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Abstract

Background: Ovarian cancer (OC) is the most lethal malignancy in the female reproductive system.
Growing evidences demonstrates that competing endogenous RNA (ceRNA) network play crucial roles
in the occurrence and progression of tumors. Therefore, we aimed to explore and identify novel
MRNA-miRNA-IncRNA ceRNA networks associated with prognosis of OC.

Methods: The differentially expressed gene (DEGs) of four expression profiles datasets (GSE5438,
GSE40595, GSE38666 and GSE26712) were collected from Gene Expression Omnibus (GEO) database
and analyzed with NetworkAnalyst. Intersection of DEGs were further employed for Gene Ontology
(GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis. Protein—protein
interaction (PPI) network and hub genes of DEGs were also identified. The expression levels and survival
analysis of the hub genes in OC and their upstream miRNAs and IncRNAs were performed by various
bioinformatics databases. More importantly, ceRNA networks were constructed based on
mRNA-miRNA-IncRNA in OC.

Results: A total of 178 DEGs including 38 upregulated and 140 downregulated genes from intersected
DEGs of four expression profiles were identified in OC. Functional enrichment analysis suggested that
the commonly DEGs were enriched in regulating enzyme inhibitor activity, glycosaminoglycan and G
protein-coupled receptor binding, cell morphogenesis, and involved in pathways including metabolic
process, proteoglycans in cancer. Top 10 hub genes with higher connectivity degree were selected for
subsequent expression and prognosis analysis. After take expression levels and prognostic roles of hub
genes and their upstream miRNAs and IncRNAs in OC into consideration, 2 mRNAs (TACC3 and
CXCR4), 2 miRNAs (hsa-miR-425-5p and hsa-miR-146a-5p) and 3 IncRNAs (FUT8-ASI, LINC00665 and
LINCO1535) were significantly associated with the poor prognosis of OC. The mRNA-miRNA-IncRNA
networks (TACC3-hsa-miR-425-5p-FUT8-AS1 and CXCR4-hsa-miR-146a-5p-LINC00665/LINCO1535)
were eventually constructed in OC based on ceRNA mechanism.

Conclusion: We successfully constructed novel ceRNA network associated with the prognosis of
ovarian cancer, which may provide a new strategy for early diagnosis and therapeutic intervention of OC.
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Introduction

Ovarian cancer is one of the most common
malignant tumors in gynecology worldwide [1],
which causes the highest mortality and poor
prognosis due to the low diagnostic accuracy in the
early stage and extensive metastasis at an advanced

stage [2]. Although the great advancements in
therapeutic strategies of ovarian cancer has been
achieved including surgery, chemotherapy and
radiotherapy, the 5-year survival rate of ovarian
cancer patients was still less than 45% [3, 4]. Effective
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biomarkers for early diagnosis and prognosis
evaluation have not been fully explored and clarified.
Therefore, a better understanding of molecular
mechanisms that associated with the prognosis of
ovarian cancer may contribute to the development of
advanced diagnostic and therapeutic technologies to
improve the survival quality of patients with ovarian
cancer.

Accumulating evidences have demonstrated that
noncoding ribonucleic acids (ncRNA) play key roles
in the occurrence and development of multiple
tumors, including microRNAs (miRNAs), long non-
coding RNA (IncRNAs) and circular RNA (circRNA)
[5]. Based on different transcripts in length with no or
limited protein-coding ability, both miRNAs and
IncRNAs could not only participate in a variety of
biological processes and molecular mechanism of
tumors, such as regulating gene transcription and
post-transcriptional translation [6], epithelial-to-
mesenchymal transition [7] and signaling pathways
[8], but exert profound influence on early diagnosis,
prognosis evaluation and therapeutic targets of
different malignancies including ovarian cancer [9].
Recent studies have suggested that IncRNAs, based
on the competitive endogenous RNA (ceRNA)
mechanism, can competitively bind to miRNAs acting
as sponge of miRNAs to further relieve the
suppression of miRNAs on their target genes [10]. The
aberrant regulation of mRNA-miRNA-IncRNA
ceRNA network play key role in tumorigenesis and
progression of multiple cancers, such as gastric cancer
[11], breast cancer [12] and ovarian cancer [13].
However, the underlying mechanisms of mRNA-
miRNA-IncRNA  ceRNA regulatory networks,
especially associated with prognosis of ovarian
cancer, are not fully clarified.

In this present study, we collected four original
expression profiles by array (GSE5438, GSE40595,
GSE38666 and GSE26712) of ovarian cancer from the
Gene Expression Omnibus (GEO) database.
Differentially expressed genes (DEGs) between
ovarian cancer and normal samples were further
identified with various bioinformatics approaches.
Additionally, the intersection of DEGs of these four
datasets were further employed for functional
enrichment analysis, protein-protein interaction (PPI)
network construction and top-ranked hub genes
identification with online tools. After comprehensive
evaluation of expression levels and prognostic roles of
hub genes in ovarian cancer, 4 upregulated DEGs and
1 downregulated DEGs were eventually identified for
predicting their upstream miRNAs with the
miRTarBase online database. Furthermore, the
upstream miRNAs which analyzed by expression
levels and prognostic values were chosen for

predicting the wupstream IncRNAs by miRNet
database. Similarly, the expression levels and
prognostic values of these upstream IncRNAs were
also analyzed with online database. As a consequence,
an mMRNA-miRNA-IncRNA regulatory network
associated with the prognosis of patients with ovarian
cancer was successfully constructed. This study may
provide new insights into exploring and identifying
novel diagnostic biomarkers or potential targets for
therapeutic intervention of ovarian cancer.

Materials and Methods

Collection of datasets

Four expression profiles by array (GSE54388,
GSE40595, GSE38666 and GSE26712) of ovarian
cancer were collected from the Gene Expression
Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo/)
online database [14]. According to publication time
and the sample size, only datasets being published the
past 10 years and including at least 10 epithelial
ovarian cancer samples were enrolled in current
research. Datasets with only blood samples or cell
lines of ovarian cancer were excluded, and patients
with chemotherapy, radiotherapy, hormone therapy
before surgery and lack of histopathological diagnosis
were not implemented in this study. The datasets
from GSE54388 [15], GSE40595 [16] and GSE38666 [17]
were all based on the GPL570 platform (HG-U133_
Plus_2; Affymetrix Human Genome U133 Plus 2.0
Array). GSE54388 dataset covered 16 ovarian cancer
samples and 6 normal ovarian epithelium samples.
GSE40595 dataset contained 32 ovarian epithelial
tumor samples and 6 normal ovarian epithelium
samples. GSE38666 dataset contained 18 ovarian
cancer patients and 12 ovarian surface epthelium
samples. GSE26712 [18], which was based on the
GPL9 ([HG-U133A] Affymetrix Human Genome
U133A Array), contained 185 primary ovarian tumors
and 10 normal ovarian epithelium samples. We
further downloaded the platform and series matrix
files of above four datasets.

Identification of differentially expressed genes
(DEGsS)

NetworkAnalyst 3.0 (https:/ /www.
networkanalyst.ca/) [19] is a  user-friendly
bioinformatics tools that helps to perform

comprehensive gene expression analysis, meta-
analysis and network analysis, which accepts five
types of data inputs including one or multiple gene
lists, a single or multiple gene expression data, raw
RNAseq reads as well as series matrix files. This
unique online tool integrates cell or tissue-specific
protein-protein interactions (PPI), TF-gene interaction
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networks, miRNA-gene interactions, protein-drug
interactions and protein-chemical interactions, and
the processes of which contain data update, data
processing and analysis, integrated knowledgebase
and interactive visual analysis. DEGs can be identified
with statistical methods such as limma, edgeR and
DESeq2. In this study, NetworkAnalyst 3.0 was
employed to normalize the data and identify DEGs in
each dataset, the cut-off criteria were set as follows:
adjusted P < 0.05 and log2 fold change (log2 FC) >1.

Functional enrichment analysis

All the DEGs of the four datasets identified by
NetworkAnalyst 3.0 were further divided into
upregulated DEGs and downregulated DEGs,
respectively. The commonly DEGs in all of the various
datasets were subjected to subsequent analysis. An
online  tool-Draw  Venn  Diagram (http://
bioinformatics.psb.ugent.be/ webtools/Venn/) was
employed to explore the intersection genes of the four
datasets by venn diagrams. To further explore the
potential functions and mechanisms of above
commonly DEGs in ovarian cancer, Metascape
(http:/ /metascape.org) [20] was used to conduct
Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment
analysis of all the commonly DEGs. The thresholds: P
<0.05, a minimum count of 3, enrichment factor >1.5
were considered to be statistically significant.

Construction and analysis of PPl network and
identification of hub genes

To explore the hub genes correlated with ovarian
cancer, PPl networks of commonly DEGs identified
(upregulated and downregulated DEGs) were
constructed separately with the Search Tool for the
Retrieval of Interacting Genes (STRING) (http://
string-db.org) [21], which is a flexible and
user-friendly platform that facilitates protein-protein
interaction networks. A confidence score > 0.4 was set
as the cut-off criteria to construct PPI network.
Subsequently, the hub genes of the PPI network were
identified by the CytoHubba, a plug in Cytoscape
software (v3.7.1) [22]. Based on the degree of
connectivity of DEGs, and the top 20 hub genes were
exhibited separately with Cytoscape, and the top 10
hub genes were identified separately as hub genes for
further analysis and validation.

Validation of gene expression and prognostic
values analyzed with GEPIA, HPA and Kaplan-
Meier plotter

The Gene Expression Profiling Interactive
Analysis (GEPIA) (http://gepia.cancer-pku.cn/) [23]
is an effective web interface that covers gene

expression data from 9736 tumor samples and 8587
normal samples. The web-based tool provides various
analysis modules such as analyzing differential gene
expression, evaluating survival and prognosis and
correlation analysis. In this research, GEPIA database
was utilized to further explore the expression of the
top 10 hub genes identified in DEGs. One-way
ANOVA was used to evaluate the differences of hub
genes between tumor samples and normal samples,
and the filter criteria were set as follows: P-value <
0.05, |Log2FC| >2. Human Protein Atlas (HPA)
(https:/ /www.proteinatlas.org/) [24] could provide
the distribution, expression and prognosis of 24000
human proteins in 20 tumors tissues, 48 normal
tissues, 47 cell lines and 12 blood cells validated by
immunology method. In this study, HPA database
was used to investigate the staining of hub proteins in
ovarian cancer and normal tissues with
immunohistochemistry. The Kaplan-Meier (KM)
Plotter (http://kmplot.com) [25] is an online tool for
evaluating the prognosis of patients with tumors
including 2190 ovarian cancer samples. The hazard
ratio (HR) at a 95% confidence interval and log-rank
P-values were also explored online. The filter
conditions were as follows: cancer: ovarian cancer;
survival: progression free survival (PFS); follow-up
threshold: 120 months, log-rank P value < 0.05 was
regarded as statistically significant difference.

Identification of upstream miRNA

miRTarBase (http://mirtarbase.mbc.nctu.edu.
tw/php/index.php) [26], a newly web-based
database, mainly contains miRNA-target interactions
verified by different experiments and provides
powerful evidences with literatures or assays. In this
study, the upstream miRNAs of the hub genes were
investigated by miRTarBase, and only those verified
by at least one powerful experiment were identified as
the potential miRNAs interactions (reporter assay,
Western blot or quantitative reverse transcription
PCR) and then chosen for subsequent analysis.
dbDEMC (database of Differentially Expressed
MiRNAs in human Cancers) (https://www.picb.ac.
cn/dbDEMC/) [27] is an integrated database that
designed to explore differentially expressed
microRNAs (miRNAs) in human cancers detected by
high-throughput methods, including a total of 209
newly published data sets collected from Gene
Expression Omnibus (GEO) and The Cancer Genome
Atlas (TCGA). We utilized this database to explore the
expression of upstream miRNAs in ovarian cancer,
and the prognostic values of miRNAs were detected
by the Kaplan-Meier Plotter.
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Identification of upstream IncRNA

miRNet (https://www.mirnet.ca/) [28] is a
user-friendly and online tool which provides
miRNA-centric multiplex networks integrating key
molecules of interest, and contains comprehensive
interaction between miRNA and its targeted IncRNA.
In this study, miRNet was employed to detect the
potential upstream IncRNAs correlated with key
miRNA, and the selection criteria were set as follows:
Organism: Homo sapies, Target type: IncRNAs.
What's more, the expression levels and prognostic
values of these potential IncRNAs were further
evaluated by GEPIA database and Kaplan-Meier
Plotter. The IncRNAs conformed to the ceRNA
hypothesis were identified as key IncRNA.

Construction of the mRNA-miRNA- IncRNA
regulatory network

LncLocator (https://LncLocatorwww.csbio.sjtu.
edu.cn/bioinf/IncLocator/) [29] is a reliable online
platform to analyze the subcellular localization of
IncRN As, which includes 5 subcellular localizations of
IncRNAs and their distribution proportion, such as
cytoplasm, nucleus, ribosome, cytosol and exosome.
LNCipedia databases (https://Incipedia.org) [30] is a
freely and effectively annotated database of IncRNAs
transcriptional sequences and structures, which
provides insights into functions of over 1500 human
IncRNAs, including evaluating coding ability,
predicting open reading frame and secondary
structure. In this study, sequences information of
IncRNAs were explored by LNCipedia databases, and
the cellular localizations of IncRNAs were then
detected by LncLocator. Cytoscape is a very powerful
and effective software for visualizing and analyzing
network data, which assists users to achieve many
complex biological networks [22]. Node and edge are
the two core elements in the network diagram
constructed by Cytoscape. Cytoscape was further
employed to construct and visualize competing
endogenous RNA (ceRNA) network (IncRNA-
miRNA-mRNA), including differentially expressed
genes, differentially expressed miRNAs, and
differentially expressed IncRNAs.

Results

Identification of significant DEGs in ovarian
cancer from GEO database

To explore the potential roles of molecular
associated with the tumorigenesis, development and
prognosis of ovarian cancer, we firstly identified
DEGs in four expression profiles (Table 1)
downloaded from GEO with NetworkAnalyst.
According to the pre-defined cut-off criteria (adjusted

P<0.05 and |log2 FC| >1), as shown in the heatmaps
and volcano plots, a total of 1420 DEGs (756
upregulated genes and 664 downregulated genes)
were identified between ovarian cancer samples and
normal samples from GSE54388 dataset (Figure 1A
and Figure 1E). In GSE40595 dataset, a whole of 3101
DEGs (936  upregulated genes and 2165
downregulated genes) were screened out in ovarian
cancer samples compared with normal samples
(Figure 1B and Figure 1F). In GSE38666 dataset, a total
of 3243 DEGs (1018 upregulated genes and 2225
downregulated genes) were identified in ovarian
cancer samples compared with normal samples
(Figure 1C and Figure 1G). In GSE26712 dataset, a
total of 1200 DEGs (487 upregulated genes and 713
downregulated genes) were detected in ovarian
cancer tissues compared with normal samples (Figure
1D and Figure 1H). The clinical characteristics of all
patients with ovarian cancer in GSE38666 and
GSE26712 were displayed in Supplementary Table S1
and Table S2, and detailed clinic parameters of
enrolled patients in GSE54388 and GSE40595 were not
provided in the original researches.

Table 1. Details of the four datasets from GEO

Dataset Platform Epithelial ovarian Normal Reference

cancer

GSE54388 GPL570 16 6 Yeung TL et al. (2017)
GSE40595 GPL570 32 6 Yeung TL et al. (2015)
GSE38666 GPL570 18 12 Lili LN et al. (2013)

GSE26712  GPL96 185 10 Bonome T et al. (2018)

Identification of DEGs in ovarian cancer
shared by four GEO datasets and functional
analysis for DEGs

We further performed the overlapping analysis
of the upregulated or downregulated DEGs in four
datasets separately with a total of 178 DEGs,
including 38 wupregulated (Figure 2A) and 140
downregulated genes (Figure 2B) were considered as
commonly dysregulated genes in four GEO
expression profiles shown by the Venn diagram. The
result of detailed DEGs were shown in
Supplementary Table S3 and used to further analysis.
To investigate the potential functions and
mechanisms of identified intersected DEGs in the
development of ovarian cancer, GO and KEGG
pathway enrichment analysis of intersected DEGs
(including 38 up-regulated and 140 down-regulated
genes) were explored by Metascape. The results of GO
enrichment analysis showed that the intersected
DEGs were mainly enriched in regulating enzyme
inhibitor activity, retinal dehydrogenase activity,
glycosaminoglycan binding and G protein-coupled
receptor binding (Figure 2C and Supplementary Table
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54). The biological processes of intersected DEGs were
involved in response to steroid hormone, hormone
metabolic process, regulation of actin filament-based
process and cell morphogenesis (Figure 2C and
Supplementary Table S5). The intersected DEGs were
mainly focused on extracellular matrix, blood

microparticle, lateral plasma membrane, basolateral

A

plasma membrane (Figure 2C and Supplementary
Table S6). KEGG enrichment analysis revealed that
these intersected DEGs could participate in signaling
pathways such as retinol metabolism, proteoglycans
in cancer, glycine, serine and threonine metabolism
(Figure 2C and Supplementary Table S7).
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Figure 1. Identification of differentially expressed genes (DEGs) in ovarian cancer from GEO datasets. (A-D) The heatmap of DEGs (Top 250) in GSE54388 (A),
GSE40595 (B), GSE38666 (C) and GSE26712 (D) datasets shown by NetworkAnalyst. Red: the upregulated genes; green: the downregulated genes. (E-H) The volcano plot of
DEGs in GSE54388 (E), GSE40595 (F), GSE38666 (G) and GSE26712 (H) datasets shown by NetworkAnalyst. Red spots: the upregulated genes; blue plots: the downregulated

genes. DEGs, differentially expressed genes.

PPl network construction and identification of
hub genes

In order to further explore the protein-protein
interaction of the identified DEGs, the STRING online
tool was employed to investigate the relationship
among the 38 wupregulated DEGs and 140
downregulated DEGs in the intersection of four
datasets, and all the data were further extracted and
visualized by PPl networks constructed with
Cytoscape software. The result showed complicated
interactions among these intersected genes (Figure
3A-B). Subsequently, the top 20 upregulated and
downregulated hub genes shared by four datasets
were screened out and visualized with CytoHubba
plug in Cytoscape software (Figure 3C-D). What's
more, the top ten upregulated DEGs (UBE2C, CDC20,
BIRC5, RNASEH2A, TK1, TACC3, CXCR4, SDCI,
RNASEH2B and RNASEH2C) (Table 2) and top ten
downregulated DEGs (KDR, HSD17B6, NANOG,
AOX1, CYP3A5 ALDH1A1l, ADHI1B, MAOSB,
ALDHI1A2 and FGF13) (Table 2) were regarded as
hub genes in ovarian cancer and selected for the

following investigation.

Table 2. Top 20 upregulated and downregulated DEGs in
network ranked by connectivity degree with Cytoscape software

Upregulated DEGs Downregulated DEGs

Rank Name Score Rank Name Score
1 UBE2C 32 1 KDR 11
1 CDC20 32 2 HSD17B6 7
3 BIRC5 30 3 NANOG 6
4 RNASEH2A 26 3 AOX1 6
5 TK1 24 3 CYP3A5 6
6 TACC3 6 3 ALDH1A1 6
7 CXCR4 2 7 ADH1B 5
7 SDC1 2 7 MAOB 5
7 RNASEH2B 2 7 ALDH1A2 5
7 RNASEH2C 2 10 FGF13 4
7 ANAPCI1 2 10 ANXA5 4
12 FXYD3 1 10 HSD17B2 4
12 S100A14 1 10 NR3C2 4
12 KLKS8 1 10 ANXA1 4
12 DEFB1 1 10 ADRA2A 4
12 SST 1 16 SCG5 3
12 LCN2 1 16 S100A10 3
12 PTX3 1 16 CPE 3
12 APOA1 1 16 RTN1 3
12 SCGB2A1 1 16 GFPT2 3
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Figure 2. Identification of DEGs between ovarian cancer and normal samples shared by four GEO datasets and functional analysis of the intersected
DEGs with Metascape. (A-B) The intersection of upregulated (A) and downregulated (B) DEGs in four GEO expression profiles with venn diagrams. (C) Significant enrichment
analysis of GO and KEGG pathways of intersected DEGs colored by P-value with bar graph with Metascape. DEG: Differentially expressed gene; KEGG: Kyoto Encyclopedia of
Genes and Genome.
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Figure 4. Expression levels of hub genes in patients with ovarian cancer validated with GEPIA. (A-G) The expression levels of upregulated hub genes UBE2C (A),
CDC20 (B), BIRC5 (C), TK1 (D), TACC3 (E), CXCR4 (F) and SDCI1 (G) in ovarian cancer compared with normal tissues (all P<0.05). (H-L) The expression levels of
downregulated hub genes AOX1 (H), ALDHIALI (I), ADHIB (J), MAOB (K) and ALDHI1A2 (L) in ovarian cancer compared with normal tissues by GEPIA (all P<0.05). TPM:

Transcripts per Million.

Validation of gene expression of hub genes and
survival analysis

The expression levels of top 10 upregulated and
downregulated hub genes were validated by the
GEPIA database (Figure 4) and the survival analysis
of those hub genes for progression free survival (PFS)
in patients with ovarian cancer were explored by
online tool Kaplan-Meier plotter (Figure 5). the result
showed that UBE2C (Figure 4A), CDC20 (Figure 4B),
BIRC5 (Figure 4C), TK1 (Figure 4D), TACC3 (Figure

4E), CXCR4 (Figure 4F) and SDC1 (Figure 4G) were
upregulated in ovarian cancer compared with normal
group (all P<0.05), and there were no significant
differences in the expression of RNASEH2A,
RNASEH2B and RNASEH2C between ovarian cancer
samples and normal samples (Supplementary Figure
S1A-C). For the downregulated hub genes, the
expression of AOX1 (Figure 4H), ALDH1A1 (Figure
41), ADHIB (Figure 4]J), MAOB (Figure 4K) and
ALDH1A2 (Figure 4L) were significantly suppressed
in ovarian cancer compared with normal samples,
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and there were no significant differences in the
expression of KDR, HSD17B6, MANOG, CYP3A5 and
FGF13 between ovarian cancer samples and normal
samples (Supplementary Figure S1D-H). After
validation of gene expression and evaluation of
prognostic values of hub genes, only high expression
of UBE2C (P=0.045, HR=1.15 [1-1.32], Figure 5A), TK1
(P=0.044, HR=1.25 [1.01-1.54], Figure 5D), TACC3
(P=0.0054, HR=1.23 [1.06-1.43], Figure 5E) and CXCR4
(P=0.022, HR=1.17 [1.02-1.34], Figure 5F) were
significantly correlated with poor PFS of patients with
ovarian cancer. While for the downregulated group,
only low expression level of MAOB (P=0.0054,
HR=0.83 [0.73-0.95], Figure 5I) was associated with
poor PFS in patients with ovarian cancer. However,
the expression of CDC20, SDC1 and ALDH1A1 were
not significantly correlated with PFS of ovarian cancer
patients (all P>0.05) (Supplementary Figure S2A-C).
Therefore, the 5 key genes (UBE2C, TK1, TACCS,
CXCR4 and MAOB) were considered for further
analysis.

Detection and validation of upstream miRNAs
of the 5 key genes in ovarian cancer

To explore the upstream miRNAs of those 5 hub
genes, miRTarBase were employed to predict the
targeted miRNAs of the candidate genes. Based on the
filter criteria: only miRNAs verified by at least one
powerful experiment were identified as the potential
miRNAs interactions (reporter assay, Western blot or
quantitative reverse transcription PCR), and a total of
20 upstream miRNAs were eventually identified to be
correlated with 3 upregulated hub genes (UBEC2,
TACC3 and CXCR4) according to the powerful
evidence (Table 3), the upstream miRNAs of TK1 and
MAOB were not detected with miRTarBase. Based on
the ceRNA hypothesis, the expression of upstream
miRNA should be negatively correlated with its target
gene, we further evaluated the expression levels and
the prognostic values of upstream miRNAs with
dbDEMC2 and Kaplan - Meier plotter. The result
showed that only downregulation of hsa-miR-425-5p
(the upstream miRNA of TACC3) (P=0.00019,
HR=0.64 [0.51-0.81]), hsa-miR-146a-5p (P=0.0038,
HR=0.72 [0.57-0.9]) and hsa-miR-150-5p (P=0.00049,
HR=0.65 [0.51-0.83]) (the upstream miRNA of CXCR4)
were correlated with poor overall survival (OS) of
patients with ovarian cancer (Figure 6B-D,
Supplementary Table S8). The prognosis analysis of
other miRNAs was shown in Figure 6, and the three
miRNAs (hsa-miR-425-5p, hsa-miR-146a-5p and hsa-
miR-150-5p) were regarded as key miRNAs for
subsequent exploration.

Table 3. Identification of upstream miRNA of the 5 hub genes in
ovarian cancer with miRTarBase

mRNA miRNA

UBE2C hsa-miR-20a-5p
hsa-miR-17-5p
hsa-miR-631
TK1 -
TACC3 hsa-miR-24-3p
hsa-miR-152-3p
hsa-miR-425-5p
hsa-miR-146a-5p
hsa-miR-146a-3p
hsa-miR-224-5p
hsa-miR-150-5p
hsa-miR-139-5p
hsa-miR-126-3p
hsa-miR-9-5p
hsa-miR-133b
hsa-miR-494-3p
hsa-miR-494-5p
hsa-miR-622
hsa-miR-204-5p
hsa-miR-663a
hsa-miR-335-5p

CXCR4

MAOB

Identification and validation of key upstream
IncRNAs

To identify upstream IncRNAs potential binding
to the three key miRNAs (hsa-miR-425-5p, hsa-miR-
146a-5p and hsa-miR-150-5p), an online database
miRNet was used to predict upstream IncRNA. The
research showed that a total of 139 IncRNAs were
detected in the database for three downregulated
miRNAs (Supplementary Table S9). Based on the
ceRNA hypothesis, IncRNAs should negatively
regulate miRNAs and positively regulated mRNAs.
Furthermore, the expression levels of these upstream
IncRNAs were detected by GEPIA, and the study
demonstrated that only FUT8-AS1, CASC9,
LINCO00665, LINC01535, PART1 and LINC00511 were
upregulated in ovarian cancer compared with normal
samples (Figure 7A). Survival analysis showed that
high expression of FUT8-AS1, LINCO00665 and
LINCO01535 were significantly correlated with poor OS
of patients with ovarian cancer (Figure 7B), CASC9
and LINC00511 were not detected in the Kaplan-
Meier plotter database. We further investigated the
correlation between IncRNAs and their binding gens
with GEPIA, showing that FUT8-AS1 was positively
correlated with TACC3 (P=4.9e-24, R=0.43), both
LINC00665 (P=4.2e-25, R=0.43) and LINC01535
(P=3.6e-15, R=0.34) were positively correlated with
CXCR4 (Figure 7C). As a consequence, FUT8-ASI,
LINC00665 and LINC01535 were identified as key
upstream IncRNAs of the ceRNA network in ovarian
cancer.
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Figure 5. Prognostic values of hub genes in ovarian cancer analyzed by using the Kaplan-Meier plotter. (A-F) Relationship between UBE2C (A), BIRC5 (B),
RNASEH2A (C), TK1 (D), TACC3 (E), CXCR4 (F) and PFS of patients with ovarian cancer. (G-J) Relationship between AOX1 (G), ADHIB (H), MAOB (1), ALDH1A2 (J) and PFS

of patients with ovarian cancer by Kaplan—Meier plotter. PFS: progression free survival.

Construction of the IncRNA-miRNA-mRNA
regulatory networks in ovarian cancer

The cellular localization of IncRNA exerts
profound influence on their molecular functions and
mechanisms, we further inverstigated the subcellular
localizations of FUT8-AS1, LINC00665 and
LINC01535 with IncLocator. The results displayed
that FUT8-AS1 and LINC00665 were mainly located
in cytosol (score: 0.59 and 0.73, respectively) (Figure
8A-B), LINC01535 was mainly located in cytoplasm
and cytosol (score: 0.56 and 0.33, respectively) (Figure
8C), which provided trustworthy evidence that above
three IncRNAs may contribute to biological functions
and mechanisms through the ceRNA network.
According to all the prediction and validation, as
shown in Figure 8D, two mRNA-miRNA-IncRNA
regulatory networks (TACC3-hsa-miR-425-5p-FUTS-
AS1 and CXCR4-hsa-miR-146a-5p- LINC00665/
LINCO01535) including 2 mRNA (TACC3 and CXCR4),
2 miRNAs (hsa-miR-425-5p, hsa-miR-146a-5p) and 3

IncRNAs (FUT8-AS1, LINC00665 and LINC01535)
were eventually constructed and visualized by the
Cytoscape software, and each component in the
ceRNA network was significantly correlated with the
poor prognosis of patient s with ovarian cancer.

We further verified the expression of TACC3 and
CXCR4 protein in ovarian cancer tissues and normal
tissues stained by immunohistochemistry with HPA.
The results showed that TACC3 protein was mainly
located to the cell membrane and cytoplasm, and the
level of TACC3 proteins were significantly higher in
ovarian cancer tissues than those in normal tissues
(Supplementary Figure S3). The immunohisto-
chemical staining of CACR4 protein was not detected
in HPA.

Discussion

A variety of complex molecular mechanisms are
involved in the tumorigenesis and progression of
ovarian cancer, such as abnormal regulation of genes
transcription and post-transcription, dysregulation of
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molecular regulatory network and aberrant activation
of signal transduction. The characteristic of tumor
markers and mutual regulatory molecules, especially
the ceRNA regulatory network [31], are of great
significance for evaluating the prognosis of ovarian
cancer. Therefore, it is meaningful to screen effective
tumor biomarkers and their potential regulatory
mechanisms for early diagnosis and prognosis

prediction of ovarian cancer.
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as  regulating  enzyme  inhibitor  activity,
glycosaminoglycan and G protein-coupled receptor
binding. KEGG pathway enrichment analysis
suggested that DEGs were significantly enriched in
signaling pathways such as energy metabolism,
proteoglycans in cancer. The above biological
behavior and signaling pathways played crucial role
in the progression and prognosis of ovarian cancer
[32]. Therefore, we speculated that these commonly
DEGs can affect the occurrence and biological
behavior of ovarian cancer through above signaling
pathways.

In order to identify the hub genes, two separate
PPI networks were investigated with STRING
database, and the hub genes were filtered out based
on the connectivity degree calculated by Cytoscape
software. The top ten upregulated DEGs and top ten
downregulated DEGs were further employed for
expression validation and survival evaluation. Only

high expression of UBE2C, TK1, TACC3 and CXCR4
and low expression of MAOB were proved to be
associated with poor prognosis of patients with
ovarian cancer, suggesting the five genes were
considered to be the key genes in ovarian cancer.
Numerous studies have shown that UBE2C
overexpression was correlated with poor prognosis
and regulated the malignant biological process of
various tumors, including endometrial cancer, breast
cancer and ovarian cancer [33, 34, 35]. It's reported
that TACC3 could play an oncogenic role in bladder
cancers and prostate cancer [36, 37]. Researcher found
that CXCR4 was upregulated in colorectal cancer and
breast cancer [38, 39], overexpressed CXCR4
promoted the proliferation and invasion of ovarian
cancer [40]. The studies suggested that these genes
were widely involved in occurrence and development
of various tumors including ovarian cancer.
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Figure 7. The expression levels and prognostic values of upstream upregulated IncRNAs in patients with ovarian cancer. (A) The expression levels of
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We further explored the upstream miRNAs
associated with the five hub genes by the online
database-miRTarBase based on the potential ceRNA
hypothesis. After taking the expression levels and
survival exploration into consideration, only three
upstream miRNAs were considered as key miRNAs
(hsa-miR-425-5p, hsa-miR-146a-5p and hsa-miR-150-
5p), all of which were downregulated and associated
with poor prognosis in ovarian cancer. Many studies
have discovered that these miRNAs functioned as
oncogene or tumor suppressor in the tumorigenesis
and progression of different tumors. Researchers
showed that miR-425-5p inhibited the expression of
MALAT1 and TUG1 through inactivating the Wnt/ -
catenin signaling pathway and further suppressed the
progression of osteosarcoma [41]. lacona et al.
demonstrated that miR-146a-5p could function as a
tumor-suppressive miRNA in lung cancer through
targeting EGFR and regulating various metabolic and
signaling pathways [42]. In addition, miR-146a-5p
inhibited the process of EMT by targeting Notch2 in
esophageal squamous cell carcinoma [43]. It has been
reported that miR-150-5p exerted its tumor
suppressive functions in breast cancer and colorectal

cancer [44, 45], and miR-150-5p was found to be
upregulated in ovarian cancer [46]. However, there
were few researches focused on the function of
TACC3-miR-425-5p and CXCR4-miR-146a-5p/ hsa-
miR-150-5p in ovarian cancer. Therefore, it is valuable
and helpful to explore the potential functions and
molecular mechanisms of the miRNAs in ovarian
cancer.

Numerous studies have shown that IncRNAs
could function as miRNAs sponge to regulate
downstream genes based on the ceRNA mechanism,
with the upstream IncRNAs binding to the miRNAs
further identified with miRNet. After comprehensive
evaluation of the expression levels, prognosis values
and cellular locations, only high expression of three
IncRNAs (FUT8-AS1, LINC00665 and LINC01535)
were significantly associated with poor prognosis of
ovarian cancer, which were finally proved to be key
upstream IncRNAs of the ceRNA network, suggesting
that these IncRNAs play crucial in the occurrence and
progression of ovarian cancer. Studies focused on
FUT8-AS1 were extremely limited. Some studies
showed that LINC00665 contributed to the
progression and biological behaviors via regulating
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downstream miRNAs and targeted genes in many
malignancies, such as lung cancer, hepatocellular
carcinoma, breast cancer [47, 48, 49]. Previous
research indicated that LINC01535 promoted the
proliferation and inhibited the apoptosis of
esophageal squamous cell cancer by regulating the
JAK/STAT3 signaling pathway [50]. Furthermore,
LINCO01535 contributed to progression of cervical
cancer via regulating the miR-214/EZH?2 regulatory
loop [51]. The studies above demonstrated that
dysregulations of FUT8-AS1, LINC00665 and
LINCO01535 were closely associated with the initiation
and progression of several tumors.

In consequence, on the basis of ceRNA
mechanism, we successfully constructed novel
mRNA-miRNA-IncRNA regulatory networks

(TACC3-hsa-miR-425-5p-FUT8-AS1 and CXCR4-hsa-
miR-146a-5p-LINC00665/ LINC01535) associated with
prognosis of ovarian cancer. Although existing
research may not be perfect, it is valuable to make a
conclusion that the ceRNA networks observed in our
study could exert profound influences on the
predictive accuracy for ovarian cancer, and additional
experimental exploration in vivo and vitro remains to
be carried out to detect the functional mechanisms of
ceRNA networks in the future.

Conclusions

In summary, with a series of integrated
bioinformatics databases, we systematically explored
and identified DEGs, miRNAs and IncRNAs
associated with the prognosis of ovarian cancer. Based
on the ceRNA hypothesis, novel mRNA-miRNA-
IncRNA  regulatory networks (TACC3-hsa-miR-
425-5p-FUT8-AS1  and  CXCR4-hsa-miR-146a-5p-
LINCO00665/LINC01535) in ovarian cancer were
successfully constructed. The ceRNA networks
observed in our study may provide new insights into
exploring potential biomarkers for early diagnosis
and targeted therapy of ovarian cancer, and further
experimental exploration remains to be carried out in
the future.

Abbreviations

OC: ovarian cancer; IncRNAs: long noncoding
RNAs; ncRNA: noncoding ribonucleic acids; ceRNA:
competing endogenous RNA; circRNA: circular RNA;
DEG: differentially expressed gene; TCGA: The
Cancer Genome Atlas; GEO: Gene Expression
Omnibus; PFS: progression free survival; PPIL: protein-
protein interaction; GO: Gene Ontology; KEGG:
Kyoto Encyclopedia of Genes and Genomes; STRING:
the Search Tool for the Retrieval of Interacting Genes;
TPM: Transcripts per Million; GEPIA: The Gene
Expression Profiling Interactive Analysis; KM: The

Kaplan-Meier; HPA: The Human Protein Atlas.

Supplementary Material

Supplementary figures and tables.
http:/ /www jcancer.org/v11p7057sl.pdf

Acknowledgments

This work was supported by grants from the
National Natural Science Foundation of China (No.
81672590 and No. 81472437) and Shengjing Freedom
researchers’ plan (No. 201804).

Awvailability of data and materials

The datasets used or analyzed during the current
study are available from the corresponding author
upon reasonable request.

Competing Interests

The authors have declared that no competing
interest exists.

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;
69: 7-34.

2. Westrick AC, Bailey ZD, Schlumbrecht M, et al. Residential segregation and
overall survival of women with epithelial ovarian cancer. Cancer. 2020; 126:
3698-707.

3. Moulfarrij S, Dandapani M, Arthofer E, et al. Epigenetic therapy for ovarian
cancer: promise and progress. Clin Epigenetics. 2019; 11: 7.

4.  Ahmed N, Kadife E, Raza A, et al. Ovarian Cancer, Cancer Stem Cells and
Current Treatment Strategies: A Potential Role of Magmas in the Current
Treatment Methods. Cells. 2020; 9: 719.

5. Fu XD. Non-coding RNA: a new frontier in regulatory biology. Natl Sci Rev.
2014; 1: 190-204.

6. Gil N, Ulitsky I. Regulation of gene expression by cis-acting long non-coding
RNAs. Nat Rev Genet. 2020; 21: 102-17.

7. Heery R, Finn SP, Cuffe S, et al. Long Non-Coding RNAs: Key Regulators of
Epithelial-Mesenchymal Transition, Tumor Drug Resistance and Cancer Stem
Cells. Cancers (Basel). 2017; 9: 38.

8. Reicher A, Fofelteder J, Kwong LN, et al. Crosstalk between the Notch
signaling pathway and long non-coding RNAs. Cancer Lett. 2018; 420: 91-6.

9. Zhan L, Li J, Wei B. Long non-coding RNAs in ovarian cancer. ] Exp Clin
Cancer Res. 2018; 37: 120.

10. Qi X, Zhang DH, Wu N, et al. ceRNA in cancer: possible functions and clinical
implications. ] Med Genet. 2015; 52: 710-8.

11. Xiao J, Lin L, Luo D, et al. Long noncoding RNA TRPM2-AS acts as a
microRNA sponge of miR-612 to promote gastric cancer progression and
radioresistance. Oncogenesis. 2020; 9: 29.

12. Zheng L, Xiang C, Li X, et al. STARD13-correlated ceRNA network-directed
inhibition on YAP/TAZ activity suppresses stemness of breast cancer via
co-regulating Hippo and Rho-GTPase/F-actin signaling. ] Hematol Oncol.
2018; 11: 72.

13. Hu X, Li Y, Kong D, et al. Long noncoding RNA CASC9 promotes LIN7A
expression via miR-758-3p to facilitate the malignancy of ovarian cancer. J Cell
Physiol. 2019; 234: 10800-8.

14. Clough E, Barrett T. The Gene Expression Omnibus Database. Mol Biol
Biology. 2016; 1418: 93-110.

15. Yeung TL, Leung CS, Wong KK, et al. ELF3 is a negative regulator of
epithelial-mesenchymal transition in ovarian cancer cells. Oncotarget. 2017; 8:
16951-63.

16. Yeung TL, Leung CS, Wong KK, et al. TGF-B modulates ovarian cancer
invasion by wupregulating CAF-derived versican in the tumor
microenvironment. Cancer Res. 2013; 73: 5016-28.

17. Huang C, Clayton EA, Matyunina LV, et al. Machine learning predicts
individual cancer patient responses to therapeutic drugs with high accuracy.
Sci Rep. 2018; 8: 16444.

18. Vathipadiekal V, Wang V, Wei W, et al. Creation of a Human Secretome: A
Novel Composite Library of Human Secreted Proteins: Validation Using
Ovarian Cancer Gene Expression Data and a Virtual Secretome Array. Clin
Cancer Res. 2015; 21: 4960-9.

19. Zhou G, Soufan O, Ewald ], et al. NetworkAnalyst 3.0: a visual analytics
platform for comprehensive gene expression profiling and meta-analysis.
Nucleic Acids Res. 2019; 47: 234-41.

http://lwww.jcancer.org



Journal of Cancer 2020, Vol. 11

7072

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Zhou YY, Zhou B, Pache L, et al. Metascape provides a biologist-oriented
resource for the analysis of systems-level datasets. Nat Commun. 2019; 10:
1523.

Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein
interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;
43:447-52.

Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for
integrated models of biomolecular interaction networks. Genom Res. 2003; 13:
2498-504.

Tang ZF, Kang BX, Li CW, et al. GEPIA2: an enhanced web server for
large-scale expression profiling and interactive analysis. Nucleic Acids Res.
2019; 47: 556-60.

Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer
transcriptome. Science. 2017; 357: eaan2507.

Nagy A, Lanczky A, Menyhért O, et al. Validation of miRNA prognostic
power in hepatocellular carcinoma using expression data of independent
datasets. Sci Rep. 2018; 8: 9227.

Chou CH, Shrestha S, Yang CD, et al. miRTarBase update 2018: a resource for
experimentally validated microRNA-target interactions. Nucleic Acids Res.
2018; 46: 296-302.

Yang Z, Wu L, Wang A, et al. dbDEMC 2.0: updated database of differentially
expressed miRNAs in human cancers. Nucleic Acids Res. 2017; 45: 812-8.
Chang L, Zhou G, Soufan O, et al. miRNet 2.0-network-based visual analytics
for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020;
48:244-51.

Cao Z, Pan X, Yang Y, et al. The IncLocator: a subcellular localization predictor
for long non-coding RNAs based on a stacked ensemble classifier.
Bioinformatics. 2018; 34: 2185-94.

Volders PJ, Anckaert J, Verheggen K, et al. LNCipedia 5: towards a reference
set of human long non-coding RNAs. Nucleic Acids Res. 2019; 47: 135-9.
Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta stone of a
hidden RNA language?. Cell. 2011; 146: 353-8.

Menon U, Karpinskyj C, Gentry-Maharaj A. Ovarian Cancer Prevention and
Screening. Obstet Gynecol. 2018; 131: 909-27.

Liu Y, Zhao R, Chi S, et al. UBE2C Is Upregulated by Estrogen and Promotes
Epithelial-Mesenchymal Transition via p53 in Endometrial Cancer. Mol
Cancer Res. 2020; 18: 204-15.

Qin T, Huang G, Chi L, et al. Exceptionally high UBE2C expression is a unique
phenomenon in basal-like type breast cancer and is regulated by BRCAI.
Biomed Pharmacother. 2017; 95: 649-55.

Li J, Zhi X, Shen X, et al. Depletion of UBE2C reduces ovarian cancer
malignancy and reverses cisplatin resistance via downregulating CDKI.
Biochem Biophys Res Commun. 2020; 523: 434-40.

Lin ZR, Wang MY, He SY, et al. TACC3 transcriptionally upregulates E2F1 to
promote cell growth and confer sensitivity to cisplatin in bladder cancer. Cell
Death Dis 2018; 9: 72.

Qie Y, Wang L, Du E, et al. TACC3 promotes prostate cancer cell proliferation
and restrains primary cilium formation. Exp Cell Res. 2020; 390: 111952.

Xu C, Zheng L, Li D, et al. CXCR4 overexpression is correlated with poor
prognosis in colorectal cancer. Life Sci. 2018; 208: 333-40.

Pan WL, Wang Y, Hao Y, et al. Overexpression of CXCR4 synergizes with
LL-37 in the metastasis of breast cancer cells. Biochim Biophys Acta Mol Basis
Dis. 2018; 1864: 3837-46.

Liu Y, Ren CC, Yang L, et al. Role of CXCL12-CXCR4 axis in ovarian cancer
metastasis and CXCL12-CXCR4 blockade with AMD3100 suppresses tumor
cell migration and invasion in vitro. ] Cell Physiol. 2019; 234: 3897-909.

Yang G, Zhang C, Wang N, et al. miR-425-5p decreases LncRNA MALAT1
and TUGI expressions and suppresses tumorigenesis in osteosarcoma via
Wnt/ -catenin signaling pathway. Int ] Biochem Cell Biol. 2019; 111: 42-51.
Tacona JR, Monteleone NJ, Lemenze AD, et al. Transcriptomic studies provide
insights into the tumor suppressive role of miR-146a-5p in non-small cell lung
cancer (NSCLC) cells. RNA Biol. 2019; 16: 1721-32.

Wang C, Zhang W, Zhang L, et al. miR-146a-5p mediates
epithelial-mesenchymal transition of esophageal squamous cell carcinoma via
targeting Notch2. Br ] Cancer. 2016; 115: 1548-54.

Qu R, Hu C, Tang Y, et al. Long Non-coding RNA BLACATI1 Induces
Tamoxifen Resistance in Human Breast Cancer by Regulating miR-503/Bcl-2
Axis. Cancer Manag Res. 2020; 12: 1771-7.

Chen X, Xu X, Pan B, et al. miR-150-5p suppresses tumor progression by
targeting VEGFA in colorectal cancer. Aging (Albany NY). 2018; 10: 3421-37.
Tung CH, Kuo LW, Huang MF, et al. MicroRNA-150-5p promotes cell motility
by inhibiting c-Myb-mediated Slug suppression and is a prognostic biomarker
for recurrent ovarian cancer. Oncogene. 2020; 39: 862-76.

Cong ZZ, Diao YF, Xu Y, et al. Long non-coding RNA 1inc00665 promotes lung
adenocarcinoma progression and functions as ceRNA to regulate
AKR1B10-ERK signaling by sponging miR-98. Cell Death Dis. 2019; 10: 84.
Ding J, Zhao J, Huan L, et al. Inflammation-induced LINC00665 increases the
malignancy through activating PKR/NF-kB pathway in hepatocellular
carcinoma. Hepatology. 2020; [Epub ahead of print].

Ji W, Diao YL, Qiu YR, et al. LINC00665 promotes breast cancer progression
through regulation of the miR-379-5p/LIN28B axis. Cell Death Dis. 2020; 11:
16.

Fang Y, Zhang S, Yin J, et al. LINC01535 promotes proliferation and inhibits
apoptosis in esophageal squamous cell cancer by activating the JAK/STAT3
pathway. Eur Rev Med Pharmacol Sci. 2020; 24: 3694-700.

51.

Song H, Liu Y, Jin X, et al. Long non-coding RNA LINC01535 promotes
cervical cancer progression via targeting the miR-214/EZH?2 feedback loop. |
Cell Mol Med. 2019; 23: 6098-111.

http://lwww.jcancer.org



