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Abstract 

Background: Glioma is the most common type of primary central nervous system tumors. However, 
the relationship between gene mutations and transcriptome is unclear in diffuse glioma, and there are no 
systemic analyses with regard to the genotype-phenotype association currently. 
Methods: We performed the multi-omics analysis in large glioblastoma multiforme (GBM, n=126) and 
low-grade glioma (LGG, n=481) cohorts obtained from The Cancer Genome Atlas (TCGA) database. 
We used multivariate linear models to evaluate associations between driver gene mutations and global 
gene expression. We developed generalized linear models to evaluate associations between 
genetic/expression factors with clinicopathologic features. Multivariate Cox proportional hazards models 
were used to predict the overall survival. 
Results: The potential relationship between genotype and genetics, clinical as well as pathologic features, 
on diffused glioma was observed. At least one driver mutation correlated with expression changes of 
about 10% of genes in GBMs while about 80% of genes in LGGs. The strongest association between 
mutations and expression changes was observed for DRG2 and LRCC41 gene in GBMs and LGGs, 
respectively. Additionally, the association between genomics features and clinicopathologic features 
suggested the different underlying molecular mechanisms in molecular subtypes or histology subtypes. 
For predicting survival, among genetics, transcriptome and clinical variables, transcriptome features made 
the largest contribution. By combining all the available data, the accuracy in predicting the prognosis of 
diffuse glioma in patients was also improved. 
Conclusion: Our study results revealed the influences of driver gene mutations on global gene 
expression in diffuse glioma patients. A more accurate model in predicting the prognosis of patients was 
achieved when combining with all the available data than just transcriptomic data. 
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Introduction 
Glioma is the most common type of primary 

central nervous system tumors and is divided into 
two major subgroups based on their infiltrative 
behavior, circumscribed and diffused [1]. The patients 
with diffuse glioma need total surgical resection and 
extended resection at times, even though these 
patients have a worse prognosis when compared to 

those with circumscribed glioma. Diffuse gliomas 
have a strong tendency to invade the brain via the 
white matter. Targeted medicine have improved the 
prognosis of some patients with diffuse gliomas, but 
the five-year survival rate still remained very low 
among all types of it and worsened with the elevation 
of WHO grades [2, 3].  
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The current WHO grading system and 
pathology-based grading do not comprehensively 
reflect the biological behavior and clinical outcomes in 
patients with diffuse glioma. Therefore, it is impera-
tive to find more accurate biomarkers that assist in 
predicting the prognosis of patients. Molecular 
subgroups of diffuse glioma have been established 
based on the transcriptomic data and these subgroups 
were considered to be superior in predicting the 
prognosis than the WHO grading system [4-6].  

The characteristics of glioblastoma multiforme 
(GBM) and low-grade gliomas (LGG) are distinct 
clinically, histologically, and genetically. GBM 
comprises of 46.6% malignant tumors in the central 
nervous system is highly infiltrative and aggressive 
when compared to LGG [7-9]. Unlike many other 
types of malignant tumors, the mutational burden of 
GBM remains low [10]. Also, there are only very few 
high-frequency mutated driver genes like IDH1/ 
IDH2 and promoter of TERT discovered in gliomas. 
The majority (i.e., 54-83%) of GBMs contain mutations 
in TERT promoter and are also commonly observed in 
oligodendrogliomas but rare in grade II or III 
astrocytomas. The IDH mutations are commonly 
observed in secondary GBMs (about 80%) and grade 
II-III diffuse gliomas (about 65-80%), while only about 
5% of primary GBMs carry this type of mutation [11]. 
IDH1 mutations are more commonly (>90%) observed 
in diffuse gliomas than IDH2 mutations, but are 
generally mutually exclusive [12]. 

The relationship between gene mutations and 
transcriptome remains the main focus of this study. 
Currently, there are no systemic analyses on the 
genotype-phenotype association. Thus, the potential 
relationship between the genotype and genetics, and 
clinical as well as pathologic features was elucidated 
via several statistical models in diffuse gliomas. 
Additionally, for clinical utility, we assessed the 
contribution of genomics, transcriptome and clinical 
variables for predicting survival. We also integrated 
all these variables for developing a prognostic model 
with high accuracy. 

Materials and Methods 
Data collection 

The TCGA RNA-seq data, mutation data and 
phenotypic data of gliomas were collected with R 
(version 3.5.1, https://www.r-project.org) package 
TCGAbiolinks[13]. The raw count data of RNA-seq are 
normalized with R packages DESeq2 and preprocess-
Core. The gene mutation data were collected, matched 
to patients and analyzed according to the description 
of the manual of TCGAbiolinks. The driver genes of 
diffuse gliomas were selected from intOGen (https:// 

www.intogen.org). The gene mutation data were 
processed with R package maftools. The potentially 
harmful mutations including missense, nonsense, 
nonstop mutations, frameshift deletions and 
insertions were selected to perform further analysis. 
Only adult patients were selected for the analysis. 

Variable selection and classification 
The multi-omics TCGA glioma dataset contains 

multi-dimensional information of each patient. The 
following are the important parts selected for the 
study. The selected variables were classified into five 
categories: (1) gene mutations: driver genes that are 
mutated in at least 5 patients, (2) gene expression 
profiles: transcriptomic data obtained from high- 
throughput sequencing of gliomas, (3) demographic 
variables including gender and age, (4) cytogenetics: 
06-methylguanine-DNA methyltransferase (MGMT) 
promoter methylation status, Chr7gain and 
Chr10loss, 1p19q co-deletion status, TERT promoter 
mutation status, and (5) pathology: Verhaak’s 
transcriptome subtypes, ABSOLUTE purity, 
histology, and WHO grade. According to the 
classifications of TCGA, LGG is defined as WHO 
grade II and III gliomas with several histological types 
including astrocytoma, oligodendroglioma, and 
oligoastrocytoma. 

Statistical model and analytical method 
All statistical analyses were performed using R. 

Models and the algorithms in this study were derived 
from Gerstung M. et al[14]. The overall survival of 
patients was defined as the interval after glioma 
diagnosis till the last follow-up period or death. Cox 
regression model was built based on the overall 
survival of the patients, and the consistency between 
observed and predicted risk was evaluated using 
Harrell’s C-statistic ranging from 0.5 to 1. The higher 
the Harrell’s C-index value is, the better the predictive 
power of the specific prognostic model is. In survival 
analysis, the accuracy of a given variable in predicting 
the survival was tested using Cox regression with 
5-fold cross-validation. The survival for patients was 
assessed with Kaplan-Meier estimates and differences 
in survival were compared by the log-rank tests. All 
statistical tests were two-sided, and a P-value of <0.05 
was considered to be statistically significant. 

Results 
The information regarding the two cohorts of 126 

GBM patients and 481 LGG patients from the TCGA 
glioma dataset was collected. The selection criteria 
were described in the Methods section and data 
compositions were shown in Figure S1. The clinical 
characteristics of the two cohorts were shown in 
Table S1. 
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Figure 1. Patterns of genetic alterations and transcriptome in GBMs or LGGs. Scatter plots showing recurrent mutations, cytogenetic alterations as well as clinicopathological 
features that overlay the first two principal components (PCs) in GBMs (a) or LGGs (c). Each dot in the scatter plots resembles a patient. Explained variance of transcriptome by 
PCs in GBMs (b) or LGGs (d). 

 
Global gene expression is correlated with 
driver gene mutations, cytogenetic alterations 
as well as clinicopathologic features 

Heterogeneity in patients could be partially 
explained by heterogeneity in gene expression. A 
number of factors could explain the variations in gene 
expression. We mainly focused on the impact of 
mutations on driver genes to the expression profiling. 
Other factors including age, gender, and 
clinicopathologic features were also considered. To 
extract the main features of transcriptomic data, we 
implemented principal component analysis 
(PCA)-based dimensionality reduction analysis. The 
first two principal components (PCs) were displayed 
to explain the largest variance for each patient. We 
mapped different features on them by using different 
colors (Figure 1a and Figure 1c). For GBMs, the first 

two PCs could explain 16.8% and 9.6% of the total 
variability in gene expression (Figure 1b). For LGGs, 
the first two PCs accounted for 18.7% and 12.9% of the 
total variance (Figure 1d). Cumulatively, the first 20 
PCs explained 65% and 66% of the total variance in 
GBMs and LGGs, respectively. 

Visualization of patients by dimensionality 
reduction (PC1 and PC2) showed intriguing results 
genetically and cytogenetically. Alterations and other 
clinicopathologic features have distinct clustering 
directionality in the vector space of the first two PCs, 
suggesting that these alterations are associated with 
global gene expression changes. More specifically, the 
GBM patients with NF1 and IDH1 mutations were in 
opposite directions, suggesting the differences in the 
transcriptomic patterns of these two subtypes of 
patients (Figure S2a). For LGG patients, patients with 
IDH1 mutations or 1p/19q codeletion have similar 
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PCA projections, indicating the similarity of the 
transcriptomic pattern (Figure S2b). As expected, the 
observed PCs reflected a continuum of changes in the 
expression and also clearly separated normal samples 
from tumor samples (Figure 1a and Figure 1c). These 
results showed that heterogeneity in genetic 
compositions partially explains the transcriptomic 
heterogeneity. 

Deconvolution of the interactions between 
driver mutations and gene expression via a 
linear model 

We found that genetic alterations showed 
association with distinct changes in the transcriptomic 
profiles or specific gene expression. However, these 
relationships were not clearly understood yet. Thus, 
we deconvoluted these associations via a 
mathematical model. A multivariate linear model was 
used to measure the association of gene expression 
profiling and multiple predictors including the driver 
gene mutations, cytogenetic alterations, etc. Briefly, 
the multivariate linear model enables us to identify 
the gene expression changes induced by a specific 
alteration while controlling other confounding 
variables. 

The transcriptome of glioma is globally 
perturbed by genetic and cytogenetic driver 
mutations. After correction for multiple hypothesis 
testing (FDR-adjusted moderated F-statistic < 0.05), 
the expression levels showed that 2297/18429 (12%) 
and 14764/18429 (80%) genes were significantly 
associated with at least one driver mutation in GBM 
(Figure 2a) and LGG (Figure 2b), respectively. 
Genomic alterations accounted for at least R2=23.6% 
of the observed inter-patient gene expression 
variability in GBMs, and this explains at least the 
R2=9% of the total variance in LGGs (Figure 2a and 
Figure 2b). For GBMs, the strongest association 
reached R2=72% between mutations and expression 
changes for the gene DRG2 (Figure 2c). The observed 
variability can be largely explained by the presence of 
IDH1 mutations, leading to the downregulation of 
DRG2 gene expression. For LGGs, the strongest 
association reached R2=76% between mutations and 
expression changes for the gene LRRC41 (Figure 2d). 
The presence of 1p19q co-deletion might explain the 
downregulation of LRRC41 gene expression. 

The multivariate linear model identifies the set 
of gene expression changes associated with a specific 
driver gene mutation from a mutation-centric 
perspective. As shown in Figure 2e and Figure 2f, 
each gene mutation showed an association with a 
specific set of targeted gene expression changes. For 
example, IDH1 mutations showed an independent 
correlation with the expression levels of 804 genes, 

whereas PTEN mutations showed association only 
with altered expression levels of 35 genes in GBM 
samples. Similarly, in LGG samples, IDH1 and IDH2 
mutations were independently correlated with most 
of the gene expression level changes (2871 genes and 
2713 genes, respectively). Compared with normal 
samples, 4716 and 4981 genes changed the expression 
in GBM and LGG samples without being attributable 
to a distinct driver mutation (Figure 2e and Figure 2f). 
Furthermore, the differentially expressed genes 
(DEGs) that are induced by gene mutations, 
cytogenetic alterations or other features were mapped 
into chromosome locations. For driver gene mutations 
or cytogenetic gene mutations, the number of DEGs 
per chromosome broadly followed the gene density 
on the autosomes (Figure S3). However, the DEGs 
induced by EGFR mutations were located on 19 
chromosomes (75/241, 31.1%), while those induced 
by TERT promoter mutations were located on 6 
chromosomes (19/47, 40.4%) in GBM samples (Figure 
S3a). A similar pattern in LGG samples was not found 
for these mutations. For chromosome (Chr) 7 gain and 
chromosome 10 loss alteration, the largest share of 
expression changes occurred at the deleted or 
amplified genomic locus, resulting in the altered gene 
dosage in patients with LGGs and GBMs. For 1p/19q 
co-deletion, the DEGs tend to locate to 1 and 19 
chromosomes in LGGs (Figure S3b). The sex-specific 
effects are predominantly localized to the X and Y 
chromosomes. These results suggested no tendency of 
chromosome localization of IDH mutations in both 
LGGs and GBMs.  

For the driver gene itself, the NF1, RB1, PIK3R1, 
and TP53 mutants in patients demonstrated 
significantly lower levels of expression when 
compared with wild-type in GBM and lower 
expression levels of FUBP1, NF1, PTEN, and IDH1 in 
mutant patients in LGG (Figure S4). In contrast, the 
expression level of EGFR was highly expressed when 
mutated (Figure S4). The expression levels of driver 
genes also provided evidence on the pathogenesis of 
gliomas. 

Mutation profiling and transcriptome predict 
the clinicopathologic features of patients 

We have explored the association between 
genetic alterations and expression profiling and 
analyzed the possible underlying mechanisms. Next, 
a model was set to demonstrate the association 
between all genetic/expression factors with 
clinicopathological features. To explore these 
associations, a generalized linear model was used to 
quantify the association of common genetic and 
cytogenetic alterations, as well as the first 20 PCs of 
the transcriptome with several clinicopathological 
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features (Figure 3). For example, a strong predictive 
value for purity in GBMs was found and the two 
strongest predictors included PC1 from gene 
expression data and presence of Chr7 gain and Chr10 
loss (Figure 3a and Figure S5). The optimal model 
demonstrated a predictive accuracy of R2 = 61.2%. The 
transcriptome subtypes of GBMs reflected the 
transcriptomic pattern of GBMs. PC1 and PC2 were 
considered as the two strongest predictors for 
mesenchymal (MES) or neural (NE) subtype, while 
PC2 and PC4 for classic (CL) or proneural (PN) 

subtype (Figure 3a). Predicting the PN subtype 
demonstrated the highest predictive accuracy with 
R2=76.6% (Figure S5). However, no strong predictive 
effects of these variables to features including age, 
grade as well as histology in LGGs were observed 
(Figure 3b and Figure S6). Consistently, we found the 
association between the presence of 1p19q codeletion 
and oligodendroglioma (Figure 3b). We also found 
the fundamental differences in predictors for different 
histology subtypes, suggesting various molecular 
mechanisms. 

 

 
Figure 2. Distribution of variance explained by mutations and cytogenetic alterations in GBMs (a) or LGGs (b); Red line indicates genes with altered expression in association 
with genetic alterations and the grey line indicates genes with altered expression associated with all variables. Scatter plot of expression predictions for DRG2 gene or LRCC41 
gene versus the observed expression values in GBMs (c) or LGGs (d); Model coefficients showed changes in the expression levels in association with specific alterations. The 
number of genes that statistically changed the expression associated with variables in GBMs (e) or LGGs (f) (moderated F-test; FDR < 0.05), MGMTm stands for MGMT promoter 
methylation, TERTmut stands for TERT promoter mutation; Logarithmic expression fold change (FC) is indicated by color. Heatmap displaying pairwise mutations (odds ratio; 
upper triangle) and overlapped target genes associated with each mutation (lower triangle) in GBMs (g) or LGGs (h). 
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Figure 3. Heatmap summarizing the model coefficients for clinicopathological features in GBMs (a) or LGGs (b). LASSO-selected (least absolute shrinkage and selection 
operator) coefficients are colored and ranked by numbers. Numbers in bold fonts indicate highly significant coefficients. Variance is explained by genetic, cytogenetic and 
expression variables as shown in the bar plot. The R2 of models that are larger than zero indicating a margin of more than one s.d. is denoted with a star. 

 
Predictive power of expression, mutations and 
clinical data in prognosis 

We have developed models for predicting the 
clinicopathological features. Furthermore, as 
predicting survival outcomes in patients is a key issue 
for clinicians, models were finally set out to predict 
the prognosis. Here, a multivariate Cox proportional 
hazards model was used to predict overall survival 
(OS) in GBM and LGG patients using variables in all 
the five types of features (genetic, cytogenetic, 
transcriptomic, demographic and pathologic 
features). Harrel's C-statistic was used to evaluate the 
predictive power of the model. Moreover, all 
variables in a given type were integrated into one and 
hoped to improve the predictive power of the model. 
As shown in figure 4a, for GBM patients, accuracy of 
the model by using genetics alone was C=50.8% and 
accuracy of the model by using cytogenetics alone 
was C=52.6%, and these were inferior to that obtained 
by using the expression data (based on the first 20 
PCs) with C=61.9%. The combination of variable 

classes resulted in the highest prediction of the 
accuracy of C=66.3%. For LGG patients, the accuracy 
of expression, demographics, and pathology alone 
was C=81.5%, 77.1%, and 67.1%, respectively. The 
combination of all variables slightly improved the 
predictive accuracy of the model to C=84.5% (Figure 
4c). Notably, the gene expression contributed mostly 
to the risk estimation in both GBM (58%) and LGG 
(52%) (Figure 4b and Figure 4d). 

Next, the potential key factors that contributed to 
most of the prognosis were identified. Therefore, 
random forests (RF)-based survival analysis was 
performed (Figure S7). According to the random 
forest model, the variables with high importance are 
considered as major contributors to the outcomes. 
Age was considered as the major factor for the 
survival risks in GBMs or LGGs. For GBMs, PC17 and 
PC2 were the major prognostic factors in the 
expression class, and purity was regarded as a major 
prognostic factor in the pathology class, while IDH1 
mutations were considered as significant prognostic 
factors in the genetics class (Figure S7a). Similarly, in 
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LGGs, PC2, PC3, PC1, and PC18 in the expression 
class contributed to most of the prognosis. IDH1, and 
EGFR mutations in the genetics class and the presence 
of chr7 gain and chr10 loss in the cytogenetics class 
were also the major contributors of survival risk 
(Figure S7b). 

Discussion 
Like other tumors, the clinical features and 

pathological features were used for predicting the 
prognosis of gliomas for many years. Increased data 
regarding transcriptome and genome provides new 
insights on the disease and also helps us to establish a 
prognostic prediction model with high accuracy. 
Gliomas are a group of diseases with high 
heterogeneity. The TCGA consortium has performed 
high-dimensional molecular profilings of nearly 600 

gliomas and established glioma molecular subtypes 
[15, 16]. These molecular subtypes provide evidence 
for understanding tumor biology and are also 
associated with significant patient outcomes. Previous 
studies have identified the associations between 
tumor subtypes, in which the IDH-mutant gliomas 
were associated with cytosine-phosphate-guanine 
(CpG) island methylator phenotype (G-CIMP) [17]. 
However, the relationships between the expression 
profiles and mutations were not well understood. 
Therefore, in this study, an in silico method was 
employed to deconvolute the relationships between 
genetic alterations, transcriptome, clinicopathological 
features and patient outcomes using the TCGA data 
on gliomas. Our study confirmed some known 
mechanisms and also revealed some striking 
observations. 

 

 
Figure 4. Bar plot showing Harrel’s C-statistic for multivariate Cox proportional hazards models to predict the overall survival in GBMs (a) or LGGs (c); Grey points denote the 
C-index of 5-fold cross-validation prognostic models and error bars represent the mean s.d. Distribution of variables that contributed to the survival risk in GBMs (b) and LGGs 
(d). 
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Previous studies have revealed that gene 
expression is affected by many confounding factors. A 
linear model was used to measure the correlations 
between the expression and the mutations by 
controlling other confounding variables. These 
findings revealed that the global transcriptome of 
gliomas is perturbed by driver mutations and 
cytogenetic alterations. Also, several transcripts that 
altered the expression associated with at least one 
mutation were identified. Compared with GBMs, the 
transcriptome of LGGs were profoundly affected by 
more genes that changed the expression. Moreover, 
the affected genes varied in numbers across different 
driver mutations. Indeed, for both GBMs and LGGs, 
the IDH mutations induced most of the gene 
expression changes, confirming the core role of IDH 
mutations in glioma pathogenesis [18, 19]. Moreover, 
our data revealed a difference in the impact of driver 
mutations on GBMs or LGGs, which included RB1 
mutations for GBMs and PTEN, ATRX, and CIC 
mutations for LGGs. Additionally, other factors 
including tumor purity and age could also affect the 
gene expression levels. However, limited overlapping 
was found in genes that altered the expression 
induced by different mutations or other factors, 
suggesting that these variables acted in a functionally 
distinct manner. These results indicated the 
complexity and heterogeneity of gliomas. 

 Although our methods of model-building did 
not provide us the exact mechanism on the level of 
molecular biology as to how the mutation of a certain 
driver gene affects the expression of other genes, our 
work showed a connection between mutation and 
transcriptome, providing a theoretical basis for 
further experiments in gliomas. By taking DRG2 as an 
example, significantly lower expression in GBM 
patients with IDH1 or TP53 mutation, and 
significantly lower expression level of LRRC41 were 
observed when there is 1p/19q co-deletion in LGG 
patients. The differences here indicate fundamental 
heterogeneity regarding the molecular mechanism on 
how the driver gene mutations influence transcrip-
tome between GBMs and LGGs. Most of the driver 
genes of glioma showed decreased expression when 
mutated but not for EGFR. As a known oncogene of 
glioma, EGFR overexpression usually occurs as a 
result of copy number amplification, while in other 
cases where there is no copy number variation, EGFR 
has the ability for ligand- independent activation by 
some point mutations or frame-shifting 
insertions/deletions. Thus, the activation of EGFR in 
glioma can be achieved by multiple independent 
pathways, whether co-exists or not [20, 21].  

Chromosomal distribution of affected genes by 
genetic factors seems to be extensive and random, 

showing no concentration on any chromosomes, 
except in a few cases. Structural variation of 
chromosomes like chr7 gain and chr10 loss affects the 
genes on these, which remained obvious, and it is the 
same for co-deletion of 1p/19q. Point mutations of 
EGFR, promoter of TERT, PI3KR1, and KMT2D affects 
genes on chromosomes 19 and 6, which are not the 
chromosomes they originated from. Coincidently, 
chromosome 19 includes a lot of genes that are 
directly associated with the malignancy of glioma[22], 
and chromosome 6 includes many known tumor 
suppressors like TERT suppressor[23]. Somehow 
these mutations have a profound impact on the 
transcription of genes that are even far away from the 
physical location, and our work provides a lead to 
further analyze the exact mechanism. 

All the variables described in this study 
demonstrated significant effects on the transcription 
profile and are probably considered to be the most 
essential factor for the prognosis of glioma patients. It 
is not difficult to understand the importance of certain 
gene expression changes in the evolution of gliomas, 
but surprisingly, our results showed that 
transcriptome contributes the most in predicting the 
survival of patients when compared with other types 
of factors in the model, no matter whether in LGG or 
GBM. The transcription profiles contributed to 58% in 
the GBM model, and 52% in the LGG model. The 
model achieved the highest accuracy when all the 
variables were combined, indicating that other 
variable types like cytogenetics, demographics, and 
pathology still contained some information related to 
the survival of patients. In the RF-based analysis of 
patient survival, age is regarded as the most 
important variable of all in both LGGs and GBMs. For 
all pathological variables, histology demonstrated the 
highest importance in LGGs, and purity index for 
GBMs. Our results indicated that glioma purity has 
great value in predicting the prognosis, which was 
also pointed out by other researchers [24-26] but is not 
widely used. 

However, there are some limitations to this 
study. Firstly, analysis within the TCGA cohort was 
performed, in which both the training set and 
validation were included. N-fold cross-validation and 
bootstrap methods were used to reduce bias from a 
single dataset to as minimally as possible. It would be 
better if we had another external dataset to further 
confirm some of the results. Secondly, potential 
confounding variables that alter the prognosis of 
patients existed, which included the race of the 
patients, treatment, and gene methylation status. As a 
retrospective study, it is not possible to fully eliminate 
the bias during the patient selection process.  
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Conclusion 
In conclusion, the genetic and phenotypic 

relationship in glioma patients was generated, and a 
model based on the combination of cytogenetics, 
transcriptome, histology and demographic data was 
made to accurately predict patients’ prognosis in both 
GBMs and LGGs. The transcriptomic data is 
considered to be the most important of all, but the 
model needs all variables to achieve the highest 
efficacy. All data should be taken into consideration to 
ensure accurate prediction in glioma patients in the 
future. 

Abbreviations 
CL: classic; GBM: glioblastoma multiform; G- 

CIMP: cytosine-phosphate-guanine island methylator 
phenotype; LASSO: least absolute shrinkage and 
selection operator; LGG: low-grade glioma; MES: 
mesenchymal; MGMT: 06-methylguanine-DNA 
methyltransferase; NE: neural; PCA: principal 
component analysis; PN: proneural; TCGA: The 
Cancer Genome Atlas. 

Supplementary Material  
Supplementary figures and table.  
http://www.jcancer.org/v11p3794s1.pdf  

Acknowledgements 
We would like to thank TCGA project organizers 

as well as all study participants. 

Funding 
This work was supported by the National 

Natural Science Foundation of China (Grant No. 
81770781 and No. 81472594) for Xuejun Li and 
National Natural Science Foundation of China (Grant 
No. 81560414) for Chunhai Huang. 
Ethics Committee Approval and Patient 
Consent 

This research was approved by the Ethics 
Committee of the Xiangya Hospital Central South 
University. 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, 

Cavenee WK, et al. The 2016 World Health Organization Classification of 
Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016; 
131: 803-20. 

2. Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, et al. CBTRUS 
statistical report: primary brain and central nervous system tumors diagnosed 
in the United States in 2007-2011. Neuro Oncol. 2014; 16 Suppl 4: iv1-63. 

3. Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, et al. Effect 
of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance 

Temozolomide Alone on Survival in Patients With Glioblastoma: A 
Randomized Clinical Trial. JAMA. 2017; 318: 2306-16. 

4. Gorovets D, Kannan K, Shen R, Kastenhuber ER, Islamdoust N, Campos C, et 
al. IDH mutation and neuroglial developmental features define clinically 
distinct subclasses of lower grade diffuse astrocytic glioma. Clin Cancer Res. 
2012; 18: 2490-501. 

5. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, 
et al. The somatic genomic landscape of glioblastoma. Cell. 2013; 155: 462-77. 

6. Ye N, Jiang N, Feng C, Wang F, Zhang H, Bai HX, et al. Combined Therapy 
Sensitivity Index Based on a 13-Gene Signature Predicts Prognosis for IDH 
Wild-type and MGMT Promoter Unmethylated Glioblastoma Patients. J 
Cancer. 2019; 10: 5536-48. 

7. Carvalho J, Barbosa CCL, Feher O, Maldaun MVC, Camargo VP, Moraes FY, 
et al. Systemic dissemination of glioblastoma: literature review. Rev Assoc 
Med Bras (1992). 2019; 65: 460-8. 

8. Jooma R, Waqas M, Khan I. Diffuse Low-Grade Glioma - Changing Concepts 
in Diagnosis and Management: A Review. Asian J Neurosurg. 2019; 14: 356-63. 

9. Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, et al. 
CBTRUS Statistical Report: Primary Brain and Other Central Nervous System 
Tumors Diagnosed in the United States in 2009-2013. Neuro Oncol. 2016; 18: 
v1-v75. 

10. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et 
al. Mutational heterogeneity in cancer and the search for new 
cancer-associated genes. Nature. 2013; 499: 214-8. 

11. Appin CL, Brat DJ. Biomarker-driven diagnosis of diffuse gliomas. Mol 
Aspects Med. 2015; 45: 87-96. 

12. Olar A, Sulman EP. Molecular Markers in Low-Grade Glioma-Toward Tumor 
Reclassification. Semin Radiat Oncol. 2015; 25: 155-63. 

13. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. 
TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA 
data. Nucleic Acids Res. 2016; 44: e71. 

14. Gerstung M, Pellagatti A, Malcovati L, Giagounidis A, Porta MG, Jadersten M, 
et al. Combining gene mutation with gene expression data improves outcome 
prediction in myelodysplastic syndromes. Nat Commun. 2015; 6: 5901. 

15. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. 
Integrated genomic analysis identifies clinically relevant subtypes of 
glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and 
NF1. Cancer Cell. 2010; 17: 98-110. 

16. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, et al. 
Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of 
Progression in Diffuse Glioma. Cell. 2016; 164: 550-63. 

17. Malta TM, de Souza CF, Sabedot TS, Silva TC, Mosella MS, Kalkanis SN, et al. 
Glioma CpG island methylator phenotype (G-CIMP): biological and clinical 
implications. Neuro Oncol. 2018; 20: 608-20. 

18. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 
and IDH2 mutations in gliomas. N Engl J Med. 2009; 360: 765-73. 

19. Waitkus MS, Diplas BH, Yan H. Biological Role and Therapeutic Potential of 
IDH Mutations in Cancer. Cancer Cell. 2018; 34: 186-95. 

20. Eskilsson E, Rosland GV, Solecki G, Wang Q, Harter PN, Graziani G, et al. 
EGFR heterogeneity and implications for therapeutic intervention in 
glioblastoma. Neuro Oncol. 2018; 20: 743-52. 

21. An Z, Aksoy O, Zheng T, Fan QW, Weiss WA. Epidermal growth factor 
receptor and EGFRvIII in glioblastoma: signaling pathways and targeted 
therapies. Oncogene. 2018; 37: 1561-75. 

22. Chai RC, Zhang KN, Chang YZ, Wu F, Liu YQ, Zhao Z, et al. Systematically 
characterize the clinical and biological significances of 1p19q genes in 1p/19q 
non-codeletion glioma. Carcinogenesis. 2019; 40: 1229-39. 

23. Miyakawa A, Ichimura K, Schmidt EE, Varmeh-Ziaie S, Collins VP. Multiple 
deleted regions on the long arm of chromosome 6 in astrocytic tumours. Br J 
Cancer. 2000; 82: 543-9. 

24. Zhang C, Cheng W, Ren X, Wang Z, Liu X, Li G, et al. Tumor Purity as an 
Underlying Key Factor in Glioma. Clin Cancer Res. 2017; 23: 6279-91. 

25. Schulze Heuling E, Knab F, Radke J, Eskilsson E, Martinez-Ledesma E, Koch 
A, et al. Prognostic Relevance of Tumor Purity and Interaction with MGMT 
Methylation in Glioblastoma. Mol Cancer Res. 2017; 15: 532-40. 

26. Xiong Y, Xiong Z, Cao H, Li C, Wanggou S, Li X. Multi-dimensional omics 
characterization in glioblastoma identifies the purity-associated pattern and 
prognostic gene signatures. Cancer Cell Int. 2020; 20: 37. 

 


