
Journal of Cancer 2020, Vol. 11 
 

 
http://www.jcancer.org 

4641 

Journal of Cancer 
2020; 11(16): 4641-4651. doi: 10.7150/jca.41250 

Research Paper 

Novel Metabolomics Serum Biomarkers for Pancreatic 
Ductal Adenocarcinoma by the Comparison of Pre-, 
Postoperative and Normal Samples 
Xiaohan Zhang1, Xiuyun Shi1, Xin Lu1, Yiqun Li1, Chao Zhan2, Muhammad Luqman Akhtar1, Lijun Yang1, 
Yunfan Bai1, Jianxiang Zhao1, Yu Wang1, Yuanfei Yao2, Yu Li1 and Huan Nie1 

1. School of Life Science and Technology, Harbin Institute of Technology, Harbin, China. 
2. The Affiliated Tumor Hospital, Harbin Medical University, Harbin, China. 

  Corresponding authors: Yu Li. Room 310, Building 2E, Science Park of Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin 
150001, China; Fax: 86-451-86402691; E-mail: liyugene@hit.edu.cn.; Huan Nie. Room 310, Building 2E, Science Park of Harbin Institute of Technology, No. 2 
Yikuang Street, Nangang District, Harbin 150001, China; Fax: 86-0451-86402690; E-mail: nh1212@hit.edu.cn. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2019.10.17; Accepted: 2020.04.14; Published: 2020.05.19 

Abstract 

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive human 
malignancies. The metabolomic approaches are developed to discover the novel biomarkers of PDAC. 
Methods: 550 preoperative, postoperative PDAC and normal controls (NCs) serums were employed 
to characterize metabolic alterations in training and validation sets by LC-MS. 
Results: The results of PLS-DA analysis indicated that three groups could be distinguished clearly and the 
post-PDAC group is adjacent to a normal group as compared with pre-PDAC group. Further results 
showed that histidinyl-lysine significantly increased whereas docosahexaenoic acid and LysoPC (14:0) 
decreased in pre-PDAC patients as compared with NCs. And these three markers had a significant 
tendency to recover after tumor resection. The validation set results revealed that for CA19-9 negative 
patients, 92.3% (12/13) of them can be screened using these three metabolites. The combination of these 
markers could significantly improve the diagnostic performance for PDAC, with higher sensitivity (0.93), 
specificity (0.92) and AUC (0.97). Moreover, network and pathways analyses explored the latent 
relationship among differential metabolites. The glycerolipid metabolism and primary bile acid synthesis 
showed variation in network and pathway analysis. 
Conclusions: These three markers combined with CA199 displayed high sensitivity and specificity for 
detecting PDAC patients from NCs. The results indicated that these three metabolites could be regarded 
as potential biomarkers to distinguish PDAC from NCs. 
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Introduction 
It is estimated that the incidence of pancreatic 

ductal adenocarcinoma (PDAC) will be the second- 
leading cause of cancer-related deaths by 2030 due to 
the intractable detection and the poor prognoses [1,2]. 
The 5-years survival rate of all PDAC patients has 
remained close to 5% [3-5]. Clinical symptoms of 
PDAC patients are usually unremarkable in the early 
stage [6-7]. More common clinical diagnostic methods 
for PDAC are mainly dependent on imaging 
examination and traditional protein biomarkers [8-9]. 

Imaging examinations, such as magnetic resonance 
imaging, computed tomography, and endoscopic 
ultrasonography, have insufficient specificity and 
sensitivity for detecting PDAC in the early stage 
[10-12]. On the other hand, the best-established serum 
biomarker is carbohydrate antigen 19-9 (CA19-9). 
Unfortunately, CA19-9 is not only insufficient for the 
early stages but also limited in the sensitivity 
(59%~64%) [13-15]. So, at the time of diagnosis, only 
20% of patients can remove their tumors, which could 
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increase 5-years survival rate from 5% to 25%. 
Therefore, there is imperative to identify new 
biomarkers that could help in diagnosis of PDAC, 
which has become a medical emergency [16-17]. 

As an omics technology, metabolomics enable the 
global and untargeted measurement of small 
molecular (<1000Da) weight endogenous metabolites. 
It is a useful approach to understand known 
metabolic pathways and biological functional 
alterations in physiological and pathological 
responses [18]. In recent years, metabolomics has been 
utilized to clarify the significant changes of tumor 
mechanisms and the discovery of new diagnostic 
biomarkers for early diagnosis [19]. It is essential to 
distinguish the information between diseased and 
non-diseased status [20,21]. Ultra-performance liquid 
chromatography-mass spectrometry has the most 
automated, reproducible and high-throughput 
characteristics, which is the most widely analytical 
platform for metabolomics [22]. Thus, more and more 
research groups are taking advantage of 
metabolomics to the discovery of cancer biomarkers 
and understanding of pathophysiologic processes. 

Numerous studies have reported to seek the 
multiple circulating metabolites signatures to 
discriminate pancreatic cancer cases from non-case 
controls [23-26], and pancreatitis cohorts in some 
researches [27-29]. These selected individual 
biomarkers are available for the detection of PDAC 
and the receiver operating characteristic (ROC) of 
them have an outstanding result (AUC>0.9) 
[8,11,26,30,31]. Although these screening modalities 
are generally able to detect PDAC; none of them have 
been implemented in daily practice so far due to poor 
consistency of results [32]. Most of pancreatic cancer 
metabolomics studies used sample size ranging from 
40 to 100 while only a few numbers of studies used 
more than 500 samples [33-35], and insufficient 
sample size may result in unrepresentative and 
variable results. Furthermore, there shall be a 
tendency to recover for effective biomarkers after 
tumor resection for the post-operative monitoring. 
This could be an excellent piece of evidence for 
whether or not it becomes a useful diagnosis marker. 
To date, however, no metabolomics study has 
investigated the relation between the resection of the 
tumor and the change of pancreatic cancer 
metabolism by comparing preoperative and 
postoperative serum samples [34]. 

In the present study, we have performed 
UPLC/Q-TOF MS based metabolite profiling analysis 
on 550 serum samples to screen out critical metabolite 
alterations that may discriminative biomolecules for 
PDAC diagnosis through utilizing preoperative and 
postoperative pathology in training cohorts. 

Combined with clinical information of the PDAC 
patients, three discriminative metabolites 
(Docosahexaenoic acid, LysoPC (14:0) and Histidinyl- 
Lysine) were determined to be independent 
predictors for PDAC diagnosis and its diagnostic 
performance was confirmed via independent 
validation analysis. The performance of three 
discriminative metabolites in PDAC was evaluated, 
and they provided a highly accurate classifier for 
delineating PDAC patients from NC with >97% 
accuracy (AUC = 0.97). Levels of three postoperative 
discriminative metabolites were closed to normal 
controls compared with paired preoperative PDAC 
group. In addition, correlation network and pathway 
analysis were carried out to understand the inter- 
relationship among discrepant metabolites. These 
results demonstrated the potential capability of the 
three metabolic biomarkers could be utilized to 
distinguish PDAC from NCs. 

Materials and Methods 
Sample Collection 

550 serum samples from 431 populations were 
involved in this study including preoperative (pre- 
PDAC) and postoperative (post-PDAC) patients with 
PDAC and normal controls (NC). The training set 
consisted of pre-PDAC patients (n=185) and normal 
controls (n=146). Of the 185 pre-PDAC patients, 87 
pairs of postoperative samples were collected. The 
validation set included another new PDAC 
preoperative samples (n=50), pairs of postoperative 
samples (n=32) and normal controls (n=50). All 
patients were diagnosed with pancreatic cancer for 
the first time and had no treatment before sampling, 
and were recruited and pathologically confirmed 
from the Affiliated Tumor Hospital at the Harbin 
Medical University; the serum samples from the 
healthy volunteers were obtained from the Fourth 
Affiliated Hospital of Harbin Medical University. 
Informed consents were obtained from all the 
enrolled participants before taking part in this study. 
The malignant severity was assessed by using the 
TNM classification system (the 8th edition of AJCC) 
and differentiation degree. The preoperative serum 
samples were obtained in the next morning after the 
patients were hospitalized and the postoperative ones 
were sampled in the morning on the seventh day after 
the operation when the pancreatic function was 
recovered. Control subjects were recruited on the 
basis that they had no history of cancer and the serum 
levels of the tumor markers CEA, CA19-9 and AFP 
were negative. Clinical information of all subjects was 
shown in Table 1. Notably, nearly half of the samples 
came from samples after surgery, leading to a high 
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percentage of patients in stage I. And the proportion 
of patients with unknown staging information 
exceeds over 40% due to the mission of staging 
information for patients without surgery. 

Reagents and Chemicals 
HPLC grade acetonitrile and methanol were 

purchased from Fisher Scientific (Waltham, MA, 
USA); formic acid (HPLC grade) was produced by 
Fluka (St. Louis, MO, USA); deionized water was 
provided by a Milli-Q ultrapure water system 
(Millipore, Billerica, USA). 

Sample Preparation 
To provide a measurement of the stability and 

performance of the system, quality control samples 
(QCs) were prepared by pooling equal volume of 
supernatant of all samples in the identical 
corresponding dataset (i.e., training set or validation 
set). All serum supernatant were carefully collected 
with non-anticoagulant vacuum tubes and 
immediately centrifuged at 4000× g for 10 min at 
room temperature. The sample preparation was done 
according to the method described in our previous 
report [36]. Serum samples were thawed on ice and 

100 µl aliquots were mixed in 300 µl pre-cooled 
methanol/acetonitrile (1:1) for protein precipitation. 
Finally, the dried residue obtained after freeze-dried 
was re-dissolved by 100 µl of 50 % methanol. 

UPLC-Q/TOF MS Analysis 
To ensure stability during analysis, samples 

were analyzed for quality control at the beginning 
and at the end of each running batch. According to the 
method described in a previous report, the injected 
sample volume 5 µl. Chromatographic separation was 
performed by the ultra-performance liquid 
chromatography (UPLC) system (Waters, Milford, 
USA) using a Waters BEH C18 column (2.1 mm × 100 
mm, 1.7 µm) (Waters, Milford, MA) kept at 40 °C in 
ESI (+) and ESI (-). The elution flow rate was 0.30 
mL/min to avoid insufficient nebulization. The 
optimized elution gradient was performed as follows: 
0–0.5 min 1 % eluent A , 0.5–3.5 min 1–53 % eluent A , 
3.5–7.5 min 53–70 % eluent A, 7.5–9 min 70–90 % 
eluent A , and then maintained at 9–13 min 90 % 
eluent A followed by alternating the gradient back to 
13.1 to 15 min 1 % eluent A (0.1 % formic acid - 
acetonitrile (A) and 0.1 % formic acid - water (B)). 

 

Table 1. Pathological and clinical characteristics of subjects in training set and validation set 

Characteristics Training set Validation set 
NC (n=146) PDAC (n=185) post-PDAC (n = 87) NC (n=50) PDAC (n=50) post-PDAC (n = 32) 

Age ≤40 17 24 
 

2 1 3 3 

 41~50 41 29 18 5 5 10 
 51~60 52 63 30 19 19 8 
 ≥61 36 69 37 25 25 11 
Sex male 88 109 52 25 25 11 
 female 58 76 35 25 25 21 
Diabetes yes 0 14 7 0 5 2 
 no 146 130 53 50 37 28 
 unknown 0 41 27 0 8 2 
Hepatitis B yes 0 7 4 0 2 0 
 no 146 138 65 50 33 21 
 unknown 0 40 18 0 15 11 
TNM stage I — 85 69 — 28 17 
 II~IV — 28 7 — 14 9 
 unknown — 72 11 — 8 6 
Differentiation poor — 55 28 — 11 10 
 moderate — 42 26 — 11 4 
 high — 41 30 — 19 13 
 unknown — 47 4 — 8 5 
Jaundice yes — 65 32 — 12 7 
 no — 85 38 — 25 16 
 unknown — 35 17 — 13 9 
Surgical method 1 — — 22 — — 14 
approach method 2 — — 40 — — 8 
 unknown — — 25 — — 10 
CA19-9 ≤37 — 34 22 — 13 8 
 >37 — 95 58 — 21 13 
 unknown — 56 7 — 16 11 
Method 1: pancreatectomy; Method 2 pancreaticoduodenectomy. 
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MS data identification and MS/MS acquisition 
were both performed in a dual electrospray ion source 
(Agilent, Santa Clara, CA, USA) with a 6520 series 
accurate quadrupole time-of-flight mass spectrometer 
(Q-TOF MS). MS data was collected in the positive 
and negative mode equipped with a scan rate of 1.5 
spectra/s and the mass range was from 50 to 1100 
m/z. The parameters for the acquisition were using 
the following settings: the capillary voltage, 4 and 3.5 
kV in the positive and negative mode, respectively; 
the gas temperature, 330 °C; the flow rate, 10 L/min; 
the fragmentor, 100V; and the skimmer, 65 V. 

Statistical Analysis 
Our initial analysis of the whole group was to 

process mass spectra data obtained by LC-MS using 
Qualitative Analysis B.04.00 to extract and align 
peaks. In the training set study, principle component 
analysis (PCA), partial least square discriminant 
analysis (PLS-DA) and orthogonal projection to latent 
structures discriminant analysis (OPLS-DA) were 
conducted to demonstrate that metabolomic profiling 
of PDAC patients and NC. 100 permutation tests of 
cross-validation were used to avoid over-fitting and 
to certify the credibility and stability of the PLS-DA 
and OPLS-DA models [37]. Furthermore, the potential 
differential metabolites were selected via a univariate 
nonparametric Kruskal–Wallis rank sum test (p<0.05) 
and a multivariate random forest (RF) model 
(VIMP>1) was designed [38]. To exclude the influence 
of gender, age and jaundice, the potential metabolites 
were selected through employing a multivariate 
logistic regression considering the three confounding 
factors. And the potential metabolites which were 
significant call-back in the paired postoperative serum 
samples were consequently used for the subsequent 
analysis. To obtain the discriminative metabolites 
with satisfactory predictive performances combined 
with CA19-9, we followed the criteria for 
discriminative metabolite determination from 
differential metabolites: (1) displaying a Pearson 
correlation coefficient (CC) with CA19-9 smaller than 
0.15; (2) displaying a univariate AUC larger than 0.8 
in the discrimination between PDAC and NC. 

Hierarchical cluster analysis (HCA) was 
performed to visualize the significant intensity 
differences in the concentration levels of these 
differential metabolites in a heatmap. Subsequently, 
Pearson correlation analysis and multivariate logistic 
regression were applied to evaluate whether the 
differential metabolites were correlated with CA19-9 
and the independent clinical factors and the PDAC 
diagnosis, respectively. Receiver operating 
characteristic (ROC) analysis was used to calculate the 
area under the ROC curve (AUC), sensitivity, and 

specificity values for the model to evaluate the 
predictive power of the discriminative metabolites 
alone and together with CA19-9 for PDAC diagnosis 
performance. The optimal cut-off value of the model 
was determined from its ROC curve. In the validation 
set study, the diagnostic model was evaluated using 
the AUC, sensitivity, specificity, and accuracy values 
observed at the cut-off value obtained in the training 
set study [39]. Correlation network and a pathway 
analysis were performed to further illustrate the latent 
relationship between the differential metabolites in 
PDAC. 

Metabolite Identification and Screening 
Identification of metabolites was completed as 

described in our previous work. Shortly, accurate 
mass measurements were subject to database searches 
in the public databases METLIN (http://metlin. 
scripps.edu/index.php). According to the RT, m/z 
and MS/MS spectrum of differential metabolites, they 
were well matched with those of authentic standards 
or confirmed spectrums in the public databases 
HMDB (http://www.hmdb.ca/), METLIN, as well as 
MassBank (http://www.massbank.jp/) [40]. 

Results 
Metabolic Profiling of PDAC and NC 

Metabolic profiling of PDAC and NC of 550 
serum samples of the training set and validation set 
were acquired using UPLC/Q-TOF MS. The 
workflow for the metabolomics data analysis was 
presented in Figure 1. In training cohort, the typical 
basic peak chromatograms (BPC) of the pre-PDAC 
(n=185), post-PDAC (n=87) and NC (n=146) group in 
both the positive and negative ionization mode were 
shown in Figure S1. There was remarkable fluctuation 
of the height at the same arriving time of the 
chromatographic peaks of NC, pre-PDAC and post- 
PDAC group whether in positive and negative 
ionization mode. The PCA score plot for subjects in 
the training set was shown in Figure S2A, displaying a 
visible separation in the scores plots from patients 
with malignant disease and normal controls. 
Furthermore, the PLS-DA score plot (model 
parameters R2 = 0.88, Q2 = 0.87; Figure 2A) showed a 
clear separation of PDAC patients from NCs and no 
obvious over-fitting was observed in the permutation 
test (Figure 2B). These analyses indicated that there 
were obvious differences in the serum metabolic 
profiles between the PDAC and NC. Further, the 
OPLS-DA score plot described the differences of 
metabolic profiling in paired samples before and after 
surgery (Figure 2C). Then, the OPLS-DA score plot 
showed a clear separation of pre-PDAC patients from 
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post-PDAC patients and no obvious over-fitting was 
observed in the permutation test (Figure 2D). 

To seek for the metabolic changes caused by 
PDAC, we studied the effects of surgical resection on 
metabolomic profiles. The PCA (Figure S2B), 
three-dimensional PLS-DA (Figure 2E) and OPLS-DA 
(Figure S2C) pattern recognition techniques were 
applied to analyze the NC, pairing pre-PDAC and 
post-PDAC serum. The three-dimensional PLS-DA 
and OPLS-DA score plot for the subjects in the 
training set indicated that call-back postoperative 
samples could be separated from preoperative 
samples and normal samples (model parameters R2 = 
0.68, Q2 = 0.64; R2=0.42, Q2=0.36), respectively. 
Notably, pre-PDCA patients were far away from the 
negative controls and postoperative patients, whereas 
the post-PDAC patients were located closely to NCs. 
It was evident that the good separation performance 
was achieved in PLS-DA and OPLS-DA model and 
the results of cross validation were reliable (Figure 2F 
and Figure S2D). These results revealed that the 
postoperative metabolic profiles had a tendency to 
recover after tumor resection. 

Considering the influence of jaundice on the 
systemic metabolism, the PLS-DA model metabolic 
profiling analysis on NC, PDAC with and without 
jaundice groups were performed. The result showed 
that PDCA patients were far away from the negative 
controls. Notably, there was a certain tendency to 
separate PDAC with and without jaundice group 
(Figure S3). This result suggested that the jaundice 
might influence the selection of differential 
metabolites, and jaundice should be added as a 
confounding factor in screening differential 
metabolites. 

Selection and Identification of Differential 
Metabolites 

On the basis of the metabolic profiling, pairwise 

comparisons of groups were carried out to further 
explore the differential metabolites responsible for the 
differences between pre-PDAC and NC. There were 
8757 ions were found by LC-MS, from which there 
were 116 ions were selected as differential metabolites 
by Kruskal-Wallis rank sum test (p<0.05) and 
multivariate random forest (VIMP>1), which have 
been identified by MS-MS. In addition, to exclude the 
disordered metabolites caused by jaundice, gender, 
and age, the logistic regression was used to analyze 
the 116 differential metabolites. The results showed 
that 11 potential differential metabolites affected by 
jaundice, gender and age have been removed (Table 
S1), and it is proved that three of them has a 
relationship with jaundice or bilirubin by previous 
studies [41-43]. Finally, the significant call-back 
metabolites were screened comparing the 
preoperative and postoperative PDAC pairs of 
samples, which were regarded as useful markers. 31 
metabolites were found have significant call-back (the 
adjusted t-test’s p value <0.05), including 17 negative 
ions mode (ESI-) and 14 positive ion mode (ESI+) 
(Table S2). 

To provide a different perspective into the group 
segregation, the HCA-heatmap for all the differential 
metabolites was presented in Figure 3A. In the HCA- 
heatmap diagram, the pre-PDAC group observations 
were completely separated from the post-PDAC and 
NC group. Overall, red cluster represented masses 
with mean elevation of 16 metabolites among PDAC 
patients, while green clusters represented masses 
with reduction of 15 metabolites. Additionally, the 
post-PDAC subjects were generally similar to NCs. 
This method was the same as the grouping patterns 
shown in the PLS-DA score plot. 

 

 
Figure 1. The workflow of the metabolomics data analysis. 
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Figure 2. Metabolic profiling analysis among NC, pre-PDAC and post-PDAC groups. The score plot for PLS-DA (A) to discriminate pre-PDAC (n=185) and 
NC(n=146); and cross-validation plot obtained from 100 permutation tests (B); The score plot for OPLS-DA (C) to discriminate pair-wise pre-PDAC (n=87) and post-PDAC 
(n=87); and cross-validation plot obtained from 100 permutation tests (D); Three-dimensional score plot for PLS-DA (E) to discriminate pre-PDAC (n=87), post-PDAC (n=87) 
and NC (n=146); and cross-validation plot obtained from 100 permutation tests (F). 

 

Diagnostic Performance and Verification of 
Discriminative Metabolites in External 
Validation Set 

Three of these difference metabolites, 
docosahexaenoic acid (FA_1), LysoPC (14:0) 
(LysoPC_1), histidinyl-Lysine (DP_1) have been 
selected by a series of analysis processes (|CC|<0.15 
and ACU > 0.8), and might be useful for PDAC 
diagnosis and prognosis. The external validation set, 
another batch of serum sample including NC (n=50), 
pre-PDAC (n=50) and post-PDAC cases (n=32), was 
collected and analyzed to validate the reliability of 
these three potential marker candidates. The same 

methods of sample pretreatment, instrumental 
detection, and data analysis were utilized. These three 
metabolites, docosahexaenoic acid, LysoPC (14:0) and 
histidinyl-Lysine showed significant differences (p < 
0.05), and similar variable tendencies with those of the 
training set (Figure 3B and Figure 3C). Since the 
surgical approach (distal pancreatectomy and 
pancreaticoduodenectomy) has a totally different 
postoperative recovery, we examined the influence of 
surgical approach on three discriminative metabolites 
(Figure S4). The results showed that three 
discriminative metabolites were unaffected by 
surgical approach of patients. 
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Figure 3. HCA-heatmap and the expression of discriminative metabolites. (A) HCA-heatmap plot indicating relative levels of differential metabolites in samples of the 
training set. (B) Box plots for comparing concentration levels of the three discriminative metabolites in different groups in the training set. (C) Box plots for comparing 
concentration levels of the three discriminative metabolites in different groups in validation set. * p< 0.05 ** p<0.01 *** p< 0.001 **** p< 0.0001. 

 
Figure 4. Evaluation of potential biomarkers. Classiers are the biomarker signature generated in the training set and presented here for the validation 
set. (A) Scatter plot for graphical representation of the biomarker signature score. Y-axis score of biomarker signature with the cut-off ≥ 0.41 and CA19-9 on the X axis with 
the cut-off ≥ 37 U/mL (< 37µg/mL as CA19-9-negative). (B) Blue circles are pancreatic cancer (n=34). 

 
ROC curves of Docosahexaenoic acid, LysoPC 

(14:0) and Histidinyl-Lysine are shown in the 
validation set, respectively (Figure 4A). The 
sensitivity (Se), specificity (Sp), and area under the 
ROC curve were showed in Table S3 for three 
discriminative metabolites. Furthermore, three 
metabolites were defined as a combinational marker 
with favorable classification capability. The Se, Sp and 
AUC were 0.93, 0.92 and 0.97 for using this 
combinational marker to distinguish PDAC from NC. 
Further, the combinational markers with CA19-9 in 
the prediction of PDAC displayed a Se, Sp and AUC 
of 0.95, 0.98 and 0.99, respectively (Table S3). These 
AUC values indicated a satisfactory performance in 

the validation data sets, with remarkable sensitivity 
and specificity to accurately stratify subjects into 
correct groups. In addition, the dynamic changes in 
the normal controls and PDAC patients in different 
pathological stages (TNM staging system) were 
investigated (Figure S5A). The results showed that the 
level of Histidinyl-Lysine was related with 
progression of PDAC. Besides, Docosahexaenoic acid, 
LysoPC (14:0) and Histidinyl-Lysine showed an 
excellent performance (AUC>0.8) for stage I PDAC 
patients in training set (Figure S5B). These findings 
suggested that the discriminative metabolites might 
be useful for PDAC early diagnosis and prognosis. 
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Moreover, for the CA19-9-negative patients from 
the validation set, the combinational markers had a 
more ideal accuracy (Figure 4B). It was noteworthy 
that the CA19-9 value some of these cases were < 37 
µg/mL, thus the CA19-9-negative patients cannot be 
distinguished by the serum CA19-9 level. 92.3% 
PDAC patients (12/13) who could not be screened by 
CA19-9 showed a positive result through the three 
candidate diagnostic metabolites. For one third 
(12/34) of the patients, our results would help to 
improve the diagnostic workup and treatment 
stratification. These results indicated that the 
discriminative metabolites could provide a 
comparable diagnostic performance of CA19-9 and 
the prediction of CA19-9-negative patients, which 
allow these metabolites potentially contribution to 
PDAC diagnosis in clinical practice. 

Notably, after tumor resection, the postoperative 
serum level of LysoPC (14:0) inclined to normal level. 
Similarly, it was clear that most of the LysoPCs 
(LysoPC (15:0), LysoPC (P-16:0), LysoPC (17:0) and 
LysoPC (20:4(8Z,11Z,14Z,17Z)) were down-regulated 
in the preoperative conditions in comparison to 
healthy controls, and the elevation was obvious after 
resection of tumor in the training and validation set 
(Figure S6A and Figure S6B). Compared with 
pre-PDAC serum patients, post-PDAC patients have a 
tendency to return to normal. Due to tumor removal, 
the change of body metabolism made the level of 
LysoPC (14:0) and LysoPCs family call back. 

Correlation Network Analysis 
A correlation network was built on the basis of 

exploiting the latent relationships between the 
differential metabolites in PDAC, which ensured the 
robustness and reliability of the network construction. 
A total of 17 nodes and 26 edges were recruited in the 
network diagram in a circular layout on the criteria of 
a correlation coefficient ≥0.6 (Figure 5A). In 

accordance with the molecular composition and 
transforming relationship of metabolites of different 
classes, the entire network could be generally divided 
into two subnetworks. Glycerophospholipids 
(LysoPCs and LysoPEs) showed down-regulated 
concentration levels (blue nodes) in PDAC patients 
whereas steroids (ST) and bile acids (BA) were up- 
regulated (red nodes). The intra-category gathering 
landscapes could be clearly observed in metabolites of 
different classes in the network diagram, suggesting 
the underlying transformation of substances and 
energy in PDAC. 

Pathway Analysis 
To further investigate the biochemical 

perturbation correlated with PDAC, an overview of 
the systematic metabolome changes on the basis of 
pathway analysis were conducted. PDCA-induced 
metabolic perturbation was analyzed from the 
perspective of pathway enrichment analysis 
combined with the topology analysis. The biological 
pathways involved in the metabolism of these 31 
metabolites and their biological roles were 
determined by enrichment analysis using 
MetaboAnalyst (Figure 5B). A total of 10 matched 
metabolic pathways (Table S4) were shown according 
to p values from the pathway enrichment analysis 
(y-axis) and pathway impact values from pathway 
topology analysis (x-axis), the most impacted 
pathways colored in red. More attention should be 
paid to pathway with high impact values and 
pathway enrichment analysis (p<0.05). The 
perturbation of metabolism pathway includes 
phenylalanine, tyrosine and tryptophan biosynthesis, 
ubiquinone and other terpenoid-quinone biosynthesis 
and so on. These metabolic anomalies were found to 
be primarily involved in amino acid metabolism, lipid 
metabolism, and energy metabolism. 

 

 
Figure 5. Analyzed of the correlation network and pathways altered in PDAC. (A) Correlation network constructed with 18 differential metabolites (Pearson 
correlation analysis, |r| > 0.6). Blue sub-network constructed with glycerophospholipids (LysoPCs and LysoPEs). Red sub-network constructed with steroids (ST) and bile acid 
(BA). Nodes in red and blue represent the metabolites down-regulated and up-regulated in PDAC, respectively. (B) Significantly changed pathways. Disordered pathways in 
PDAC group; small p value and big pathway impact factor indicate that the pathway is greatly influenced. 
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Discussion 
PDAC is burdened with a 5-year survival rate of 

around 5% and will be the second leading cause of 
cancer-related death by 2030 [2]. Therefore, it is 
necessary to improve the screening and diagnostic 
method for PDAC. Metabolomics, the ‘omics 
technique’ subject to environmental influences, has 
been proposed to be useful for identifying new 
biomarkers for PDAC early diagnosis [44]. PDAC has 
a significant heterogeneity within the tumors of 
individuals [45,46]. This calls for large sample sizes to 
ensure adequate representation of subtypes [47]. 
Furthermore, biomarker development programmers 
required samples to be separated into independent 
training and validation sets [47]. In our metabolomics 
analysis, this conventional route that benefits from a 
large population [46] was adopted in this study. And 
the samples were divided into training and validation 
sets, preoperative and postoperative, which 
guaranteed the reliability of the results. In order to 
select discriminative metabolites, we employed the 
strategy that was considered to be the influence of 
clinical factors (gender and age), which enhances the 
clinical reliability for epidemiological studies. 
Therefore, our metabolomics approach is acceptable 
as a screening method for large populations. 

To screen out the discriminative metabolites that 
have satisfactory predictive performances alone or 
combined with CA19-9 from differential metabolites, 
the three criteria were followed in training set: (a) 
employing a Pearson correlation analysis to exclude 
the metabolites that have the correlation coefficient 
with CA19-9 greater than 0.15; (b) employing an area 
under the curve (AUC) value larger than 0.8. One 
important aspect of the data-modeling procedures 
lays in the predictive ability in terms of sensitivity 
(Se), specificity (Sp), and area under the ROC curve 
(AUC) in the external validation set distinguishing 
malignant pancreatic disease from normal controls. 
Previously metabolomics efforts have been made to 
compare PDAC and control samples. However, it is 
difficult to apply to the clinic because their models 
consist of many different metabolites and AUC of 
their model only maintained in 0.7~0.8 in external 
validation set [52, 53]. Jiang and colleagues suggested 
TSGF as a candidate serum biomarker for pancreatic 
cancer and found that it displayed 91.6% sensitivity 
and 83% specificity [54]. However, its sensitivity for 
early stages pancreatic cancer was decreased to 
60.0~75.0%. In our study, to validate the reliability of 
these three potential marker candidates, we collected 
and analyzed another batch of serum sample 
including NC cases (n=50) and PDAC cases (n=50). 
The same methods of sample pretreatment, 

instrumental detection, and data analysis were 
utilized. Our diagnostic performance sensitivity 
(0.93), specificity (0.92) and AUC (0.97) of 
combinational marker were much more enhanced 
than CA19-9. Combinational markers performed an 
accuracy of 92.3% for CA19-9 negative patients 
(12/13), which provide a complement to the analysis 
for unsatisfactory performance of CA19-9. The 
combinational markers with CA19-9 in the prediction 
of PDAC displayed a Se, Sp and AUC of 0.95, 0.98 and 
0.99, respectively. Indeed, our combinational markers 
effectively assist the diagnostic performance of 
CA19-9. 

For the discriminative metabolites, 
docosahexaenoic acid and LysoPC (14:0) were down- 
regulated, while histidinyl-lysine was up-regulated in 
PDAC patients. As the complex structure of LysoPCs, 
UPLC-MS is the best way to determine accurately the 
levels of each individual LysoPCs from minimal 
amounts of serum. LysoPCs are a class of chemical 
compounds that are derived from PC [48]. In our 
study, not only LysoPC (14:0) but also the other 
members of the LysoPCs family (LysoPC (15:0), 
LysoPC (P-16:0), LysoPC (17:0) and LysoPC (20:4)) 
were down-regulated in PDAC. It is revealed that the 
LysoPCs might relate with the carcinogenesis and 
progression of PDAC. The long chain dietary 
polyunsaturated fatty acid have been found to 
enhance various cellular responses that reduce cancer 
cell viability and decrease proliferation both in vitro 
and in vivo [49-51]. A decrease in docosahexaenoic 
acid indicates a disorder of fatty acids. In addition, a 
dipeptide is an organic compound derived from two 
amino acids which can identical different. Although 
dipeptides were generally considered as incomplete 
breakdown products of protein digestion or protein 
catabolism, the specific metabolic mechanism of 
dipeptides in PDAC patients’ remains rarely reported. 
It indicated that the amino acid metabolism was 
disordered and may bring disturbance of body 
metabolism in PDAC. 

Due to alterations in the tumor cell and systemic 
metabolism, PDAC causes changes in circulating 
metabolites, which is central to the biology of PDAC 
[55]. To capture the differential metabolites 
relationships in global changes, network analyses 
have been widely applied in metabolomics studies 
[56]. In this study, phenylalanine, tyrosine and 
tryptophan biosynthesis, ubiquinone and other 
terpenoid-quinone biosynthesis were the majority of 
perturbed metabolic pathways. 

In conclusion, our study showed that the 
discriminative metabolite selection strategy can 
readily and effectively be applied to serum 
metabolomics on the basis of a multivariate analysis. 
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The selected diagnostic metabolites not only have the 
ability to diagnose PDAC from NCs, but also can 
effectively improve the diagnostic performance of 
CA19-9. All of diagnostic metabolites had a tendency 
to recur in postoperative samples, which suggests that 
the perturbation is coming from the tumors. 
Moreover, the correlation network and pathway 
analysis presented the relationships between 
discriminative metabolites and the disturbed 
biological mechanism in PDAC’s development. These 
results will not only provide the potential for the 
improvement in diagnostic accuracy, but also the 
identification of altered metabolic pathways between 
PDAC and NCs, which may help us to understand the 
mechanisms of PDAC. 
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