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Abstract 

Modern research into carcinogenesis has undergone three phases. Surgeons and pathologists started the 
first phase roughly 250 years ago, establishing morphological traits of tumors for pathologic diagnosis, and 
setting immortality and autonomy as indispensable criteria for neoplasms. A century ago, medical 
doctors, biologists and chemists started to enhance “experimental cancer research” by establishing many 
animal models of chemical-induced carcinogenesis for studies of cellular mechanisms. In this second 
phase, the two-hit theory and stepwise carcinogenesis of “initiation-promotion” or 
“initiation-promotion-progression” were established, with an illustrious finding that outgrowths induced 
in animals depend on the inducers, and thus are not authentically neoplastic, until late stages. The last 40 
years are the third incarnation, molecular biologists have gradually dominated the carcinogenesis 
research fraternity and have established numerous genetically-modified animal models of carcinogenesis. 
However, evidence has not been provided for immortality and autonomy of the lesions from most of 
these models. Probably, many lesions had already been collected from animals for analyses of molecular 
mechanisms of “cancer” before the lesions became autonomous. We herein review the monumental 
work of many predecessors to reinforce that evidence for immortality and autonomy is essential for 
confirming a neoplastic nature. We extrapolate that immortality and autonomy are established early 
during sporadic human carcinogenesis, unlike the late establishment in most animal models. It is 
imperative to resume many forerunners’ work by determining the genetic bases for initiation, promotion 
and progression, the genetic bases for immortality and autonomy, and which animal models are, in fact, 
good for identifying such genetic bases. 
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Introduction 
Cancer research has been going on for 2,700 

years [1], but in our opinion systematic studies of 
cancer had not been expedited until the 1760s when 
several historical events occurred that greatly 
accelerated the research: First, in 1761 John Hill 
published his observation of cancers in the nasal 
cavity of snuff users, which is the first report on a 
connection between chemicals and human cancer [2]. 
Second, in 1775 Pott reported his “chirurgical” 
observation of cancers in several body sites and 
identified cancer in the scrotal skin of British chimney 
sweeps [3]. Because chimney sweeps in other 
European countries did not have this cancer, it was 
suspected that British chimney sweeps, unlike those 
in other countries, did not bathe as a matter of honor, 
which allowed carcinogenic hydrocarbons from soot 
to be retained on the scrotal skin. Ensuing 
requirement of bathing at least once a week, 
recommended by Hill, significantly prevented this 
cancer occurrence. This is the first documented 
success in cancer prevention, as described by Sell [4]. 
Third, according to Triolo’s comprehensive review 
[5], the French Royal Academy of Surgery in 1772 and 
the Lyon Academy of Science in 1733 offered prizes 
for original essays on the question of “what is cancer”, 
which drove a national-wide search for the nature and 
definition of cancer. Fourth, the latter prize mentioned 
above was awarded to the surgeon-chemist Bernard 
Peyrilhe for his work on the inoculation of dogs with 
human-derived cancer fluid, which was published in 
1774 as the first documented animal experiment on 
cancer in the literature [5], to our knowledge. 

One of the results from the last 250 or so years of 
extensive research on cancer is the so enormous size 
of the literature that often becomes a tribulation for 
researchers. Actually, even in 1955, Alexander 
Haddow (1907-1976) had pointed this out, writing 
that “the mere abundance of the data …presents a 
growing problem, towards which there are two 
extreme types of reaction: first, that of the happy 
researcher who is content to ignore the original 
literature, and to rely upon others for his information; 
and secondly, the reaction of those whom the 
literature totally enslaves” [6]. Few of today’s 
researchers peruse the ancient literature due to their 
many tiers of stress, such as dwindling funding and 
increasing difficulty in obtaining tenured faculty 
positions, besides the colossal volume of the literature 
to read. As a repercussion, cancer research has 
manifested a discontinuous growth, just like cancer 
itself that is a discontinuous growth from its normal 
parental cell, meaning that few of today’s cancer 
students know and address the questions raised by 
their predecessors. 

We write this perspective article to review some 
seminal findings by different trailblazers in 
“carcinogenesis research”, which is herein defined as 
the study 1) on the procedures that convert a normal 
cell to a malignant one and then to more malignant 
states, and 2) on the mechanisms underlying these 
steps. Cancer’s clinical quarter will not be touched 
upon to avoid digression. The idiom of 
“tumorigenesis”, which is of broader scope as it also 
covers the formation of benign tumors, is used 
sometimes, partly because many animal models 
produce both benign and malignant lesions.  

In our opinion, modern research on tumori-
genesis has undergone three phases. The first one 
began in the late 18th century and went through the 
entire 19th century [5, 7, 8]. The cancer research 
fraternity in this phase was dominated by surgeons, 
pathologists, and anatomists. They established 
autopsy and biopsy as the routine pathology practice, 
which led to the establishment of the morphological 
traits of neoplasms [5, 9] and some theoretical 
achievements, such as the supposition by Virchow 
(1821-1902) that cancer resulted from chronic 
irritation [10-13], mainly inflammation [7, 8, 14]. The 
second phase had its inception roughly at the 
beginning of the 20th century and was coined as an 
epoch of “experimental cancer research” by 
prominent cancer pathologists James Ewing 
(1866-1943), according to Cardiff and Kenney [15], 
and Harold Leroy Stewart (1908-1998) [9]. In this 
incarnation, medical doctors, biologists, and chemists 
established and characterized many animal models of 
chemical-induced tumorigenesis [16]. Using these 
models, they established the two-hit theory [17-21], 
mutation theory [22-24], clonal evolution theory 
[25-28], as well as the multi-stage [29-32], i.e. 
initiation-promotion [33-38] or initiation-promotion- 
progression [39-44], models of carcinogenesis. Animal 
models of irradiation-induced carcinogenesis 
emerged during this period as well [45]. 

Starting about 40 years ago, molecular biologists, 
many lacking strict training and clinical experience in 
surgical pathology or oncology, have gradually 
replaced medical doctors and traditional biologists to 
now dominate the fraternity of carcinogenesis 
research [46, 47], thus moving “experimental cancer 
research” into a new phase. In this latest incarnation, 
molecular biologists have established numerous 
genetically manipulated animal models of carcino-
genesis and in vitro systems of neoplastic 
transformation of normal cells which have led us to 
deeper mechanisms of how genes regulate behaviors 
of normal and neoplastic cells. We now enjoy 
enormous amounts of information and great details 
on molecular signaling pathways for almost all 
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physiological functions and pathological alterations in 
the human body. However, few of the genetic animal 
models established so far address the traditional 
multiple stages of “initiation-promotion-progression” 
[41], leaving those mavens who are familiar with their 
predecessors’ work to wonder how to couple the 
stepwise biological changes observed previously with 
the molecular alterations seen in these genetic models. 
Moreover, few of the publications reporting these 
genetic models provide material evidence for 
immortality and autonomy of the resulting lesions. To 
warrant this statement, we encourage readers to 
search published reports of these genetic models for 
“immortal”, “autonomous”, or similar keywords, to 
see how many of them describe these properties of the 
resulting lesions. By reviewing the work of many 
forerunners, most being preeminent cancer 
pathologists, we attempt in this essay to reinforce 
immortality and autonomy as the cardinal, yet 
long-neglected, criteria to qualify outgrowths as 
neoplasms.  

Many chemical-induced tumors in animals 
remain dependent on that chemical until late 
stages 

To our knowledge, the first experimentally 
induced tumors in animals were reported, in the 
German literature, by Ledoux-Lebard in 1885 [48], 
who, according to Triolo [7], observed epithelioma in 
the lungs of the rabbits injected with a mixture of 
sweet almond oil and croton oil. In 1900, Brosch 
induced atypical epithelial growths in the crushed 
skin of a guinea pig with applications of a 
xylol-paraffin solution [49]. As described by Davis 
[50, 51] and Vasiliev [52], in 1906, Fischer showed that 
subcutaneous injections of Scarlet Red into the ears of 
rabbits induced papilloma, which regressed upon 
discontinuation of the injections but reappeared with 
further injections [53]. According to Davis [50, 51], 
these phenomena were confirmed by Helmholz in 
1907 and by Werner in 1908. Between 1914 and 1924, 
Katsusaburo Yamagiwa (1863-1930), after he left 
Virchow and returned to Japan [54, 55], induced 
papilloma and papillocarcinoma in rabbits’ ears by 
painting the ears with coal tar; metastases were seen 
in lymph nodes in some cases. However, the tumors 
regressed upon cessation of the tar-painting but 
recurred quickly if the painting resumed [56, 57]. 
Yamagiwa thus concluded that “carcinomas do not 
develop as carcinomas from the beginning, and do not 
always continue as carcinomas” [57]. This “do not 
always continue” is the first statement in the 
literature, to our knowledge, stating that induced 
cancer can disappear spontaneously. During 1930s 
and 1940s, Peyton Rous (1879-1970), a Nobel laureate, 

confirmed the regression of the lesions upon tar 
discontinuation and their quick reappearance upon 
tar repainting [38, 58, 59]. Actually, according to Rous, 
Des Ligneris had already confirmed in 1930 that,“…a 
second period of tarring brings out warts sooner than 
the first” [58]. Realizing that the reversible lesions 
could not be authentic neoplasms, Rous described 
them as warts, which are hyperplastic lesions, and 
wrote in 1940 that, “…it will be seen that the tar warts 
of rabbits are tumors by all of the standard criteria 
except two. They have no capacity for independent 
growth like that exhibited by most (but not all) 
classical tumors; and the changes in their cells may 
conceivably be reversible since they often become 
smaller and vanish” [58]. The two unmet criteria in 
Rous’ observations, i.e. “no capacity for independent 
growth” and being “reversible”, are later referred to 
as “autonomy” and “immortality” in the literature. 
Rous further wrote that, “…in the current definition 
of a tumor no allowance is made for neoplasms which 
depend upon favoring factors for existence, and it 
cannot be used to rule them out” [58]. Here, the lesion 
inducer is dubbed as “favoring factors”.  

Chronic treatment of rats with 7,12-diemthyl-
benz(a)anthracene (DMBA) can induce mammary 
tumors, but sustenance of the tumors requires 
continuation of DMBA [60-63]. Continuous feeding of 
rats with 3-methylcholanthrene could induce palpable 
mammary tumors as early as the 20th day from the 
start of the feeding [64]. Painting the skin of C57 
brown mice with 3-methylcholanthrene could also 
induce palpable tumors as early as the 31st day [65], 
but 15 of the 22 induced skin tumors regressed 
completely upon cessation of the inducer and only 
three of the persisting 15 evolved to histological 
malignancies [65]. Similarly, a large number of 
papilloma could be induced by painting the skin of 
albino mice with 3:4-benzyprene, but the tumors 
actually sloughed off and only a few progressed to 
carcinomas [66]. After having studied successive 
stages of carcinogenesis [67-70], Rusch wrote in 1950 
that carcinogenesis generally consisted of “induction, 
reversibility and progression” [71], which clearly 
points out that lesions can be immortal and 
autonomous only at a late stage. The typical 
inducer-dependency until a late stage can be 
exemplified by the skin carcinogenesis model 
presented by Berenblum in 1947 [34], which, in 
Haddow’s words, “proceeds from the normal 
epithelium first to an early non-specific hyperplasia, 
second to a specific pre-neoplastic hyperplasia, and 
then to the emergence of papillomata, and how later 
stages can be recognized in the progressive growth of 
such papillomata, their conversion into carcinoma, 
and the uncontrolled growth of the latter…This 
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general sequence takes place equally well whether 
exposure to the carcinogen is continued or not” [72]. 

Hormone-induced tumors in animals are 
inducer-dependent until late stages 

As comprehensively reviewed by Cardiff and N 
Kenney [15], breast cancer has been known to be 
regulated by female hormones since 1896 when 
Beatson reported the regression and recurrence of a 
breast lump in a 33-year-old woman following 
removal of her ovaries [73]; other similar cases were 
also reported in the following years [74, 75]. Lathrop 
and Loeb also reported similar findings in spayed 
mice in 1916 [76]. Chronic treatment of rats and mice 
with estrogens can induce cancers in the bladder and 
mammary glands and benign tumors in the pituitary 
and testes [77-92], and can also induce uterine tumors 
[93]. The ACI strain (August strain crossed with 
Copenhagen strain, also called AxC) of rats may be 
more susceptible than other strains to the induction of 
the mammary and pituitary tumors [78, 94], but we 
once found that about one-fourth of the females 
lacked one side of the uterus and ovary (DJ Liao’s 
unpublished data), suggesting that the ACI strain 
may bear a recessive mutation in a relevant but not 
yet identified gene. Treatment of mice with estrogen, 
or with both estrogen and androgen, can induce 
benign and malignant tumors in the cervix and 
vagina; these malignant tumors are transplantable to 
other mice treated with the hormones [95-101]. 
Administration of androgens to rats can induce 
prostate [102-106] and uterine [107, 108] cancers. 
Concomitant treatment of rats with estrogen and 
androgen can induce mammary and prostate cancers 
much more quickly than treatment with androgen or 
estrogen alone [102-106, 109-114] and can induce 
uterine leiomyomas as well [115]. Administration of 
estrogen to hamsters can induce malignant renal 
tumors with abdominal metastases [116-121], while 
administration of both estrogen and androgen to 
hamsters can induce malignant tumors in the kidneys 
and induce benign and malignant tumors in the 
uterus, in the skin, and in the epididymal tail and 
adjacent ductus deferens [102, 122, 123]. Moreover, 
gonadal and gonadotrophic hormones have also been 
shown to possess the ability to induce endocrine cell 
tumors in ovaries or testes [90, 124-127]. 
Transplantation of the ovary into the spleen can cause 
neoplasia of the ovary as well, because it eliminates 
the feedback control regulating hormonal synthesis in 
the ovary and provides the ovary with unrequited 
stimulus of pituitary hormones [128]. 

Estrogen-induced mammary cancer, as well as 
pituitary and testicular tumors, have been known 
since the 1930s to regress partially or completely upon 

withdrawal of the hormone, and the tumors can 
sustain themselves without estrogen treatment only at 
very late stages [77, 87, 100, 129-146] (and DJ Liao’s 
personal experience). Initially, estrogen-induced 
pituitary tumors can be transplanted only to animals 
treated with estrogens, but not to the untreated 
animals, evincing their dependency on an excessive 
amount of estrogen [77]. However, they can 
eventually evolve to estrogen-independency [147, 
148]. The Nobel laureate Charles B. Huggins 
(1901-1997) had shown in both animal studies and 
human clinics that castration or treatment with 
estrogens could cause regression of prostate cancer at 
certain stages, signifying that this cancer is 
hormone-dependent until a late stage [149-151]. In the 
words of Jacob Furth (1896-1979), a renowned 
pathologist [152-154], “this (prostate) tumor is an 
example of a growth in man with a spectrum ranging 
from conditioned to highly autonomous type. The 
cases of Huggins that were controlled by castration 
(that is, removal of sources of androgens) may be 
regarded as dependent; those which partially or 
temporarily regressed after castration or estrogen 
treatment, as partially dependent; those not 
influenced by such therapy, as autonomous” [155]. 
Estrogen-induced renal tumors in hamsters, including 
their abdominal metastases, will regress upon 
cessation of the estrogen treatment unless the tumors 
are at very advanced stages [156-159] (and DJ Liao’s 
empirical knowledge). Initially, these renal tumors are 
transplantable only to those hamsters that are treated 
with estrogen, connoting that the tumors still depend 
on an excessive amount of estrogen, but autonomy 
can eventually be achieved by manipulation of the 
estrogen in the recipient animals [119, 159, 160]. The 
hormone dependency seen in all of these studies is the 
rationale behind the anti-hormone treatments of 
hormone-dependent cancers [161-163]. 

Treatment of mice with iodine-131 (I-131) or 
other anti-thyroid drugs can induce pituitary tumors 
that secrete thyroid stimulating hormone (TSH) [77, 
164-168] because the drugs damage the thyroid and 
thus decrease the levels of thyroid hormones. This, in 
turn, stimulates proliferation of TSH secretory cells in 
the pituitary [169-173]. By the same principle, partial 
thyroidectomy of rats and mice can cause pituitary 
adenomas as well [174-179]. The tumors can be 
transplanted [180]; initially only to those mice treated 
with thiouracil or other goitrogenic compounds that 
induce TSH and then gradually to normal mice [181], 
which again shows the trajectory of “initial 
dependence and then autonomy”. 

Thyroid neoplasms can be induced in mice by 
treatment with thiouracil or other goitrogenic 
compounds [174, 177, 178, 182-192] or with I-131 [171, 
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193-196] as a sequel of a high amount of TSH secreted 
from the pituitary. These thyroid tumors are 
TSH-dependent but often metastasize to lymph nodes 
[155] and the lungs [155, 174, 185], although the tumor 
cells can be converted to TSH-independence via 
continuous subpassage in culture [155, 174, 177, 178, 
183]. The hormone dependency of thyroid tumors, 
including adenocarcinomas, also occurs in a Zebrafish 
colony as feeding the fish with salt that contains 
iodine causes regression of the tumors [197]. In 1953, 
Furth wrote that “conditions can be created whereby 
uncontrolled proliferation of one cell type is obtained, 
resulting in a tumor-like growth. Manipulations 
attaining this need not involve any intrinsic alteration 
in cells causing them to behave as cancer cells. 
Whether or not such tumors and the similar human 
metastasizing thyroid adenomas are considered 
neoplastic depends on the definition of a neoplasm. In 
our terminology such thyroid tumors are conditioned 
neoplasms. In the course of subpassage in 
thiouracil-treated mice the dependent growths give 
rise to autonomous growths which possess individual 
features of their own and can be grafted on normal 
mice. Thyroid adenomas induced by TSH-secreting 
pituitary tumors are indistinguishable from those 
induced by thiouracil” [155]. Here, Furth used 
“tumor-like growth”, “behave as cancer cells”, and 
“conditional neoplasms” to express his reservation in 
considering the induced pituitary and thyroid tumors, 
even the spontaneous human thyroid tumors, as 
authentic; despite their ability to metastasize. In his 
punditry, “dependent tumors are those in which 
apparently normal cells proliferate in an altered host; 
autonomous tumors are those in which permanently 
altered cells proliferate in normal hosts” [155], 
although, based on our training in human pathology, 
we opine that dependent “tumor cells” are not normal 
but are hyperplastic.  

Some tumors from genetically manipulated 
animals are inducer-dependent as well 

The c-myc gene or a k-ras mutant can induce 
malignant tumors in many lines of transgenic mice, as 
we have shown or reviewed before [139,198-205]. 
However, many of the tumors have been shown to 
regress upon turning off the transgene and can be 
sustained without the expression of the transgene 
only at advanced stages, although, once they have 
regressed, they can be quickly re-induced by 
reactivation of the transgene [205-223]. Xmrk, c-myc, 
mutant k-ras, or SV40 large T oncogene can also 
induce liver cancer in transgenic Zebrafish, and again, 
the tumors will regress after inactivation of the 
transgene [224-230]. Conversely, inactivation of the 
tumor suppressor gene p53 via conditional knockout 

can beget tumor formation, but reactivation of the p53 
leads to regression of the tumors [228, 229, 231-235]. 
This phenomenon of “regression upon inducer 
withdrawal and quick repopulation upon 
reintroduction of the inducer” is a full reflection of the 
same phenomenon seen in the chemical- or 
hormone-induced carcinogenesis described above, 
and has become a rationale for targeting therapy in 
cancer [236-238]. Our contemporaries in the third 
phase of carcinogenesis research consider “regression 
upon inducer withdrawal” as “oncogene addiction” 
and “tumor dormancy” as the reason for “the tumor 
repopulation upon reintroduction of the inducer” 
[206, 210, 213, 216-218, 236-239], but, peculiarly, 
without mentioning the same phenomenon observed 
by our predecessors.  

Spontaneous regression of human neoplasms 
occurs but is rare 

In humans, spontaneous regression or remission 
of a neoplasm is extremely rare, but it is recurrently 
shown in case reports [240-255] with a frequency 
varying between 1/60,000 and 1/140,000 cases [242, 
256-258]. Malignant melanoma may have the highest 
rate of spontaneous regression [259-265]. Ever since its 
first case reported in 1866, as reviewed by Kalialis 
[266], it has been reported that 10-50% of cutaneous 
malignant melanoma cases show partial or complete 
regression without treatment [267, 268], including 
0.23% of the metastatic cases [267]. High rates of 
spontaneous regression have also been reported for 
indolent histologic subtypes of non-Hodgkin's 
lymphoma, varying between 10% and 20% in selected 
series, as reviewed by Drobyski and Qazi [269]. 
Pediatric neuroblastoma is another malignancy with a 
high frequency of spontaneous regression, especially 
those cases categorized into stage IV-S [270,271]. 
Other types of cancer often showing spontaneous 
regression include renal cell carcinoma, chorio-
carcinoma, lymphoid malignancies, etc. [240-242, 
272-275]. 

Some sporadic tumors in animals and plants 
also regress spontaneously in a seasonal 
manner 

Spontaneous regression also occurs in animal 
tumors, such as in mice [276]. Mention should be 
made of tumors in some species of fish and 
amphibians that often regress spontaneously in a 
seasonal or temperature-sensitive manner [277-285]. 
The ambient temperatures in some seasons may be 
hostile for the tumor-inciting micropathogens to 
grow, and thus fewer tumors occur, but it remains 
obscure why overt tumors in these cold-blooded 
creatures disappear in these seasons. The fact that the 
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fish or amphibians themselves live well while the 
tumors are sloughed off suggests that the tumors 
require a different microenvironment to sustain their 
autonomous lives. Similarly, it has also been known 
for almost a century that some plants will not develop 
tumors at some hot ambient temperatures [286], albeit 
both the plants and the tumor-inciting micro-
pathogens can grow happily at those temperatures 
[286-290]. Whether overt tumors in these plants will 
regress at a hostile temperature remains unknown. 

Immortality and autonomy had already 
become indispensable criteria for neoplasms a 
century ago 

The studies described above on chemical- or 
hormone-induced outgrowths are among the earliest 
ones that point out the problem of 
“inducer-dependency” and set immortality and 
autonomy as criteria for neoplasms. Actually, as 
reviewed by Triolo in 1965 [5], research on human 
cancers in the 19th century had already led 
researchers, mainly surgeons and pathologists, to a 
theory that, “cancer cells are autonomous, endow 
themselves with the power of an independent 
existence, and divert their entire resources into an 
unlimited capacity for growth.” This theory finally 
entered into a rudimentary form and was given as a 
formal introduction of cancer by J. George Adami in 
1901 [291] and, according to Rous [58], as a cancer 
definition in some German pathology textbooks 
published in the 1910s.  

Furth [155] and Ewing [292] considered that all 
tumors should be in some form of autonomy. 
Haddow wrote in the 1947 that, “…we now know 
that, while constitutional and genetic factors can 
greatly influence susceptibility to cancer, and many 
even determine the site of its spontaneous occurrence, 
the disease is one of the individual cells as a separate 
organism and with no relation to the needs of the 
body as a whole. It is this which gives cancer its 
unique position in pathology, accounts for its 
intractable nature, and explains its growth, in Paget’s 
words ‘irrespective of the maintenance of the rest of 
the body, discordant from its normal type, and with 
no seeming purpose’ (Paget, 1853)” [72]. The quoted 
words of Paget had already, in 1853, pointed out the 
tumors’ autonomous nature. Indeed, according to 
Haddow [72] and Knauss et al [293], a cancer has long 
been regarded as a new race or new strain of 
organism, which is another way of describing 
autonomy dating back to 1897 by David Hansemann, 
1903 by G. Hauser (Beitr. Path. Anat., 1903; 33, 1), and 
1926 by Menetrier. Many other former pundits also 
described carcinogenesis as an atavistic procedure, 
further pointing out that the resulting “new race of 

organism” is evolutionarily-lower than its host animal 
[294-301].  

Immortality betokens that a tumor can survive as 
a “newly developed independent organism” [58] that 
parasitizes the host [294, 295] and forever maintains 
its life by continuous replication of its cells [296, 302, 
303]. As adduced by Paget in 1889 [304], “as 
Langenbeck says, every single cancer cell must be 
regarded as an organism, alive and capable of 
development.” Harry Greene (1904-1969), a 
preeminent surgical pathologist at Yale University, 
elaborated on the autonomy by writing in 1951 that, 
“…the definition of a tumor as an autonomous 
growth has enjoyed persistent popularity in textbooks 
of pathology. In such definitions the adjective 
‘autonomous’ is employed to express the idea of 
independence with respect to two different 
particulars. One of these relates to freedom from the 
laws restraining and coordinating normal tissue 
growth, and the other concerns release from the 
necessity of a continued stimulus” [305]. According to 
Furth’s translation [155], in an article written in 
German from 1951, Bungeler considered that a 
dependence seen in a large variety of human 
outgrowths indicates that the outgrowths are not true 
tumors and, more critically, there is no transition 
between the dependent and autonomous outgrowths. 
This “no transition” means that whether an 
outgrowth is autonomous or not is a black-and-white 
demarcation between neoplasms and non-neoplasms. 
Describing human cancer’s properties, Emmanuel 
Farber (1918-2014), a superlative cancer pathologist, 
also accentuated autonomy as a cornerstone of cancer 
biology [306]. Notwithstanding, it still needs to be 
pointed out that autonomy of tumor cells may be 
achieved via non-autonomous mechanisms, e.g. 
various interactions with other cell types [307-309]. 

Mutation and inauthenticity may explain some 
cases of spontaneous regression 

Since malignant tumors keep randomly 
mutating, theoretically some mutations may be good 
ones that direct the cells to differentiation or facilitate 
clearance of tumor cells by immune cells, such as 
mutation of the FBXW7 gene [310]. Conversely, some 
mutations may be deleterious, killing the cells by 
themselves or by working with other harmful single 
nucleotide polymorphisms (SNPs), since about 12% of 
the SNPs are harmful in the human genome [311], 
especially in Europeans [312]. Actually, since the most 
common genetic changes found in tumors are large 
chromosomal deletions [313,314], severe genomic 
damage may lead to the loss of those genes required 
for cell survival. Moreover, some pernicious mutants 
may undergo mutation again, back to the wild type or 
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to a better version, which may have reverse evolution 
as its essence [315] and cause differentiation of the 
cells. This so-called “back mutation” or “reverse 
mutation” is occasionally discerned in drosophila 
[316], as well as in some human genetic diseases 
[317-320] and in some cancers treated with 
chemotherapeutic agents [321-323]. 

Inauthenticity of the tumors may be another 
reason for spontaneous regression. For instance, it 
was often reported in the 1970s-1980s that hepatomas 
and hepatocellular carcinomas in women chronically 
using estrogen-rich oral contraceptives regressed 
upon termination of the contraceptive use [324-330], 
which substantiates the human relevance of 
estrogen-induced hepatomas in rodents reported in 
the 1950s-1960s [331-333]. As another example, 
low-grade lymphomas can result from infection by 
Helicobacter pylori (HP). These tumors are basically 
curable by eradication of the bacteria with antibiotic 
treatment [334-339] but, if left untreated, some of 
them will progress and become incurable, as reviewed 
by Park and Koo [340]. Similarly, Chronic HTLV-I 
(human T cell lymphotropic virus type I) infection 
may spawn adult T cell leukemia or lymphoma, but 
the neoplasm can be well controlled or even cured by 
antiviral treatment against HTLV-1 [341-343]. To us, 
these properties of these estrogen-, bacterium-, or 
virus-caused outgrowths resemble those induced in 
many animal models described above, and thus are 
not authentically neoplastic at their early time point 
although their diagnoses meet pathological criteria for 
neoplasms and they, if left untreated, may eventually 
evolve to genuine neoplasms. Or, we can take a 
non-pathological definition of cancer proposed by 
Robert Axelrod, who majored in political science but 
became a prominent cancer ecologist [344], that 
incipient cancer cells might just have been partly 
transformed, and not yet fully malignant, thus 
requiring collaboration with each other for survival 
and for collective presentation of a cancer phenotype 
[345].  

Using very strict criteria, there may not be pure 
spontaneous regression or remission of cancer in 
humans, because it is unlikely that patients will do 
absolutely nothing for their illness. Some patients’ 
self-management towards the neoplasm may actually 
be effective, although their doctors may not realize it. 
The patients may have experienced severe infection, 
especially a febrile one, since an infection or fever may 
be an effective cancer remedy partly by enhancing the 
immune attack on the cancer cells [256, 346-367], as 
we have reviewed before [296, 368]. Moreover, 
regression may occur via an unknown mechanism, 
such as via spontaneous epigenetic or genetic changes 
leading to a full differentiation of the tumor cells 

[369-371] or increased stimulation of immune function 
by the tumor cells [372, 373]. 

Tissue culture and transplantation were once 
used to determine immortality and autonomy 

Even over a century ago, whether or not a 
patient’s tumor was immortal and autonomous had 
been a concern of, and thus had often been tested by, 
surgical pathologists, because they had realized that 
morphological traits should not be the solitary 
criterion, and the tumor’s behavior should also be 
considered, for an infallible diagnosis of cancer. The 
tests had been conducted, ever since 1901 [374,375], 
mainly with culture of surgically removed tumor 
tissues or with transplantation of the tissues to 
animals, the two modern techniques aforetime. 
Actually, a technique involving both transplantation 
and culture was done by inoculating tumor cells into a 
fertile egg and then hatching it [376-386], which is the 
parentage of some modern chick embryo assays for 
cancer research [387-399] such as the chick heart 
invasion assay [400-405]. The rationale for using tissue 
culture is that neoplastic cells are immortal and can 
self-renew to forever maintain themselves as a “new 
organism” by incessant cell division. Even after the 
patient has died, the “organism” can be maintained as 
cell lines, embodied by the Hela cell line established in 
1951 from cervical cancer of the late patient Henrietta 
Lacks [406].  

Human tissue transplantation to animals, started 
by Peyrilhe in 1773 with cancer fluid [5] and by Hanau 
in 1889 with solid tissue [407], has been 
overwhelmingly used in cancer research, as 
extensively reviewed even many decades ago 
[407-422]. Mention should be made of the studies over 
a century ago that involved tumor transplantations to 
humans [423-425], with the heroic trial by Senn who 
inoculated himself with pieces of cancerous lymph 
nodes [7, 425]. Moreover, as reviewed by Triolo [7], 
transplantation of animal tumors to other animals 
have also been performed since in 1860s [426-430]. 
The rationale for this approach is to use tumor cells’ 
behaviors, mainly autonomy, to determine its 
authenticity. As shown in table 1, transplantation of 
animal tumors can generally be divided into five 
categories [305, 431], i.e. 1) autologous 
transplantation, or transfer back elsewhere in the 
same animal; 2) homologous I transplantation, or 
transfer to a tumor-bearing animal of the same 
species; 3) homologous II transplantation, or transfer 
to a normal animal of the same species; 4) 
heterologous I transplantation, or transfer to a 
tumor-bearing animal of a different species; and 5) 
heterologous II transplantation, or transfer to a 
normal animal of a different species.  
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Table 1. Five common types of tumor tissue transplantation. 

Name Definition 
Autologous transfer back elsewhere in the same animal 
Homologous I transfer to a tumor-bearing animal of the same species 
Homologous II transfer to a normal animal of the same species 
Heterologous I transfer to a tumor-bearing animal of a different species 
Heterologous II transfer to a normal animal of a different species 

 
A seminal finding by Greene in the 1940s, among 

his many other findings [305, 431-438], is that some 
cancers are not transplantable to normal animals but 
are transplantable to the animals that bear a 
spontaneous tumor, especially one of the same tissue 
origin [305, 431]. For instance, the Brown-Pearce 
rabbit tumor typically does not grow in normal C3H 
mice but it grows rapidly in those bearing 
spontaneous tumors [433], and a Rous chicken 
sarcoma grows well subcutaneously in tumor-bearing 
C3H mice but not in normal C3H mice [305]. These 
results led Greene to a conclusion that the factors 
affecting the take of transplanted tumors “are 
constitutional in distribution and are not localized at 
the site of the primary growth” [432]. However, 
lymphoblastic leukemia and lymphosarcoma are 
graftable to every normal genetically compatible host 
but do not produce tumors in the anterior chamber of 
an eye of an alien host, showing a difference from 
other tumors [305]. The difference between normal 
and tumor-bearing hosts in response to a tumor graft 
suggests that tumor-bearing animals possess some 
factors affecting the graft’s survival. A plausible 
interpretation is that the spontaneous tumor 
preexisting in the host has already suppressed the 
host’s immune function that is supposed to reject the 
graft. Studies of these inhibitory effects have later 
been extended to the interaction between normal cells 
and tumor cells not only in vivo but also in vitro 
[439-448], as has been reviewed by us [449], by Rubin 
[450-453], by Aktipis [454,455] and by Thomas et al 
[456-458] from different slants. For instance, it has 
been shown that normal cells suppress the growth of 
adjacent tumor cells in culture [459] and in skin grafts 
on mice [460]. Unfortunately, identifying these tumor 
or host factors has largely been neglected, although it 
is important since manipulation of these factors may 
be helpful in curing cancer. 

Another trailblazing finding by Greene et al. in 
the 1940s is that the tumors that are capable of 
metastasizing are heterologously transplantable, as 
they can grow in the brain or the anterior chamber of 
an eye of animals of a different species, whereas 
tumors that are still incapable of metastasizing cannot 
[431, 435, 437, 438]. Based on these observations, 
Greene concluded that only those lesions which can 
metastasize are fully autonomous and can be 
regarded as cancers, whereas those which do not 

possess this ability are still conditionally autonomous 
and thus should not be regarded as malignancy [435, 
437]. Although in pathology textbooks metastasis is 
not a canon for diagnosis of a malignancy, it is the 
only reliable yardstick to distinguish malignant 
neoplasms from benign ones [461]. Considering that 
even today, compared with Green’s epoch, in the 
surgical pathology service we still do not have a 
simpler or more reliable approach to determine 
whether a primary tumor removed from a patient has 
encompassed the ability to metastasize, it is a pity that 
Greene’s simple but reliable test has not been used in 
clinical service until now, probably due partly to an 
ethical concern on the eye graft.  

Most animal models have not yet been tested 
for the trajectory of “induction, reversibility, 
and progression” 

Many animal models of carcinogenesis induced 
by chemicals or hormones have not yet been 
determined for the inducer-dependency. Even worse, 
except the several models described in an above 
section, like the ones described by Sanchenz-Garcia’s 
group [220,462], the vast majority of genetically 
manipulated animal models have not yet been tested 
either. This severe defect is presumably ascribable to 
two reasons: first, probably many molecular biologists 
have not realized that immortality and autonomy are 
prerequisite criteria for neoplasms. Second, the 
genetic manipulation in many, probably most, of 
these animal models is not set in a “turn-on/turn-off” 
mode, and thus does not allow researchers to control 
the target gene to determine whether or not the 
lesions are inducer-dependent. Moreover, for the 
induction of visceral tumors, like the N-nitrosobis 
(2-hydroxypropyl)amine-instigated lung tumors 
[463], the determination is more difficult as it requires 
sacrifice of the animals. We surmise that most of the 
undetermined animal models may also show an 
inducer dependency until a late stage, with their 
carcinogenic procedures following the afore-
mentioned trajectory of “induction, reversibility, and 
progression” described by Rusch [71]. Considering 
that the lesions wrought by c-myc and mutant k-ras, 
the two most potent oncogenes, already manifest such 
dependency, other genetically manipulated models 
will likely show this trajectory as well. 
Notwithstanding, this conjecture needs to be 
substantiated by studying untested animal models, 
especially the new ones to be established in the future 
using, for example, a conditional transgenic or 
knockout approach. 
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Loss of allegiance to the host’s body is the 
essence of neoplastic cells’ immortality and 
autonomy 

Sporadic tumors can be derived only from those 
cell types that are renewable, i.e. have a lifelong 
ability to replicate, because mutation needs to be 
perpetuated by at least one round of DNA replication 
and to be passed to filial cells via cellular divisions 
[155, 449]. That permanence becomes possible because 
the fitness testing of cells is usually conducted after 
the mutation is made permanently heritable [464]. We 
tag those highly renewable cell types as “anabolic” for 
their great susceptibility to cancers and those that 
have lost their replicative ability in adulthood, such as 
neurons and cardiac myocytes, as “catabolic” for their 
role in the development of type 2 diabetes [465]. Even 
for those renewable cells, it will take about one-fourth 
to one-third of the lifespan to complete the procedure 
of sporadic carcinogenesis, which is about 20-30 years 
for human beings [306, 371], although it could take 50 
years by others’ estimation [19]. Therefore, the 
aforementioned tumors induced by 
3-methylcholanthrene in just 3-4 weeks cannot be 
authentically neoplastic [64, 65], since the lifespan of 
experimental mice and rats is three years or longer 
[205], although their counterparts in the wild live 
much shorter lives [24]. Indeed, we are not aware of 
any rodent model in which a sporadic cancer can be 
induced in a period less than a few months, except 
those genetic models in which the genetic 
manipulation has already been effective during an 
embryonic stage, thus mimicking a pediatric (but not 
a sporadic) carcinogenesis, as to be expanded upon 
later. 

All cell types in an evolutionarily complex 
animal have a physiological total number. For 
renewable cell types, if the cell number is decreased 
for some reason, the body will trigger cell 
proliferation to restore the physiological number. 
Conversely, if the number is higher than normal, as 
seen in over-regeneration that often happens 
following a regeneration procedure, the body will 
goad some of the cells into apoptosis to avoid cell 
redundancy [296, 302, 303, 466-469]. This is because 
apoptosis evolves as a specific mechanism to 
eliminate useless, redundant cells from the tissue or 
organ [302, 303, 466, 468], but not as a demise 
mechanism triggered by compensatory proliferation 
as thought by some peers [470-473]. Indeed, 
compensatory proliferation is regeneration and does 
not aim to engender excessive, i.e. hyperplastic, cells, 
although it usually does mildly because of a slight 
overproduction of cells. Killing excessive cells via 
apoptosis can be implemented in an evolutionarily 
complex animal because all cells have allegiance to the 

animal’s body, as we described before [296, 302, 303, 
466-468], or “conform with the law of organisms”, as 
put by Rous in 1941 [58]. This allegiance as the “law of 
organisms” allows the host’s body to require some 
renewable cells to sacrifice their lives for the body’s 
ultimate interest. An instructive example is that white 
blood cells are often put on the frontier by the host’s 
body to fight against infectious micropathogens and 
die in the battle, so that the host as a whole can 
survive [466, 474]. However, sometimes some 
renewable cells, such as select bone marrow cells, 
epidermal keratinocytes, and mucal cells in the 
gastric-intestinal tract, have lost their altruism, 
usually due to acquisition of tumor-driving mutations 
that make the cells egocentric. These selfish cells want 
to survive stress such as micropathogen infection, 
over-regeneration-trigged apoptosis, etc., and become 
independent of the body, i.e. become autonomous. 
Reiterated, this loss of loyalty to the host’s body is the 
essence of, or the reason for, autonomy of some cells. 
“Fail to conform with the law of organisms” as said by 
Rous [58], or “become autonomous” as outlined by 
Ewing to be the pathological concept of a tumor [475], 
was set as “the signature of a genuine neoplasm” by 
Borst in 1903 [476] and has, until today, been a salient 
feature of benign and malignant tumors. 

In addition to apoptosis, an accelerated aging 
procedure leading to senescent death may be an 
additional mechanism for elimination of the 
excessive, i.e. hyperplastic, cells in the early lesions of 
animal models; although studies on the mechanism 
for the inducer-dependency have hardly been 
extended to this type of cell death. We define cell 
death via aging as “senescent death” [302], because 
normal cells have their lifespans [477-482] and ever 
since it was first observed in 1965, this senescent 
phenomenon has immediately been linked to aging 
[483, 484]. Indeed, a host of studies have shown that 
aging and senescence are highly interrelated [24, 
484-497], although senescence itself is defined as a 
permanent growth arrest that does not necessarily 
lead to death of the cell [487, 491-493,498]. Senescent 
death is also an evolutionarily developed demise 
program, but unlike apoptosis, it aims to eliminate 
those aged, although still useful, cells [302, 303, 466]. 

Hyperplasia is the responsive type whereas 
neoplasia is the intrinsic type of growth 

Hyperplastic and neoplastic cells differ starkly in 
not only their cell death pattern but also their growth 
pattern. Leslie Foulds (1902-1974) split growth rate 
into “the responsive” and “the intrinsic” components, 
with the total growth of the cells being the sum of the 
two [155]. He wrote in 1953 that, “all cells which can 
give rise to cancer possess the ability to multiply at a 
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given rate, provided the environmental conditions are 
constant. They also have the capacity to respond to 
nutritional and hormonal growth factors, 
temperature, pH, etc. The intrinsic growth rate of 
normal cells is in general low; their responsive growth 
rate is high. The cancerous change goes with 
acquisition of a greater intrinsic growth rate and 
diminished responsiveness; the more malignant a cell, 
the greater the intrinsic and the less the responsive 
growth” [155]. In today’s language of cancer research, 
“the responsive growth” is the regenerative type of 
cell proliferation that is controlled by the host’s body 
[466] and dwindles away during carcinogenesis, 
whereas “the intrinsic growth” is the autonomous 
proliferation that is controlled by the cells themselves 
and is strengthened during carcinogenesis. 
Hyperplastic cells are still loyal to the host’s body and 
thus their growth belongs to the “responsive” type. 

Autonomy is manifested not only as 
uncontrolled replication but also as 
uncontrolled function 

Although a neoplastic nature is defined as 
“uncontrolled replication” attributed to the gain of 
intrinsic replicative ability, in reality there are some 
tumors that do not actually kill patients by expansive 
cell proliferation but, instead, by their uncontrolled 
functions [499]. Examples include some endocrine 
tumors, such as some islet-cell carcinomas that secrete 
insulin [500] and pheochromocytomas that secrete 
catecholamines such as adrenalin [501]. As the most 
salient feature of these tumors, the patient’s body has 
lost its control over the tumor’s functions. While the 
tumor is still small without invasion or metastasis, a 
virulently high level of the hormone it secreted may 
have already killed the patient. Keloid scar, which is 
not classified as tumor in pathology textbooks but 
show neoplastic features such as recurrence and 
incurability, may be an example of uncontrolled 
function of benign lesion [502-504], as its fibroblasts 
constantly produce collagen. Moreover, uncontrolled 
function may sometimes show as uncontrolled 
metabolisms, embodied by such as cachexia-incurring 
cancers that elicit high metabolic rates to cannibalize 
many cells of the patient for energy. Therefore, 
disloyalty to the host’s body can be manifested mainly 
as the loss of the host’s control over the tumor’s 
functions or metabolisms, and not predominantly as 
the loss of the control over the tumor’s cell 
proliferation, as Markert [499] and Pitot [505] had 
already pointed out in 1968. 

Animal models can generally be dichotomized 
Animal models established since the 1900s have 

evolved using, as the inducer, a single agent to using a 

complex regimen or manipulations. Nevertheless, we 
try to split all animal models into two groups, based 
on whether or not the inducer is a potent genotoxic 
agent, although there are many intermediate models 
in which the inducer is a combination of both 
genotoxic and non-genotoxic agents [506]. In one 
group wherein the inducers are potent in causing 
mutations, mutation(s) responsible for the initiation 
occur early. A prime example is the Solt-Farber’s 
“resistant hepatocyte” model of hepatocarcinogenesis 
in the rat (Fig. 1) [507, 508], or our modified version of 
it in which the promoting agent 2-acetylamino-
fluorene is routed via gavage instead of by feeding ad 
libitum [509-512]. Carcinogenesis in this group follows 
a trajectory of “initiation-promotion” or “initiation- 
promotion-progression”, as detailed by Farber [39-41, 
513, 514]. It is clear that the genes and their mutations 
responsible for initiation are not those responsible for 
immortality and autonomy. This can be discerned in 
the Solt-Farber model wherein spontaneous 
proliferation, which reflects immortality and 
autonomy, occurs only in the lesions coined by Farber 
as “phenotype 4” that appear months after the 
establishment of initiated cells and after the 
completion of the carcinogenic regimen (Fig. 1) [514]. 

The other group of animal models uses 
non-mutagenic agents as the inducers, which in the 
literature are often dubbed as “epigenetic carcinogens 
or agents” [515-520], “nongenotoxic carcinogens” 
[519, 520], or “cocarcinogens” [34, 521-523]. In our 
opinion, carcinogenesis in this group often incepts 
with promotion, but not with initiation, unlike that in 
the aforesaid group. This is because the nongenotoxic 
inducer in this group kindles proliferation of normal 
cells without incurring mutation(s) or even epigenetic 
aberration(s) to establish initiated cells in the early 
incarnation, and therefore the early proliferative 
lesions are not of initiated cells, meaning that 
initiation with some genetic changes, and the 
subsequent neoplastic transformation, occur much 
later in this group of models than in the above one. 
Alternatively, initiation in this group of animal 
models might not involve mutations, as considered by 
some investigators [307, 524-531].  

Unlike in animal models, immortality and 
autonomy may occur early in most human 
tumors 

When are immortality and autonomy established 
during a lengthy tumorigenesis in humans? It is an 
enthralling brainteaser, so far without an answer 
[532]. For several reasons we infer that in most cases 
they occur at an early time point (Fig. 2). First, 
spontaneous regression of tumors is rare, and thus 
nearly all tumors, many of which are diagnosed at 
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early stages, are considered immortal. Second, in our 
pathology service and in the literature [533], we 
occasionally encounter very tiny malignant tumors in 
patients. Albeit the small tumor had already been 
surgically extirpated or considered cured, some 
patients still died of its metastasis years later [534], 
which substantiates the malignant authenticity of the 
small primary tumor. Third, autopsies of humans that 
died of various causes found about 3-27% of the 
bodies had an occult pituitary adenoma [535-539] 
(and DJ Liao’s empirical knowledge), and magnetic 
resonance imaging of normal human volunteers 
found this tumor in about 10% of normal persons 
[540]. Similarly, it has been known since 1934 that a 
large number of men over 40 years of age have occult 
prostate adenomas or adenocarcinomas, although 
many of the lesions do not develop to clinical cancer 
before the men die from other reasons [541-546]. A 
much higher incidence of occult tumor occurs in the 
thyroid, since one early report showed that 49.5% of 
821 clinically normal people contained nodules, 17 of 
which were histologically malignant [547,548]. 
Similarly, unselected autopsies of children before 
three months of age also found neuroblastomas in the 
adrenals at a frequency 40-50 times higher than the 

reported incidence of this tumor [549]. Fourth, as 
summarized by Blagosklonny [532] and Kolquist 
[550], even many premalignant lesions in humans 
show immortal traits, such as elevated expression or 
activity of telomerase. Nevertheless, more tangible 
proof for the speculative early-establishment of 
immortality and autonomy is still needed.  

In humans, tumor-promoting momentum is 
much weaker, including the impetus provided by 
those relatively potent promoters such as cigarette 
smoking or chronic viral hepatitis, compared with 
that provided in various animal models. Therefore, 
human lesions grow and progress much more slowly, 
allowing immortality and autonomy to occur much 
earlier with respect to the size of the lesions, and 
allowing the neoplastic transformation to occur as the 
result of some relevant mutation(s), long before the 
patients feel something wrong and go to see their 
doctors. This is partly because a lengthier course 
allows accumulation of more haphazardly-occurring 
mutations, including the one(s) required for 
immortality and autonomy, if we accept the notion 
that tumors, especially cancers, occur as repercussions 
of mutations that have cell-autonomous modes of 
action [29-31, 525, 526, 551-558]. 

 

 
Figure 1. The Solt-Farber’s “resistant hepatocyte” model of liver carcinogenesis in the rat. A toxic dose of diethylnitrosamine (DEN) will 1) cause liver necrosis and 2) create 
initiated hepatocytes. Two weeks later, when the liver has recovered from the necrosis, the rat will be given a low dose of 2-acetylaminofluorene (AAF) for two weeks, function 
of which is to inhibit proliferation, so-called mitoinhibition, of hepatocytes, but the initiated cells are resistant to this inhibition. In the middle of AAF treatment, hepatectomy will 
be performed to remove two-thirds of the liver, which provides a strong impetus for regeneration. Because normal hepatocytes are mitoinhibited, all regeneration pressure is 
imposed onto the initiated cells, driving them to proliferate robustly and form nodules. The image at the left shows these nodules visualized by immunohistochemical staining of 
the P form of glutathione S transferase, a marker for the nodular cells, in the three remaining lobes of the liver four weeks post cessation of AAF treatment [201,852]. These 
nodules will regress afterwards but some new focal cells, which can proliferate spontaneously and are coined by Farber as “phenotype 4”, will later develop from some of the 
nodules [507,508]. One or several of these phenotype-4 lesions will eventually progress to overt cancers. 

 
Figure 2. Illustration of a speculative difference at the time point for the establishment of immortality and autonomy between the tumorigenesis in most animal models and that 
in most human situations. In humans, immortality (Immort.) and autonomy (Auto.) may occur at a very early time point, thus establishing small lesions as genuinely benign or 
malignant neoplasms. In contrast, tumorigenesis in most animal models is a stepwise procedure of initiation, promotion and, in some cases, progression as well. Initiated cells are 
still mortal and thus are not neoplastic. Immortality and autonomy in animal models occur at late promotion or at the progression. 
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The inducer-dependency of the early tumors in 
most, if not all, of animal models indicates a very late 
establishment of immortality and autonomy, which 
collides with the perceivable early-establishment of 
immortality and autonomy in human lesions 
described above. In other words, few, if at all, animal 
models established so far reflect the tumorigenic 
course in most human situations (Fig. 2). Fortunately, 
in some rare human situations, immortality and 
autonomy are likely to be established in a late stage. 
For example, familial colorectal polyps that will 
sooner or later progress to cancer are developed due 
to inherited mutations in some genes, like the APC 
(adenomatous polyposis coli) gene [559-563]. The 
constant presence of the mutation serves as a lasting 
coercion on colorectal mucal cells, keeping them in an 
unremitting state of proliferation to form polyps. 
These polyps are considered in pathology as 
premalignant lesions, pursuant to their morphology 
and to the fact that cancer likely ensues. 
Notwithstanding, we are curious about whether the 
polyps would regress if we have a way to correct the 
mutation, since spontaneous regression not only of 
polyps but also of small colorectal adenomas has been 
well recognized by pathologists [564-566]. Probably, 
from the point of immortality and autonomy, the 
still-mortal polyps are “preneoplastic”, an elegant 
jargon used by Haddow [72] and Rubin [567], or are 
“precursor lesions”, another good appellation used by 
Farber [568]. Other embodiments of the late 
establishment of immortality and autonomy in 
human outgrowths include the abovementioned 
curable hepatomas and hepatocellular carcinomas 
caused by chronic use of oral contraceptives [324-330], 
and lymphomas or leukemia caused by HP [334-340] 
or HTLV-1 [341-343]. Some thyroid tumors may also 
be mortal and may not evolve to authentic neoplasms 
in the patients’ lifetime [569], which dovetails with 
Forth’s opinion in 1953 [155].  

What do the two genetic hits do in 
carcinogenesis, and is a third hit needed? 

Tumorigenesis may sometimes occur via only 
“one-hit” [570-572], but “two hits” are usually 
required [17-20]. Although the “two hits” are still 
ill-defined, sometimes as two genetic alterations but 
some other times as “initiation” and “promotion”, the 
concept accepts the century-old ideas that 
carcinogenesis results from genetic alterations and 
that cancer cells owe their properties to mutations 
[450, 573-576]. We mingle the two different “two hits” 
definitions together and consider that the first genetic 
hit is for creation of initiated cells that differ from 
their surrounding cells in response to promoting 
environment (Fig. 3). According to Farber [39-42, 513, 

514, 568, 577-582], in most cases promoting agents 
cause “mitoinhibition”, i.e. inhibition of mitosis or 
proliferation, of normal cells, whereas initiated cells 
are resistant to this inhibition (Fig. 1) [200]. Actually, a 
condition disfavoring cell growth in cell culture, such 
as a lower serum concentration or a cell confluence 
situation, is an impetus to drive neoplastic 
transformation as well [313]. Therefore, in a 
promoting environment, probably also in humans 
[313], only initiated cells can robustly proliferate to 
form lesions, especially when many of their adjacent 
normal cells die and the organ or tissue has a strong 
demand for regeneration [200, 201, 583]. This 
“mitoinhibition” theory conforms with the hypothesis 
of Rozhok and DeGregori that cancer occurs more 
often in old age [453, 584], because normal cells in the 
elderly, compared with their counterparts in the 
young, have less proliferative capacity, thus being 
more “mitoinhibited” and providing the 
spontaneously-occurring initiated cells with a 
stronger promoting momentum [24]. The molecular 
mechanisms of promotion via mitoinhibition still 
remain enshrouded. We extrapolate, with trepidation 
as sans evidence, that mitoinhibited normal cells 
promote proliferation of initiated cells in part via a 
mechanism similar to that used by senescent cells to 
promote carcinogenesis of their adjacent cells, since 
senescence is a state of permanent growth arrest [487, 
491-493, 498], i.e. “permanent mitoinhibition”. This 
mechanism is coined as SASP (senescence-associated 
secretory phenotype) [585-587], and its effect on 
carcinogenesis has been extensively reviewed in the 
literature [487, 588-596]. 

In Rubin’s punditry, the cells of skin papilloma 
produced in the aforementioned animal models that 
regress upon withdrawal of the inducer are initiated 
[451], which connotes that initiated cells are not 
immortal. Indeed, in Farber’s “mitoinhibition model” 
of hepatocarcinogenesis described above, most 
initiated cells in the focal lesions eventually die of 
apoptosis [39-42, 513, 514, 568, 577-582]. In our 
meditation, the second hit converts initiated-cells into 
a neoplastic state, benign or malignant, by rendering 
the cells immortal and autonomous (Fig. 3). This 
second hit occurs in a later promotion stage of the 
“initiation-promotion” models or in the progression 
stage of the “initiation-promotion-progression” 
models. In sporadic carcinogenesis in humans, 
initiated cells may also exist, although they are 
technically difficult to identify. Nevertheless, 
“preneoplastic” cells in humans may have already 
experienced the first hit, while “pre-cancerous cells” 
may have also experienced the second hit.  

In some carcinogenic procedures wherein a 
malignancy does not require a benign lesion as a 
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precursor and thus a second hit is sufficient, the 
mutation(s) responsible for immortality and 
autonomy may also be responsible for malignant 
morphologies and behaviors (Fig. 3). However, in 
other animal models and in human situations, the 
mutations responsible for establishing immortality 
and autonomy may not be the ones responsible for 
establishing malignant morphologies and behaviors, 
since benign neoplasms have also experienced the 
second hit. Therefore, in these situations a third 
genetic hit may be required to establish malignant 
morphologies and behaviors (Fig. 3). Of course, 
malignant neoplasms continue to evolve via many 
subsequent hits to be more and more heterogeneous 
and heinous.  

An old, but still unanswered, question is how 
many mutations are needed for completing a 
carcinogenesis 

The target or targets of the abovementioned two 
or three genetic hits remain unknown to us. Initiation 
created by the first hit likely involves only one or 
several genes, since initiated cells are morphologically 
indistinguishable from uninitiated ones [40, 42, 514, 
597]. Immortality and autonomy created by the 
second hit may involve only one or several genes as 
well, since many benign tumor cells, such as uterine 
leiomyoma cells, are quite similar to their normal 
counterparts in cellular morphology. Therefore, it is 
not surprising that acquisition of immortality does not 
require genetic instability, and cancer cells can be 
created and sustained without gross genetic changes 
[598-600], although instability and gross mutations 
can occur even at an early time point of carcinogenesis 
[601]. The inference that only one or several genes are 
involved is also supported by the fact that 
immortalization of a mortal cell to establish a cell line 
has been proven to be easy, especially in vitro [139, 
602-608]. For instance, targeting both the p16ink4 and 
c-myc genes can immortalize human mammary 
epithelial cells invitro [598], and the IgEGF and SV40T 

bi-transgenes can immortalize murine cells [609]. 
Actually, immortalization is easier when the cell has a 
small-rodent parentage. Simply knocking out the p53 
gene alone can immortalize mouse hepatocytes [609], 
and even ectopic expression of a 3’-untranslational 
region of a gene without expression of the protein 
[610] can immortalize rat embryonic cells. A so-called 
“3T3 protocol”, mainly transferring 3x103 cells from a 
flask to another every three days, had been 
established almost six decades ago as an effective 
procedure to immortalize mouse cells, especially 
embryonic ones [611-613]. This simplicity is 
presumably because small-rodent cells have their 
telomerase constantly “on” and have only a single 
barrier to immortalization controlled by the RB 
(retinoblastoma protein) pathway [602, 614, 615].  

The third hit, if it is needed, may also require 
only a small number of genes, in our opinion, since 
the second hit can do both, i.e. can immortalize the 
cells and confer malignant morphology and behavior 
upon the cells. Therefore, the sum of the two or three 
hits may be congruent with the estimation by Hahn 
and Weinberg that five alterations are required for 
converting human cells to malignant phenotype [616], 
or by Armitage and Doll in 1954 [31] and by Vogestein 
in 1993 [617], that carcinogenesis requires only six or 
seven mutations. Fluid cancers such as leukemia may 
require even fewer and thus may be relatively easier 
to cure, generally speaking, as we inferred before 
[449]. A caveat is that different hits in different cases 
may involve different genes, especially for the third 
hit that is responsible for cellular and histological 
morphologies and behaviors that can vary greatly 
among different cases of the same cancer type. This 
variation makes the sum of “initiator genes”, 
“immortalizer genes”, or “malignant morphology 
responsible genes” large, and the sum of all three even 
larger, which is a major reason why there have been a 
huge number of genes found to be cancer-relevant.  

 

 
Figure 3. Illustration of our three-hit hypothesis. Coupling the traditional two-hit principle with the initiation-promotion theory leads us to a supposition that the first genetic 
hit establishes initiated cells that are still mortal and non-autonomous, whereas the second hit creates immortality and autonomy, thus establishing neoplastic cells, either benign 
or malignant. Since formation of benign neoplasms also requires two genetic hits, we extrapolate that, in some animal models and probably also in many human situations, 
establishment of malignant morphologies and behaviors requires a third hit on the relevant gene(s).  
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Figure 4. Reversion of pluripotent cells between normal and cancers. Embryonic (e) or induced (i) pluripotent stem (PS) cells introduced into the blastocyst in the uterus can 
develop to live animals (a). However, if the cells are transplanted to extrauterine sites of adult animals, they will likely develop to teratomas or teratocarcinomas (b). If 
teratocarcinoma cells are inoculated into the blastocyst, they will be incorporated into the developing embryo, and the tissues of the animal developed from the embryo will be 
chimeric, i.e. containing cells from both the embryo and the cancer (c). Moreover, if inoculation of the nuclei isolated from the Kucké renal cancer cells of the frog origin into 
enucleated frog eggs, the eggs can hatch out live tadpoles with all tissues normal (d).  

 

Actually, whether mutation is needed or not 
for tumor formation is still debatable  

Although it has become “Tumor 101” that 
tumors are caused by variegated genetic alterations, 
collectively coined herein as “mutations”, there has 
always been a theory considering that mutations are 
not necessarily required, which, since it was broached 
by Rous in 1947 [531], has continued receiving 
supportive laboratory data [307, 525-530, 618-621]. 
Some peers even consider that heterogeneity of cancer 
cells may not necessarily be related to the increases in 
mutations either [622]. A major piece of evidence 
supporting this non-mutation theory is from Stevens’ 
reports in the 1960s, which showed that 
transplantation of germinal stem cells from early male 
mouse embryos of the 129 strain to testicles of adult 
mice led to the development of teratoma or 
teratocarcinoma (Fig. 4) [623-625]. As reviewed by 
Buta, Bustamante-Marin, Damjanov, Arechaga, Blum, 
Sell, Martin, and Pierce [4, 626-639], many other 
researchers also reported later that early embryonic 
cells, including those of human origin [630], placed 
into several extrauterine sites of adult animals could 
develop to teratoma or teratocarcinoma [629, 640-644]. 
A slew of studies in the past decade have extended 
these findings by showing that induced pluripotent 
stem cells transplanted to animals can develop to 
teratoma or teratocarcinoma as well (Fig. 4) [626, 
645-650]. Considering that extrauterine sites should 
not be mutagenic, these observations support the 
non-mutation theory. Moreover, this tumorigenesis 
involving embryonic or induced pluripotent stem 
cells can be minimized or prevented by different 
manipulations [626, 647, 648, 650-652]. Conversely, 
teratocarcinoma cells injected into the blastocyst can 
be incorporated into the developing embryos, and the 
organs or tissues of the mice developing from such 
embryos contain cells from both the blastocyst and the 

cancer (Fig. 4) [653-661]. More convincingly, injection 
of the nuclei isolated from the Lucké renal cancer cells 
of the frog origin into enucleated frog eggs allows the 
eggs to hatch out tadpoles that are normal without 
any trace of cancer (Fig. 4) [285, 662-668]. Similar 
conversion back to a normal state by an embryonic 
microenvironment has also been shown for a few 
other cancer cell types [448, 669-673, 673, 674]. For 
instance, with models of chick embryo and Zebrafish 
embryo as well as with intrauterine injection 
approach in mice, many studies have shown that 
human malignant melanoma cells in an embryonic 
microenvironment do not develop to tumors but, 
instead, differentiate to neural-crest-like cells 
[675-678]. Some cells of squamous cell carcinomas 
have also been observed to differentiate into mature 
keratinized cells as squamous pearls [679]. Therefore, 
as pointed out by Pierce in 1974 [632], the concept of 
“once a cancer cell, always a cancer cell” may not 
always be correct. Because mutations are unlikely to 
disappear by themselves [632], development of 
mature tissues from cancer cells lends color to the 
non-mutation theory.  

It is worthy of mentioning that the above-
mentioned experiments with teratocarcinoma cells 
have a much better version in plant tumor systems, as 
thoroughly reviewed by Braun four decades ago 
[680]. It has been shown in several plant species that 
teratomas can be reverted to normal plant cells and 
that tumor cells grafted to another plant can develop 
to a normal plant that can bloom and produce seeds, 
and the seeds can germinate and grow to normal 
plants [20, 681-687].  

Another major piece of evidence invigorating the 
non-mutation theory comes from the studies showing 
the reversibility of transformed cells back to the 
normal in cell culture [446, 453, 620, 688-691] and in 
animals or humans [197, 370, 692-695], with or 
without induction by chemicals [696-704]. Actually, 
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this reversion has received attention for almost a 
century [446,688,689], in part because direction of 
cancer cells to differentiation is a tantalizing strategy 
for cancer therapy. This reversibility is more clearly 
discerned in tumors of some species of fish and 
amphibians that are seasonal or temperature- 
sensitive, as aforementioned [277-285]. However, the 
reversion does not necessarily indicate that the 
transformed cells were not initially transformed by 
mutations. It could be that the genetic alterations the 
transformed cells bear cannot prevent the reversion 
elicited by other genetic mutations or by some 
epigenetic changes. Or, alternatively, the extrinsic 
factors that cause the reversion can circumvent or 
override the initial mutations responsible for the 
neoplastic morphology and behavior (Fig. 5). 

Epigenetic alterations certainly make a 
considerable contribution to the formation and 
progression of tumors [705]. What we still wonder is 
whether these changes alone, without involvement of 
genetic mutations, are sufficient for the development 
of authentic neoplasms that are immortal, 
autonomous and irreversible (i.e. without undergoing 
spontaneous regression) and progress continuously 
towards more and more diabolical states, as seen in 
most cancer patients. 

Are immortality, autonomy, and 
transformation extricable from one another, 
and which occurs first? 

In 1983 Land et al showed that embryonic 
fibroblasts expressing a ras mutant could form 
colonies in soft agar [706], which was shown by 
Freedman in 1974 as an insignia of a transformed state 
[139, 707]. However, the transformed cells could not 
grow constantly and were still mortal, and their 
immortalization required concomitant expression of 
the c-myc gene or a viral oncogene [706]. Similarly, 
expression of the SV40 large T antigen in mouse 
embryonic fibroblasts goads the cells into forming 
colonies in soft agar, but most of the cells eventually 
die [708,709]. Primary cells concomitantly expressing 
a CDK4 gene and a ras mutant can form colonies in 
agar and develop to invasive tumors in animals, but 
the cells still cannot grow indefinitely in culture [710]. 
All these data and others [711] strongly suggest that 
neoplastic transformation can occur before, and thus 
can be extricated from, immortalization, which is 
braced by the observations that telomerase itself is 
capable of prodding primary cells into growing in 
agar and in animals, independent from 
immortalization [532, 712] and transformation [371, 
713]. However, this seems to collide with the 
two-stage model that is sometimes perceived as that 
the “initiation” immortalizes normal cells whereas the 

“promotion” transforms the immortalized cells [370, 
371]. Newbold, Reddel, and some other cancer 
wizards also consider that immortality is an early and 
prerequisite step of transformation [477-481, 714].  

While the above discrepancy still awaits an 
answer, a related question is raised as to whether 
autonomy can also be extricated from immortality, 
although this segregation collides with the facts that 
human cancers rarely regress spontaneously and that 
no human tumor shows this segregation. A keloid 
scar may be the only tumor-like lesion in the human 
we know that seems to show this extrication, as it 
shows functional autonomy by constant collagen 
production without showing clear immortality of its 
fibroblasts [502-504]. Some animal models seem to 
show this extrication as well: epithelial cells have been 
shown to be evasive, disseminating, and able to enter 
into the bloodstream before they form primary 
tumors [715]; and mammary epithelial cells can be 
manipulated to metastasize and colonize in the lungs 
before they are malignantly transformed [716, 717]. 
Nevertheless, such separation is not discerned in 
some tests with traditional approaches involving 
chemical carcinogens, such as the “Syrian hamster 
embryo cell transformation assay” [718, 719].  

In our opinion, if an in vitro study shows the 
above extrications, more-tenable proofs for the 
neoplastic state are needed. This is to say that once the 
cells are shown to be capable of forming colonies in 
soft agar, they need to be tested for immortality before 
we can announce that they have been transformed. 
Unfortunately, many published studies of in vitro 
transformation do not show this additional evidence 
corroborating the immortal nature of the cells. 

It is worth ruminating about why we can only 
induce several tumors in an animal 

There is an obvious discrepancy between 
neoplastic transformation in cell culture and tumor 
formation in animals, which has been baffling us for a 
long time [200, 720]: in vitro transformation assay 
usually results in a large number of colonies in soft 
agar. Because each colony develops from a single 
transformed cell, the appearance of many colonies 
means that many cells have been transformed; this in 
turn means that the transformation assay is very 
effective, although it is a short-time procedure. 
However, in most genetically modified animal 
models, each animal develops only several tumors in 
its lifetime, albeit the target organ or tissue of the 
animal, say the liver or the five pairs of mammary 
glands, have trillions of cells bearing the same genetic 
modification. For instance, only 1 of 10 mammary 
glands in a c-myc transgenic mouse develops a tumor 
[721, 722] and only 4 or 5 of 100 pancreatic islets 
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develop β-cell tumors in a SV40-LT-transgenc mouse 
[723]. Actually, most chemical-carcinogenesis models 
produce only one to several tumors per animal, to our 
knowledge. If evaluated with the number of tumors 
per animal as the criterion, the only plausible 
conclusion is that the efficacy of our in vivo 
transformation approach is negligible, as trillions of 
the targeted cells fail to be neoplastic. Researchers are 
usually content with the high percentage, sometimes 
100%, of the manipulated animals that develop 
tumors, and do not ask why the remaining trillions of 
cells in the target organ or tissue of the animal, which 
received the same manipulation simultaneously, do 
not evolve to overt tumors. 

Many animal models are overpraised, due to 
neglect of the immortality issue 

As aforesaid, evidence for immortality and 
autonomy has not been provided for the lesions 
resulting from the vast majority of genetically- 
modified animal models of carcinogenesis. More 
correctly, the time point has not been determined at 
which lesions in these animal models enter into the 
immortal and autonomous state. This is an 
uncomfortable but undeniable flaw of the relevant 
studies, although we should have been content with 
the profuse information provided by these models on 
the functions and underlying mechanisms of the 
genes manipulated. It is possible that many peers 
have already harvested the “cancers” from the 
animals for the mechanistic analyses before the 
lesions, probably large in size, have evolved to 
genuine neoplasms; likely due to the unawareness of 
the importance of the immortality and autonomy 
issue. In 1948, Greene emphasized that, “the problem 
of cancer is primarily a problem of behavior. A 
pathologist who examines tumor tissue under the 
microscope may observe significant details of form 
and structure, but he can never determine its 
malignancy from its appearance alone; only by its 
behavior in the living body can malignant tissue be 
unmistakably identified. Of two tumors with cells that 
look exactly alike, one may remain static or even 
disappear while the other inexorably spreads and kills 
the patient. Unfortunately many kinds and conditions 
of tissue which are not malignant bear a remarkable 
resemblance to cancer” [431]. Because animal lesions, 
even if they are large in size, have not yet established 
immortality and autonomy, they can be cured easily, 
simply by withdrawal of the inducer or by chirurgic 
extirpation. This contrasts with the fact that most 
human cancers are not curable, at least not so easily. 
Moreover, “malignant” tumors in most animal 
models do not metastasize within the lifespan of the 
animals, whereas most human cancers will 

metastasize if untreated. Indeed, an early estimation 
has shown that fewer than 30% of genetically 
modified animal models of carcinogenesis produce 
metastases [724], although there are several models of 
mammary carcinogenesis showing metastases [725, 
726]. Some tumors from animal models can 
metastasize, but the metastases may still be 
inducer-dependent, embodied by the aforementioned 
metastases of the TSH-instigated thyroid tumors [155, 
181, 185] and of the estrogen-induced renal tumors in 
hamsters [156-158]. In a nutshell, the mortality and 
non-autonomy, the inducer-dependency, and the 
inability to metastasize are telltale evidence that many 
animal cancers are easy to cure and thus are 
disarming, which starkly contrasts with most human 
cancers. Moreover, among the species differences is 
that most spontaneous malignant lesions are 
mesodermal-originated sarcomas in mice but are 
epithelial-originated cancers in humans [727-729]. 

We still have no way of directly transforming 
cells in vitro and in vivo 

In the above sections we have described five 
phenomena that dissent from, and may threaten the 
bedrock of, the orthodox doctrine of how cancer 
develops: 1) transformation, immortality, and 
autonomy can be segregated from one another in the 
lab, and which one occurs first depends on the 
experimental design, although immortalization 
occurs first in the two-stage model. 2) In vitro 
transformed cells may still be mortal and reversible 
back to the normal; 3) formation of tumors may not 
necessarily involve mutations; 4) outgrowths induced 
in animals are inducer-dependent until advanced 
stages; and 5) neoplastic transformation in animal 
models may be perceived to have a negligibly low 
efficacy because each animal develops very few 
tumors after a long latency. All of these phenomena 
deliver us a single message: although numerous 
alterations have been identified in a huge number of 
genes, none of our in vitro or in vivo manipulations are 
able to directly cause the epigenetic or genetic 
alteration(s) required for the establishment of 
immortality and autonomy (Fig. 5). In animal models, 
there so far has not been any evidence showing that 
turning on or off a gene, which has been technically 
feasible for decades, can quickly turn on or off 
immortalized or autonomous features of the targeted 
primary cells. In cell culture, none of our 
manipulations of physical, chemical, or biological 
factors can quickly immortalize and transform 
primary human or animal cells. The targeted cells 
show immortal and transformed features only weeks 
later in the culture or months later in the animal, 
obviously as the events secondary to our 



 Journal of Cancer 2020, Vol. 11 

 
http://www.jcancer.org 

2903 

manipulations. Exceptions do exist peculiarly, as 
some plant cells can be transformed after only 34-48 
hours of manipulation [287, 730, 731]; with a few more 
days of manipulation creating more aggressive cells 
[680, 732-739]. Nevertheless, to our knowledge mouse 
or rat models require 6-9 months for the tumor 
induction, which is about 1/6-1/4 of the mouse or rat 
lifespan; although in some rare cases very potent 
chemical carcinogens might induce tumors in 3-4 
months, i.e. about 1/12-1/9 of the lifespan. 
Considering that the early tumors are still 
inducer-dependent, it is likely that the actual latency 
for the occurrence of authentic neoplasm is much 
longer. 

We extrapolate that all of our manipulations to 
transform animal or human cells may just coerce the 
cells into incessantly replicating, sustaining the cells’ 
life, and manifesting neoplastic morphology and/or 
behavior without actually transforming the cells (Fig. 
5). Therefore, when the coercion ends, the 
“transformed” cells either return back to the normal 
or undergo apoptosis as they are redundant [740-742]. 
For instance, expression of the SV40 large T antigen in 
primary cells can confer additional 20-30 population 
doublings upon the cells, during which some cells are 
immortalized spontaneously [743]. In animal models, 
the cells of the duress-sustaining lesions still have 
allegiance to the animal’s body. This preserved 
allegiance, which bespeaks the non-autonomous 
nature and categorizes the lesions into hyperplasia 
(although showing malignant morphology), is the 
reason for why the cells regress via apoptosis so that 
the host organ or tissue does not possess redundant 
cells [203, 296, 303, 466-469,474]. Actually, the lesions 
may show higher rates of apoptosis, and probably 
also senescent death, than their host tissue because of 
their hyperplastic nature, although the inducers may 
suppress the apoptosis and senescent death as 
components of their coercive mechanisms. In cell 
culture, because mortal cells in dishes are no longer 
under the control of the animal’s body and thus do 
not need to care about the cell redundancy issue, the 
cells die of only senescent death, and not of apoptosis 
[302, 468]. For this reason, the manipulations in most 
in vitro transformation assays are made in a perpetual 
manner, such as being made as stably-expressing cell 
clones, to prevent the loss of the coercer. Actually, 
some techniques of conditional immortalization 
and/or transformation [744-749], along with many 
conditionally immortalized cell lines [743, 750-759], 
like the temperature-controlled ones [756, 760], have 
been widely established to make it feasible to turn on 
or off the coercer gene. There are even transgenic 
animals established to facilitate the establishment of 
such conditionally immortalized cell lines [755]. Some 

of these conditionally immortalized cells can form 
colonies in soft agar when the coercer is turned on, 
but no colony is formed when it is turned off [756, 759, 
761]. Obviously, the “conditional” means reversable, 
implying that the immortality or transformation 
occurs simply under the duress of the immortalizer or 
the transforming gene, and not due to the relevant 
epigenetic or genetic alterations. 

In all in vitro and in vivo models, the epigenetic or 
genetic alteration(s) for immortality and autonomy 
occur only spontaneously in a random and stochastic 
manner during constant cell replication caused by the 
duress (Fig. 5). Because of this manner, it occurs only 
to several cells in animals at an early-enough time 
point that leaves the cells with a sufficient time to 
evolve to overt tumors. This late establishment of 
immortality and autonomy betokens that primary 
cells put more guards on the genes responsible for 
immortality and autonomy as the second defensive 
line, compared to the guards on the genes relevant to 
the initiation as the first defensive line, meaning that 
the first hit is easy, but the second hit is difficult. Until 
now, no exogenous agent, a chemical, irradiation, 
biological factor, or any other, has been identified that 
can break through this second defensive line of cells, 
and we have no idea on which genes are involved. 
Actually, a question that tantalizes us is whether such 
genes really exist. What a lengthy promotive period in 
all animal models established so far tells us is that 
breaking through this second defensive line can only 
be made by currently-unknown intrinsic factor(s). 
Fortunately, our manipulations as extrinsic factors can 
accelerate the breaking-through by sustaining the 
cells’ life; accelerating cell replication, damaging 
DNA, and/or inhibiting DNA repair. 

Regardless of its mechanism, the reversibility of 
in vitro transformation and the inducer-dependency of 
animal lesions remind us that we cannot consider cells 
or lesions neoplastic based solely on their morphology 
and behavior. Diagnosis of outgrowths induced in 
animals should not solely rest on the pathological 
morphology and formidable behavior, although the 
relentless proliferation begot by the duress will one 
day lead to the epigenetic or genetic alterations for 
true neoplastic transformation. This “coercion 
hypothesis” (Fig. 5), proposed by us a few years ago 
[720] and recently [47, 303, 466] on the essence of 
animal models of carcinogenesis, deserves 
experimental testing.  

We still lack a good strategy to determine 
molecular pathways leading normal cells to 
cancers 

The genes mediating the two or three genetic hits 
described above remain unknown. One of the reasons 
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is that we have been encountering a logical plight for 
decades regarding our research strategies and 
approaches, as repeatedly pointed out by us before 
[47, 296, 720, 762]: the results from the approaches we 
used, such as genetic engineering, can only tell us that 
certain manipulations or alterations, like concomitant 
overexpression of the c-myc and a k-ras mutant, and 
the ensuing cascades of molecular changes, can 
eventually cause neoplastic transformation or tumor 
formation. However, we still do not know whether 
cells in humans or in untreated animals really do 
spontaneously develop to neoplasms because of the 
abnormalities of these genes and via these cascades of 
molecular changes. In an analogy, we have built the 
highway Interstate-95 (I-95) and know that Mr. 
Trump can go from New York City (NYC) to 
Washington DC by taking it, but we do not actually 
know whether this is indeed the path, but not one of 
the others, he took. If we still cannot find a way to 

break this impasse, our attempt to learn why and how 
some cells in humans become neoplastic will continue 
to be prodigal financially and in effort. This is because 
we will continue to identify (more correctly, to create) 
many more molecular pathways leading normal cells 
to neoplasms, besides the many pathways already 
known or created [763], while we remain unable to 
hold any particular pathway(s) accountable for 
sporadic carcinogenesis in humans. Restated, we are 
creating, but not identifying or discovering, 
pathways, such as by creating otherwise non-existing 
transgenic or knockout mice, and surmise that these 
man-made paths are the carcinogenic procedures 
occurring in patients’ bodies. In another analogy, we 
already have many paths leading from NYC to DC 
but will endlessly build many more while remaining 
unable to know which path(s) Mr. Trump took or will 
take. Probably, we have been upending things or 
putting the cart before the horse in our research. 

 

 
Figure 5. Depiction of the “coercion hypothesis”. Our manipulation, say as a transfected cDNA (the large black triangle in the cytoplasm of Cell A) or as a transgene or a 
gene-knockout on the chromosome 17 (black dot in Cell A), coerces the primary cell into incessantly replicating and manifesting transformed morphology or behavior, such as 
colony formation in agar. The relentless proliferation will eventually lead to spontaneous occurrence of the epigenetic (red dots on the DNA of chromosomes 8 and 22 in Cell 
B) or genetic (black dots on the DNA of chromosomes 8 and 22 in Cell C) alterations that establish immortality and autonomy, making the cell truly neoplastic in behavior. 
Continuous proliferation will also cause spontaneous occurrence of the epigenetic (small red triangles on the DNA of chromosomes 8 and 22 in Cell B) or genetic (small black 
triangles on the DNA of chromosomes 8 and 22 in Cell C) alterations that establish neoplastic morphology. This is to say that immortality and autonomy as “the behavior aspect” 
of neoplastic property, as well as “the morphology aspect” of neoplastic property, may sometimes be controlled separately by different sets of epigenetic or genetic alterations, 
i.e. different sets of “hits”. Moreover, the cell authentically transformed via epigenetic mechanisms (Cell B) may initially be reversible back to the normal, but later it will likely 
develop such genetic alterations that make the cell lose the reversibility and progress into the state of Cell C. If our manipulation is made in a controllable manner and is 
withdrawn early, the primary cell (Cell A) will no longer manifest the transformed morphology and behavior and will undergo senescent death (if the cell is in a culture dish) or 
both senescent death and apoptosis (if the cell is in a live animal). However, the truly transformed cells (Cells B and C) may retain their neoplastic properties sustained by the 
epigenetic or genetic alterations, unless some extrinsic factors (such as a chemical) cause the cells to circumvent or override the epigenetic or genetic alterations and make the 
cells reverse back to the normal state with or without retaining the alterations. In other words, neoplastic morphology and behavior incurred by our manipulation, an extrinsic 
factor, are inauthentic, but those caused intrinsic epigenetic or genetic alteration(s) are authentic. 
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Neglecting immortality causes confusion on 
aging-caused cell death in outgrowths 

Normal animal cells undergo aging and 
eventually die of it [465, 474, 764-774], and so do cells 
in overt outgrowths from many animal models, more 
often in morphologically-benign than in morpho-
logically-malignant ones [769, 771-773]. This type of 
cell death has established “cancer cell senescence” as a 
popular research bailiwick [474], although many 
relevant studies do not involve lesions from animals 
but, peculiarly, use cancer cell lines that are immortal. 
Because its essence is “dies from aging”, the “cancer 
cell senescence” concept is illogical and collides with 
the immortality and autonomy criteria for a neoplastic 
state, since it connotes that immortal cells still 
undergo aging and eventually die of it. In our logic, 
neoplastic cells are immortal and thus cannot undergo 
aging and eventually die from it, whereas cells that 
can undergo aging and die from it cannot be regarded 
as neoplastic no matter how much their morphology 
and behavior resemble those of neoplastic cells. In all 
those lesions that are morphologically malignant and 
even metastatic but are still inducer-dependent, such 
as the TSH-dependent thyroid tumors and their 
metastases [155, 174, 185], cells may undergo aging 
and die via senescent death because they have not yet 
become authentically neoplastic. 

Neglecting immortality causes confusion on 
cancer stem cells 

As Sell has pointed out before [4], in the 
mid-1990s there were two important concepts on stem 
cell theory of cancer reemerging simultaneously in the 
literature. One is the hypothesis that cancers arise 
from normal stem cells in the organ or tissue, which 
somehow had gone awry and lost the ability to 
differentiate while having acquired the ability to 
proliferate indefinitely [635]. This theory actually 
appeared in the 19th century [775] and reemerged in 
the literature in the 1960s and 1970s [4, 499, 632-636, 
776, 777]. It developed from the concept that cancers 
originated from embryonic cells with stemness. As 
reviewed by Triolo [5], this concept was first 
suggested by Virchow’s teacher Johannes Müller in 
1838, involved the work of Boll, Cohnheim, Durante, 
and many others, and had become popular as the 
“blastema theory” in the 19th century. As reviewed by 
Trosko et al [778-783], this initial concept annotates 
cancer stem cells (CSCs) as those organ- or 
tissue-specific stem cells that somehow go amiss, 
likely due to some epigenetic and/or genetic 
aberrations [781,784], and gradually evolve to cancers 
[4, 634-636, 764, 785-787]. Sometimes these abnormal 
stem cells are also called “transformed stem cells 
[788]”, “cancer progenitor cells [789]”, or 

“cancer-initiating cells [782, 790]”. According to a 
denomination of carcinogenic mechanisms, in a 
renewable cell type a stem cell that has gone awry 
may stop differentiation, in Sell’s words, “showing 
maturation arrest” [635], during an embryonic stage 
or during a tissue regenerative procedure, and 
continues proliferating to form a neoplasm, as we 
described before [449, 720]. Actually, this 
“stop-differentiation” mechanism is presumably a 
reason why nonrenewable cell types still develop 
childhood neoplasms: pediatric tumorigenesis, 
incurred by such reasons as carriage of certain 
germ-line mutations or in utero exposure to a 
carcinogen [791], had already incepted during an 
embryonic stage when the cells still had their 
replicative ability [449]. For this reason, we have 
suggested that molecular biologists should be wary of 
using those DNA elements that are activated during 
an embryonic stage [199, 205], such as the Mist-1 
promoter [792, 793], as the promoters to drive 
transgenes. This is because the resulting transgenic 
animal models may show stop of differentiation and 
thus mimic only the formation of childhood cancer, 
whereas most cancers in humans are sporadic [199, 
205]. For example, both female and male transgenic 
mice expressing the MMTV-PyV middle T antigen 
develop mammary tumors at a very young age [794], 
in contrast to humans. 

The other concept is that cancer is maintained by 
a small fraction of the cancer cells in the tumor mass 
that have the property of stem cells [795-797]. In 
Clarke’s words, “…a subset of cancer cells within 
some tumors, the so-called cancer stem cells, may 
drive the growth and metastasis of these tumors” 
[798]. More detailed by Chiodi, “in many types of 
cancers a subset of cells shows peculiar characteristics, 
such as the ability to induce tumors when engrafted 
into host animals, self-renew and being immortal, and 
give rise to a differentiated progeny. These cells have 
been defined as CSCs or tumor initiating cells [799]”. 
Similarly, in the words of Weinberg’s group, “the CSC 
hypothesis posits the existence of subpopulations of 
neoplastic cells within a tumor that exhibit an 
elevated ability to seed new tumors upon 
experimental implantation in appropriate animal 
hosts” [800]. They also say that, “evidence is 
accumulating that both normal and fully neoplastic 
cell populations harbor subpopulations of stem cells 
(SC) that can both self-renew and spawn more 
differentiated progeny” [801]. This CSC definition, 
which is used in most recent CSC publications [518, 
785, 802-806], was derived from some findings in the 
1990s that many leukemia cells showed different 
degrees of differentiation, and a small subset of them 
have stem cell properties with a great potency to 
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populate to a tumor mass when transplanted into 
animals [795-798, 807]. Actually, many much-earlier 
studies, started by Furth and Kahn in 1937 [808], have 
already shown that single cancer cells in late 
progression stages were highly transplantable and 
could grow rapidly in recipient animals [809-813], as 
reviewed by George Klein six decades ago [408].  

The two CSC concepts described above, one 
about cancer-origin and the other about cancer- 
maintenance mechanism, are unrelated and are both 
correct and clear, as pointed out by Visvader [814]. 
However, the number of the studies on the second 
concept has been soaring in the past 20 years, which 
unfortunately sets this concept as the orthodox CSC 
definition, admixes the two unrelated concepts 
together, and makes many researchers confused. For 
instance, CSCs are described as “cancer-initiated 
cells” in both concepts [782, 790, 799]. Indeed, the CSC 
definition in the literature of the past 20 years has 
remained erratic or, in the words of Dumont et al [815, 
816], “fuzzy and evolving”, partly because it has 
never been lucid in distinguishing CSCs on the one 
hand from normal stem cells in embryos or in adult 
organs and on the other hand from the vast majority 
of cancer cells [817]. 

The “subset”, “subpopulation”, or similar words 
used in the second CSC concept about a cancer 
maintenance mechanism hint slyly, in a tacit manner, 
that except for a tiny fraction, the vast majority of 
cancer cells are not immortal and are not able to 
self-renew, which obviously collides with the 
definition of neoplasm in all pathology textbooks 
published since the 1900s. Benign and malignant cells 
relentlessly undergo symmetrical binary fission, just 
like bacterial cells that unremittingly divide to 
maintain their strains, although some aging research 
wizards consider that bacterial cells also undergo 
asymmetrical division and undergo aging as well 
[818-820], likely for maintaining their vitality [821]. 
Moreover, malignant cells are highly plastic and can 
differentiate to various cell types [807,822]. For 
instance, quite different types of cancer, even 
pre-cancer lesions [823], of the epithelial origin 
[824-834] manifest bone histology, or osseous 
metaplasia in pathological phraseology. Therefore, a 
strong pluripotency should not be used to 
dichotomize cancer cells into CSC and non-CSC 
groups. It is true that in cancers many cells die at a 
much higher rate than others due to various stressors, 
such as insufficient oxygen or nutrient nourishment, 
or overly severe genetic damage [554, 555, 835]. The 
opposite is also true that in a cancer mass some cells’ 
ability of self-renewal via symmetrical division is 
much more potent than that of the others. However, 
these quantitative differences simply reflect the 

well-known heterogeneity of malignant cells [453, 
836-840], which is largely ascribed to the stemness of 
some cells [841] and the great genetic variation among 
most cells [835, 842], and should not be used to split 
cancer cells into CSC and non-CSC groups either. 
More critically, “ability of self-renewal vs inability of 
self-renewal” is actually “immortality vs mortality”, 
which is a black-and-white demarcation between the 
neoplastic and non-neoplastic states and thus should 
not be used again as the demarcation between CSCs 
and non-CSCs. We would like to quote Paget’s words 
in 1889 again: “as Langenbeck says, every single 
cancer cell must be regarded as an organism, alive 
and capable of development” [304]; obviously, both 
Paget and Langenbeck used “every single” to extend 
the “self-renewal” ability to all cancer cells.  

We proffer that, since CSCs in the second 
definition differ from other cancer cells only 
quantitatively in such as the competency of 
self-renewal, metastasis, therapy-resistance, etc., clear 
quantitative parameters in these vicious behaviors 
should be established to separate those 
highly-competent cells from their less-competent 
counterparts, just like the establishment of the normal 
ranges for blood pressure, blood sugar, etc. 
Identification of biomarkers for these cells, as 
performed by many cancer researchers now, is part of 
this line of work. Once these quantitative parameters 
have been set as criteria, these abominable cells can be 
more easily defined, identified and studied for their 
behaviors in the quarters of chemotherapy, 
metastasis, patients’ prognosis, etc., without calling 
them CSCs. For example, it is unnecessary to call 
“CD44(+)/CD24(-) and ALDH1(+)” breast cancer cells 
as CSC [843-846], since “CD44(+)/CD24(-) and 
ALDH1(+)” defines them more specifically and 
clearly than the equivocal “CSC”. Meanwhile, 
returning the CSC concept to the cancer-origin 
hypothesis will be helpful to solve the current snafu in 
this realm of cancer research. 

Mention should be made of some publications 
which prefer not to provide a pellucid CSC definition, 
like the ones by Sarkar [847-849], but, instead, prefer 
to sway between different definitions. In this type of 
even more baffling definitions, a CSC could be a 
normal stem cell that eventually evolves to a 
cancerous one, the benign stage towards a cancerous 
cell, or the earliest form of a cancerous cell. While 
some peers, such as Reya et al [850,851], seem to 
consider both cancer-origin and cancer-maintenance 
types of cells as CSCs, some others, such as Chaffer 
and Weinberg [801], sometimes consider that those 
cancer-maintaining CSCs, but not all cancer cells of 
the cancer mass, may be derived from tissue-specific 
normal stem cells in a stepwise manner. These latter 
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cancer pundits elegantly incorporate the hypothesis 
on cancer-maintenance mechanism into the notion of 
normal-stem-cell origin of cancer, but it still indirectly 
suggests that only CSCs, and not the vast majority of 
cancer cells in the tumor mass, can self-renew, and 
thus still denies immortality as a sine qua non for a 
neoplastic state. 

In our long-term cogitation on the hypothesis of 
CSC as “a”, if not “the”, mechanism for cancer 
maintenance, an intriguing question occurs to us that 
whether benign tumors also utilize their “benign 
tumor stem cells (BTSC)” for their maintenance. As 
implicated in some of the above sections, benign 
tumor cells are also immortal and thus have acquired 
self-renewal ability, although they may be too 
differentiated to be distinguishable from their normal 
counterparts in cellular morphology, with uterine 
leiomyoma as an epitome. Is the continuing expansion 
of a benign tumor mass also ascribable to a tiny subset 
of BTSCs, but not to the vast majority of the tumor 
cells? Otherwise, why does a cancer have to be 
maintained by a tiny subset of cells? 

Concluding remarks 
Over a century ago, pathologists had set 

immortality and autonomy as indispensable canons 
for neoplasms, including the benign ones. It has been 
known ever since the 1900s that many overgrowths 
induced in animals are inducer-dependent until very 
late stages. Unfortunately, indubitable evidence for 
immortality and autonomy has not been provided for 
the lesions resulting from most genetically modified 
animal models of carcinogenesis at the time when the 
lesions are collected from the animals. Although these 
lesions have indeed provided us with a profusion of 
information on the functions and underlying 
mechanisms of the manipulated genes, especially on 
the quarters of cell proliferation and death, the lack of 
this needed evidence still makes us apprehensive, as 
much confusion on the behaviors of these animal 
lesions may be caused by their neoplastic 
inauthenticity. There are five lines of phenomena that 
dissent from the orthodox doctrine of cancer theory 
but should not be neglected, i.e. 1) the extrication of 
one from another among transformation, immortality, 
and autonomy; 2) the reversibility of in vitro 
transformation; 3) the irrelevance of mutation to 
cancer formation and cancer cell heterogeneity in 
some experimental systems; 4) the inducer- 
dependency of outgrowths induced in animals; and 5) 
the insinuation of a poor in vivo transformation 
efficacy by a low tumor yield in each animal of most 
model systems after a long latency. Probably, our in 
vitro and in vivo manipulations cannot mimic most 
situations of human cancer formation in which 

mutations are likely required for early establishment 
of immortality and autonomy. We should, with 
numerous genetic models created, embark on the 
following research quests: 1) What is the genomic 
basis for immortality or autonomy? 2) What is the 
genomic basis for initiation, promotion, or 
progression, or for the first, second, or third genetic 
hit outlined herein? 3) How are immortality and 
autonomy linked to initiation, promotion, and 
progression? 4) Which are good animal models for us 
to use in tackling the above three tasks? Concerns 
raised in this essay are obviously provocative but 
deserve reconsideration by cancer researchers, 
especially those at the pinnacle of cancer research. 
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