation with ORC2 
expression and contributes to the replication of the 
initiation process independent from ORC1–5 [16].  

Diffley et al. reported that the main function of 
ORCs was to initiate replication origins in the G1 
phase of the cell cycle [39, 40]. However, DePamphilis 
demonstrated that ORCs were related to chromatin at 
other stages of the cell cycle or in G0 cells [54]. These 
findings suggest that the functions of ORCs are not 
restricted to DNA replication. Sasaki et al. 
demonstrated that ORC also initiated non-replication 
functions [55, 56] such as transcription silencing [57], 
chromatid cohesion [58], neuron development [59] 
and cytokinesis [60]. Notably, previous studies have 
reported the association of ORC with human diseases, 
such as Meier-Gorlin syndrome, Epstein-Barr 
virus-infected diseases, American trypanosomiasis 
and African trypanosomiasis [55].  

More specifically, De Munnik et al. observed 
mutations of ORC1, 4 and 6 in a study involving 35 
individuals with Meier-Gorlin syndrome [61]. Young 
indicated that because ORC1 was significantly 
upregulated after irradiation for 6 and 24 hours in 
PC-3 cells, ORC1 and other DNA repair candidates 
may be potential targets for radiation sensitization 
and serve as predictive biomarkers for prostate cancer 
[62]. Chen et al. found that ORC1 participated in the 
XIST/miR-140-5p/ORC1 axis of progression in 
cervical cancer, which will shed new light on 
epigenetic diagnostics and therapeutics in cervical 
cancer [63]. Our present study found that ORC1 was 
involved in DNA binding and biosynthesis in the cell 
cycle, which is consistent with previous findings of 
the main functions of ORCs [39, 40, 54]. Moreover, our 
study indicated that ORC1 was not only associated 
with both OS and DFS, but was also a potential 

biomarker for HCC survival prediction and 
recurrence surveillance. This potential role of ORC1 in 
tumors is in accordance with previous reports of 
cervical cancer and prostate cancer [62, 63].  

A study by Radojkovic et al. found a novel 
mutation A286V within ORC4 and reported that this 
mutation might be a favorable prognostic biomarker 
for B–cell lymphoproliferative disorders [64]. Our 
study revealed that ORC4 expression, highly 
expressed in tumor tissue, was associated with OS 
and might be a candidate biomarker for HCC. ORC2 
and ORC5 were reported to be upregulated in 
microarray data originating from the cisplatin- 
sensitive T24 cell line and cisplatin-resistant T24R2 
cell line [65]. However, this study did not report any 
prognostic value for ORC2 and ORC5. Our study 
indicated that ORC2 expression was correlated with 
DSF in HCC; furthermore, ORC5 expression was 
associated with both OS and DFS in HCC, suggesting 
it is a novel candidate biomarker for HCC survival. 
The role of ORC3 has not yet been documented in 
tumors. However, a single nucleotide polymorphism 
of ORC6 was reported as a breast cancer-related 
candidate gene [66]. Xi et al. found that ORC6 was 
highly expressed in tumors compared to paired 
normal tissues in colorectal cancer [67]. Thus, our 
results agree with Xi et al.’s finding of high expression 
of ORC6 in tumor tissues. These authors further 
demonstrated that ORC6 expression was associated 
with 5-fluorouracil-related resistance in human 
colorectal cell lines [68]. Moreover, they found that 
decreased ORC6 expression sensitized human 
colorectal cell lines to 5-fluorouracil and cisplatin, and 
thus, ORC6 may be a novel therapeutic target in colon 
cancer [69]. Our present study demonstrated that 
ORC6 was correlated with both OS and DFS of HCC, 
indicating that it may serve as a prognostic biomarker 
for HCC survival. 

There are several limitations of our study, which 
should be recognized. First, our findings will require 
further large population and cohort validations, 
including clinical parameters and our medical center 
cohort validation. Second, our study results need to be 
further validated in Asian population cohorts, 
including our medical center cohort. Then, additional 
experiments are needed to explore the specific 
mechanisms underlying ORC involvement in HCC. 
Finally, the potential clinical application of ORCs 
should be explored in multi–race studies in multiple 
countries. 
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