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Abstract 

Background: While subtyping of the majority of malignant chromophobe renal cell carcinoma (cRCC) and 
benign renal oncocytoma (rO) is possible on morphology alone, additional histochemical, 
immunohistochemical or molecular investigations are required in a subset of cases. As currently used 
histochemical and immunohistological stains as well as genetic aberrations show considerable overlap in both 
tumors, additional techniques are required for differential diagnostics. Mass spectrometry imaging (MSI) 
combining the detection of multiple peptides with information about their localization in tissue may be a 
suitable technology to overcome this diagnostic challenge. 
Patients and Methods: Formalin-fixed paraffin embedded (FFPE) tissue specimens from cRCC (n=71) and 
rO (n=64) were analyzed by MSI. Data were classified by linear discriminant analysis (LDA), classification and 
regression trees (CART), k-nearest neighbors (KNN), support vector machine (SVM), and random forest (RF) 
algorithm with internal cross validation and visualized by t-distributed stochastic neighbor embedding (t-SNE). 
Most important variables for classification were identified and the classification algorithm was optimized. 
Results: Applying different machine learning algorithms on all m/z peaks, classification accuracy between cRCC 
and rO was 85%, 82%, 84%, 77% and 64% for RF, SVM, KNN, CART and LDA. Under the assumption that a 
reduction of m/z peaks would lead to improved classification accuracy, m/z peaks were ranked based on their 
variable importance. Reduction to six most important m/z peaks resulted in improved accuracy of 89%, 85%, 
85% and 85% for RF, SVM, KNN, and LDA and remained at the level of 77% for CART. t-SNE showed clear 
separation of cRCC and rO after algorithm improvement. 
Conclusion: In summary, we acquired MSI data on FFPE tissue specimens of cRCC and rO, performed 
classification and detected most relevant biomarkers for the differential diagnosis of both diseases. MSI data 
might be a useful adjunct method in the differential diagnosis of cRCC and rO. 

Key words: Oncocytic renal tumors, chromophobe renal cell carcinoma, renal oncocytoma, mass spectrometry 
imaging, proteomics 
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Introduction 
Classification of primary renal tumors is a 

common task in routine histopathological diagnostics. 
While the differentiation of most renal tumors is 
possible on morphology alone, some require 
additional histochemical, immunohistochemical 
(IHC) or molecular investigations. A frequent scenario 
where additional studies are recommended is in the 
differential diagnosis of oncocytic renal tumors [1]. 
While several renal tumors exhibit a certain degree of 
cytoplasmic eosinophilia, the differential diagnosis of 
chromophobe renal cell carcinoma (cRCC), 
eosinophilic variant (which comprise about 40% of all 
chromophobe renal cell carcinomas) and renal 
oncocytoma (rO) is particularly challenging [2]. 
Although typical morphological, histochemical and 
genetic characteristics have been described for both 
tumors, a subset of cases remains difficult to classify 
[3]. However, correct classification of cRCC and rO is 
of utmost importance as the former, although 
associated with a good prognosis, has the potential to 
progress and metastasize [4]. 

While tumor cells in both tumors generally show 
a nested or broad trabecular unencapsulated growth 
and eosinophilic finely granular cytoplasm, typical 
morphological features of cRCC are distinct cell 
borders, raisinoid, irregular, wrinkled and angulated 
nuclei, bi- or multinucleation, perinuclear halos and 
fibrovascular stroma. Typical morphological 
characteristics of rO include more closely arranged 
tumor cells at the periphery of the lesion, presence of 
oncoblasts, uniform small, round centrally located 
nuclei, and myxoid or hyalinized stroma (central 
scar). One should be aware that rO may exhibit 
perinephric or renal sinus fat invasion, venous 
invasion, degenerative atypia with bizarre 
pleomorphic nuclei and mitosis [5-8]. 

A helpful histochemical stain in the differential 
diagnosis is the colloidal iron stain (Hale stain). While 
cRCC frequently exhibit intense reticular staining, rO 
show less intense fine dust-like reactivity [9]. 
However, the stain is difficult to standardize and 
utility in the diagnosis of the eosinophilic variant of 
cRCC has been doubted [1]. 

A survey among urologic pathologists reported 
cytokeratin (CK) 7 (94%) as most frequently used and 
most helpful adjunct IHC stain in the differential 
diagnosis of cRCC and rO [3]. In this study, a 
positivity of CK7 in less than 5% of tumor cells was 
regarded as most supportive of rO and diffuse 
uniform staining as confirmatory for cRCC. There was 
less agreement weather negative or focal staining of 

CK7 was compatible with cRCC but is a feature that 
can be observed according to our experience (Figure 
1). 

With regard to genetic changes, losses of 
multiple chromosomes by karyotyping was regarded 
supportive of cRCC by most (65%), and chromosomal 
gains only by some (18%) in the same study [3]. 
However, rO might often show a diploid karyotype 
and also chromosomal losses [10]. 

In an attempt to better characterize the 
proteomic landscape of renal tumors, mass 
spectrometric methods have been applied [11]. 
Among those, mass spectrometry imaging (MSI) has 
prompted interest among pathologists, as it combines 
the detection of multiple proteins or peptides with 
information about their topographical localization 
within tissue sections. The method was previously 
used to classify different cancer subtypes [12-14]. 
However, this technique has rarely been applied to 
study renal tumors and data on the differential 
expression patterns in cRCC and rO is lacking so far 
[15-17]. Additionally, it is not yet clear how to 
standardize the analysis of the complex data 
generated. To improve diagnostic accuracy we 
analyzed a total of 135 oncocytic tumors including 71 
cRCC and 64 rO by MSI, developed a mathematical 
model and evaluated the most important peptides to 
differentiate both tumor types from one another. 

Patients and Methods 
Patients and data collection 

The cohort consisted of formalin-fixed paraffin 
embedded (FFPE) specimens from patients with 
diagnosed with either cRCC (n=71) or with rO (n=64). 
Diagnosis was made according to the 
recommendations of the 2016 World Health 
Organization classification of renal [10]. Where 
appropriate, additional histochemical and immuno-
histochemical stainings were performed (Figure 1). 
Tissue blocks were extracted from the archive of the 
Institute of Pathology Erlangen, with the support of 
the local tissue bank according to standards defined 
by the local ethics committee (Erlangen, vote from 
18.01.2005; #3755; 12.02.2008; #329_16B and 
14.11.2016; #3755). Tissue microarray (TMA) 
construction was performed as previously described 
[18]. In short, one representative punch from each 
tumor was transferred to a new block for TMA 
construction [19]. Representative cases of cRCC and 
rO were stained by CK7 and CD117 and HALE for 
illustrative purposes (for staining properties see 
Supplementary Table 1). 
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Figure 1. Examples of different stainings of cRCC and rO. One exemplary case of cRCC (A, C, E, G, I) and rO (B, D, F, H, J) is shown. On the HE stained tissue sections 
typical morphological features can be appreciated (A, B, 100x; C, D, 400x). CK7 is positive in scattered cells in both cases (E, F, 100x). CD117 shows strong membranous and 
cytoplasmic staining in cRCC and weak cytoplasmic reactivity in rO (G, H, 100x). This staining pattern is not specific as both tumors may show strong or weak reactivity. HALE 
colloidal iron stain shows positivity in cRCC and negativity in rO (left) which can be best appreciated in comparison to surrounding renal parenchyma (right, I, J, 20x). 
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Proteomic characterization by matrix assisted 
laser desorption/ionization mass spectrometry 
imaging 

Three micrometer thick sections of the TMA 
were cut and mounted onto conductive indium tin 
oxide-coated glass slides (Bruker Daltonik, Bremen, 
Germany). Sample slides were processed for 
dewaxing with xylene (Fischer Scientific, Schwerte, 
Germany), rehydrated through graded ethanol 
washes (Fischer Scientific), and subjected to heat 
induced antigen retrieval in 10 mM tris buffer at pH 
9.0 at 95 °C for 20 min, as previously described [14]. 
For on-tissue digestion, trypsin solution was prepared 
in 200 µl 40 mM ammonium bicarbonate 
(Sigma-Aldrich, Taufkirchen, Germany) to a final 
concentration of 0.1 µg/µl and sprayed with an 
automatic reagent sprayer (ImagePrep, Bruker 
Daltonik) in 25 cycles with a fixed nebulization time of 
1.2 s. Sections were subsequently incubated in a 
humidity chamber at 37 °C for 1.5 h. A solution of 7 
mg/ml of alpha-cyano-4-hydroxycinnamic acid 
matrix (Bruker Daltonik) in 50% acetonitrile/0.5% 
trifluoroacetic acid (Fischer Scientific) was then 
applied onto digested sections using the same matrix 
spraying device with an optimized Bruker Daltonik 
default method for sensor controlled nebulization of 
the matrix. 

MSI was performed using an Autoflex Speed 
matrix-assisted laser desorption/ionization 
time-of-flight (TOF)/TOF mass spectrometer (Bruker 
Daltonik) operated in reflectron mode with positive 
polarity and equipped with a smartbeam laser. MSI 
runs were programmed using flexControl and 
flexImaging software (Bruker Daltonik). Each 
spectrum was automatically generated at a spatial 
resolution of 150 µm (Bruker Daltonik) in the mass 
range of m/z 500–5000. 1600 laser shots were acquired 
for each spectrum with 2 kHz repetition rates. A 
peptide calibration standard mix including 
bradykinin, angiotensin II, angiotensin I, substance P, 
bombesin, ACTH clip 1-17, ACTH clip 18-39, and 
somatostatin 28 (Bruker Daltonik) was used for 
external calibration. Following MSI measurements, 
matrix was removed by two washes in 100% methanol 
(Fischer Scientific) for 5 min each followed by 
hematoxylin and eosin (HE) staining. 

Tumor annotation, data processing, and 
extraction 

Tissue sections analyzed by MSI and stained by 
HE were scanned by a slide scanner (Aperio AT2, 
Leica Biosystems, Wetzlar, Germany) and the tumor 
regions were annotated using SCiLS Cloud (SciLS 
GmbH, Bremen, Germany). MSI data were processed 

using SCiLS Lab (SCiLS GmbH) for peak- and image 
visualization. Annotations were imported into SCiLS 
Lab software and spectra were corrected to baseline 
using the algorithm TopHat and normalized by total 
ion count. After manual peak picking, the mean 
intensity of reprocessed spectral peaks of each patient 
was exported for further statistical analysis. 

Statistical analyses 
All statistical analyses were performed in 

R-Statistical Software (version 3.4.3, Free Software 
Foundation) and R-Studio (version 1.1.383, Affero 
General Public License, Boston, USA). 

t-distributed stochastic neighbor embedding 
(t-SNE) was performed to visualize the separation of 
cRCC and rO samples based on the high-dimensional 
m/z peak intensities data set (package Rtsne, v. 
0.15)[20]. In order to visualize similarity between m/z 
values and/or patients, unsupervised hierarchical 
K-means (n=2) clustering was performed (distance 
method: euclidean distance, linkage method: Ward’s 
minimum variance) in R-Statistical software 
(ComplexHeatmap package, v. 2.4.2). 

Different linear, nonlinear and more advanced 
machine learning algorithms (linear discriminant 
analysis [LDA], classification and regression trees 
[CART], k-nearest neighbors [kNN], support vector 
machines [SVM], and random forest [RF]) with 
internal cross validation were applied to calculate the 
accuracy and variable importance of tissue type 
prediction based on all and selected m/z values 
(package caret, version 6.0-81)[21]. Graphics were 
arranged in Inkscape (version 0.92.2). 

Results 
Proteomic MSI analysis can be successfully 
performed on cRCC and rO FFPE samples 

Proteomic MSI analysis was successfully 
performed on cRCC (n=71) and rO (n=64) FFPE 
tissues. 159 peptide peaks in the m/z range from 515.1 
and 4953.4 were detected and selected for further 
statistical analysis. The mean MSI peak intensity of all 
peaks ranged between 0.05 and 1.59 regardless of 
tissue type. Figure 2 shows the sum spectra obtained 
in the MSI analysis. 

Proteomic MSI allows correct classification of 
cRCC and rO tissue specimens 

Aiming future classification of unknown tissue 
samples a t-SNE analysis and five different machine 
classification algorithms have been applied. An 
internal cross validation approach was performed to 
calculate the prediction accuracy of each machine 
classification algorithm. 
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Figure 2. Mean spectra obtained from cRCC and rO samples. Mean spectra from all cRCC (A, light blue, n=71) and all rO (B, red, n=64) as well as a peptide peak at m/z 
1377.6 (C, D, arrow) are displayed. Discriminant absolute intensities of this peak can be observed. 

 
The first differentiation approach including all 

available m/z peaks (n=159) resulted in low visual 
separation accuracy with t-SNE (Figure 3A). 
Similarly, applying different machine learning 
algorithms under consideration of all m/z peaks 
classification accuracy between cRCC and rO of 85%, 
82%, 84%, 77%, and 64% was reached for RF, SVM, 
KNN, CART and LDA (Figure 3B). 

Under the assumption that a reduction of 
variables (i.e. m/z peaks) would lead to a higher 
classification accuracy m/z peaks were ranked based 
on their variable importance contributing most to the 
differentiation between cRCC and rO in the RF 
algorithm. The six most important m/z values for 
cRCC and rO classification in descending order 
starting from the most important were: m/z 1377.6, 
m/z 1906.9, m/z 1786.8, m/z 1692.8, m/z 1629.8 and 
m/z 1495.7 (Figure 3C). Representative mass 
spectrometry images of cRCC and rO are displayed in 
Supplementary Figure 1. 

Reduction of variables (i.e. m/z peaks) to six 
most important resulted in an improvement of visual 
separation between cRCC and rO in t-SNE (Figure 
3D), which can also be seen in unsupervised cluster 
analysis (Supplementary Figure 2). Moreover, the 
median classification accuracy of the machine 
learning algorithms improved to 89%, 85%, 85%, and 
85% for RF, SVM, KNN, and LDA and remained at the 

level of 77% in CART algorithm (Figure 3E). Having 
the highest classification accuracy RF high be the most 
suitable classification algorithm between cRCC and 
rO based on proteomic MSI data. The sensitivity and 
specificity of the final tuned RF model was 89% and 
81% respectively. 

Compared to cRCC rO shows higher intensity 
of all but one m/z peaks contributing to 
classification 

The peaks m/z 1377.6, m/z 1906.9, m/z 1786.8, 
m/z 1692.8, m/z 1629.8 and m/z 1495.7 were 
identified as most important peaks in contributing to 
differentiation between cRCC and rO by RF. All but 
m/z peak 1906.9 (cRCC 0.32 [range 0.21-0.90], rO 0.26 
[0.21-0.51]) showed a higher median peak intensity in 
rO compared to cRCC: m/z 1377.6 - cRCC 0.29 (range 
0.24-0.54), rO 0.45 (0.25-1.25); m/z 1786.8 - cRCC 0.23 
(range 0.18-0.50); rO 0.37 (0.20-0.78); m/z 1692.8 - 
cRCC 0.25 (range 0.21-0.29); rO 0.33 (0.25-0.53); m/z 
1629.8 - cRCC 0.27 (range 0.21-0.71); rO 0.44 (0.22-1.23) 
and m/z 1495.7 - cRCC 0.30 (range 0.22-2.83); rO 0.39 
(0.26-1.03), (Figure 4). 

Discussion 
Reliable subtyping of oncocytic renal cell 

neoplasms into cRCC and rO is important for patient 
management. Correct classification is often possible 
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by thorough morphological investigation alone, but 
requires additional histochemical, IHC and genetic 
studies in some cases. Even using an extended 
diagnostic arsenal, some tumors remain difficult to 
classify. 

Peptide MSI on FFPE tissue has been suggested 
to aid classification of tumors as multiple peptides can 
be detected on a single tissue section, and because the 
analysis is reliable, tissue saving, rapid and cost- 
effective [22-25]. MSI has previously been used to 
successfully study non-tumor kidney diseases [26-29] 
and renal cancer [15-17]. However, in the latter 
investigations mainly papillary and clear cell renal 
cell carcinoma have been analyzed and data on cRCC 
and rO provided in the current study were lacking so 
far. Particularly, peptides that differ between both 
entities and that can be detected by MSI have not been 
identified. 

Moreover, we introduce a novel workflow of 
how the classification of different tumors may be 
improved by using a RF model for classification, 
variable selection and classification performance 
improvement. RF classification has previously been 

applied for classification of peptide MSI data, but not 
for improving MSI classification models [30-32]. 
Tree-based variable selection methods such as the RF 
method applied in our study tend to perform better 
on large datasets such as our dataset compared to 
classic regression-based models [33]. Additionally, we 
show how the dimensions of the data can be reduced 
by t-SNE in order to allow visualization of the results 
which is regarded as the current state-of-the art 
method for nonlinear dimensionality reduction and 
visualization [34]. This approach has not been applied 
for peptide MSI classification visualization to the best 
of our knowledge. 

The combination of both mathematical methods, 
RF classification and t-SNE, allowed to identify m/z 
1377.6, m/z 1906.9, m/z 1786.8, m/z 1692.8, m/z 
1629.8 and m/z 1495.7 as most important markers for 
the differential classification of cRCC and rO. The 
overall accuracy of MSI for the classification of both 
diseases was 89%. Due to the difficulties to establish a 
reliable colloidal iron stain and the demanding 
evaluation, it is difficult to compare the accuracy of 
MSI data and the colloidal iron stain in both tumors. 

 

 
Figure 3. Development of an accurate classification algorithm. To reduce the high-dimensional dataset obtained from peptide MSI (intensities of 159 m/z peaks per sample) 
and to visualize the results a t-distributed stochastic neighbor embedding (t-SNE) analysis was performed (A, D). Common machine classification algorithms were chosen in order to 
perform classification between cRCC and rO samples based on m/z intensities obtained from MSI (B, E). A cross validation method was chosen to determine the classification 
accuracy.m/z peaks were ranked by their importance to contribute to a correct classification of cRCC and rO (C). Overall, the figure shows that reduction of variables (i.e. m/z peaks) 
to six most important improved the classification accuracy. This is reflected in a clearer distinction of cRCC and rO by t-SNE (D) and higher classification accuracy by different machine 
classification algorithms (E) after variable reduction. Abbreviations: CART, classification and regression tree; KNN, k-nearest neighbors; LDA, linear discriminant analysis; RF, random 
forest; SVM, support vector machine. 
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Likewise, data on the expression of CK7 in cRCC and 
rO is challenging to compare to MSI data, as reliable 
cut-off values to define positivity are not firmly 
established. Today, it is clear that the amount and 
staining pattern of CK7 positive cells is important for 
the interpretation of CK7. Some authors even 
suggested to designate CK7 as negative, even when 
up to 10% of cells express weakly CK7 [35]. Other 
authors state that < 5% CK7 expression is most 
suggestive of oncocytoma while a negative CK7 
staining result is less uniformly considered 
supportive [3]. While earlier investigations reported 
CK7 positivity in only 27% of oncocytomas [36], latter 
investigations found CK7 expression in 100% [37]. As 
up to 100% of cRCC are also positive [38] and some 
low-grade oncocytic tumors show an untypical 
staining pattern [39], MSI data might be a useful 

adjunct in the differential diagnosis of cRCC and rO. 
The second most common immunohistochemical 

marker for the differential diagnosis of oncocytic renal 
cell neoplasms is CD117. However, CD117 does not 
discriminate between cRCC and rO as about 85% are 
positive [40], but this marker is useful to discriminate 
cRCC and rO from oncocytic papillary renal cell 
carcinoma, oncocytic angiomyolipoma and others [1]. 

Another diagnostic and rather clinical relevant 
challenge is the identification of hybrid oncocytic 
tumors with an admixture of areas (or cells) typical of 
cRCC and rO [41]. Imaging of peptide differences on 
tissue sections by MSI might facilitate the 
identification of these areas. However, this has to be 
investigated on a suitable dataset as these tumors 
were not included in our study. 

 

 
Figure 4. Peptide intensity profile of selected m/z peaks in cRCC and rO. The figure visualizes the intensity of selected m/z peaks in the 71 cRCC and 64 rO as 
boxplots. The six m/z peaks obtained from proteomic analysis that contributed most to the differentiation between cRCC and rO are shown. Each of the outlier dots refers to 
one patient sample. 
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Of note, the MSI data were acquired on a mass 
spectrometer of the former generation. In our 
experience, even more peptide peaks can be detected 
on the newer compared to the older instrumentation; 
however it is not clear whether classification results 
might be improved by analysis on the most recent 
generation of mass spectrometers [42]. Additionally, 
the results have been generated on highly 
standardized TMAs. It is not clear if the results can be 
simply transferred to whole sections. In this regard, 
we think that future MSI investigations on cRCC and 
rO are necessary to draw final conclusions. 

In summary, we acquired MSI data on FFPE 
tissue specimens of cRCC and rO, performed 
classification and detected most relevant biomarkers 
for the differential diagnosis of both diseases. 

Supplementary Material  
Supplementary figures and tables.  
http://www.jcancer.org/v11p6081s1.pdf  
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