Iodixanol Gradient Analysis

This protocol is a modified version of an iodixanol gradient instruction available in http://www.axis-shield-density-gradient-media.com/ site.

1. Prepare the following stock solutions:
a. HEPES stock (free acid, from $4^{\circ} \mathrm{C}$ fridge) $=11.9 \mathrm{~g}$ per 100 ml water
b. EDTA stock $\left(\mathrm{Na}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$, from $4{ }^{\circ} \mathrm{C}$ fridge $)=3.72 \mathrm{~g}$ per 100 ml water
2. Prepare Homogenization Medium (HM) as follows:
a. Use pre-made from $4^{\circ} \mathrm{C}$ or make by dissolving 17 g sucrose in 100 ml water, add 2 ml of EDTA stock and 4 ml of HEPES stock and adjust to pH 7.4 with 1 M NaOH .
3. Prepare Working Solution (WS) as follows:
a. The diluent solution: use pre-made from $4^{\circ} \mathrm{C}$ or make by dissolving 8.5 g sucrose in 50 ml water, add 6 ml EDTA stock and 12 ml HEPES stock and adjust to pH 7.4 with 1 M NaOH .
b. Per 4 gradient tubes mix 25 ml Optiprep and 5 ml of the diluent solution.
c. Per 2 gradient tubes mix 12.5 ml Optiprep and 2.5 ml of the diluent solution.
4. Create 4 concentrations of WS and HM in 50 ml tubes as follows:

	Per 4 tubes		Per 2 tubes	
\% iodixanol	WS (ml)	HM (ml)	WS (ml)	HM (ml)
8	2.00	10.50	1.00	5.25
16	4.00	8.50	2.00	4.25
28	7.00	5.50	3.50	2.75
38	9.50	3.00	4.75	1.50

5. Layer 2.5 ml of each gradient using Auto DensiFlow Probe with 38% at bottom (first), then $28 \%, 16 \%$ and 8%. You can measure 2.5 ml into separate tubes, then feed into probe. Store the remaining made solutions in $4^{\circ} \mathrm{C}$ fridge until the next day if you need to repeat.
6. Layer $\sim 1 \mathrm{ml}$ of cell lysate at the top of the preformed, precooled lodixanol gradient.
7. Centrifuge at $28500 \mathrm{rpm}(100,000 \mathrm{xg})$ for 18 hours using a pre-chilled Beckman SW41Ti rotor at $4^{\circ} \mathrm{C}$. Caution: Avoid disturbing the pre-made gradients before placing in the rotor.
8. Collect 20 equal volume fractions ($500 \mu \mathrm{l}$ each) starting from the top of the tube using Auto DensiFlow gradient collector.
9. To preserve the integrity of 20 S and 30 S assembly, all samples must be kept cold at $4^{\circ} \mathrm{C}$ during handling and centrifugation.
10. Keep the samples at -20 for future protein and enzyme analysis.

Cancer cell line	Tumor types	Age	Gender	Reference
HCT-116	colorectal carcinoma	Adult	Male	PMID: 7214343
T84	colorectal carcinoma	72 years	Male	PMID: 8794293
MCF7	adenocarcinoma	69 years adult	Female	PMID: 4357757
HPAFII	adenocarcinoma	44 years	Male	PMID: 2734279
MIA PaCa-2	carcinoma	65 years	Male	PMID: 7558455

Table S1: Human cancer cell lines used in this study.

Ultra-gradient fractionation	Type	Reference
$100,000 \mathrm{~g}$ for 22 h	Glycerol	PMID: 21640720
$27,000 \mathrm{rpm}$ for 20 h	lodixanol	PMID: 29074393
38000 rpm for 16 h	Glycerol	PMID: 11854272
38000 rpm for 16 h	Glycerol	PMID: 10490597
$25,000 \mathrm{rpm}$ for 22 h	Glycerol	PMID: 23727017
$174,000 \mathrm{~g}$ for 12 h	Sucrose	PMID: 25367127
$83,000 \mathrm{~g}$ for 22 h	Glycerol	PMID: 20682791
$150,000 \mathrm{~g} \times \mathrm{g} 21 \mathrm{~h}$	Sucrose	PMID: 10438810
$48,000 \mathrm{rpm}$ for 4 h	Sucrose	PMID: 206740169251
$29,000 \mathrm{rpm}$ for 12 h	Sucrose	Glycerol
$100,000 \mathrm{~g}$ for 18 h	$82,200 \mathrm{~g}$ for 22 h	

Table S2: A list of articles which reported the presence of proteasome heterogeneity in cells using glycerol- or sucrose-based gradient fractionation.

Figure 1-Supplement: Proteasome activities in HEK-293 lysates in three independent sets of experiments. Chymotrypsin- (A), caspase- (B), and trypsin-like (C) proteasome activities measured in twenty fractions and collected following iodixanol gradient fractionations of HEK293 cytoplasmic cell lysates. The similar results in each set confirm the repeatability of the method ($n=3$).

Figure 2-Supplement: Measurement of protein migration of HCT-116 cytoplasmic cell lysates in iodixanol gradient fractions. (A) The BCA assay shows the distribution of total protein in fractions after application of the iodixanol gradient fractionation. (B) SYPRO Ruby
protein gel staining (ThermoFisher) of 20 fractions collected in the iodixanol gradient fractionation of the HCT-116 cytoplasmic cell lysates. This ready-to-use fluorescent method detects total proteins in multiple bands separated by polyacrylamide gel electrophoresis. The results confirm that peaks in fractions 2-5 and 12-14 correspond to two protein peaks in the SYPRO staining. Ongoing proteomic approach in our lab will determine enriched proteins in these two peaks and their relations to proteasome complexes sedimented in these two peaks.

Fig. S1

Fig. S2
HCT-116 cells
A

Protein distribution (SYPRO Ruby protein gel stain)

