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Abstract 

Hepatocellular carcinoma (HCC) is the fifth most common type of cancer and the second leading cause 
of cancer-associated mortality worldwide. Hepatitis C virus (HCV) infection is the primary cause of 
hepatic fibrosis and cirrhosis, which in turn, notably increase the risk of developing HCC. The systematic 
immune response plays a vital role in protecting eukaryotic cells from exogenous antigens. In the present 
study, to determine the association between T cells and miRNAs in HCV-induced HCC (HCV-HCC), 
bulk mRNA and miRNA sequencing data from HCV-HCC tissues were combined, along with single-cell 
RNA sequencing (RNA-seq) data from T cells. Deconvoluted bulk RNA-seq data and miRNA profiles 
enabled the identification of naive CD4+ T cell-associated miRNAs, which may help to elucidate the 
underlying mechanism of the anti-HCV immune response. Using bulk RNA-seq data, the current analysis 
presents a feasible method for assessing the relationship between miRNAs and cell components, 
providing valuable insights into the effects of T cell-associated miRNAs in HCV-HCC. 
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Introduction 
Hepatocellular carcinoma (HCC) is the fifth most 

common cancer type, and the second leading cause of 
cancer-associated death worldwide [1]. Hepatitis C 
virus (HCV) is a hepatotropic RNA virus, and 
infection with HCV is the principal cause of hepatic 
fibrosis and cirrhosis, the primary risk factors for 
HCC development [1]. As the morbidity and 
mortality rates for HCV-induced cirrhosis and HCC 
remain high, elucidating the underlying mechanisms 
involved in HCV-induced HCC (HCV-HCC) is of 
great medical significance. 

Immunotherapy has attracted increasing 
attention as an alternative approach to treating solid 
tumors. Immunotherapy enhances the recognition 
and cytotoxic immune response towards tumor cells 
[2]. As critical components of the immune system, T 

cells exhibit helper, effector and memory functions 
[3]. Since the liver is continuously exposed to 
microorganisms (including pathogens and the host 
gut flora), the hepatic environment establishes a 
balance between immunological tolerance (to 
maintain homeostasis) and an active immune 
response against invading pathogens [2]. 

The development of biotechnology has seen an 
increase in HCC transcriptomics research.  As a result, 
bulk RNA sequencing (RNA-seq) has markedly 
improved our understanding of intratumor 
heterogeneity [4,5], clonal evolution [6] and metastatic 
dissemination [7,8] in tumors. Considering immuno-
genomic advancements [9] and the identification of 
biomarkers of prognosis and the therapeutic response 
[10], the use of RNA-seq has allowed a greater 
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understanding of the tumor-immune micro-
environment. Additionally, the use of single-cell 
sequencing (scRNA-seq) may help to deconstruct the 
complexities of the cellular immune micro-
environment for the subsequent application of bulk 
RNA-seq. 

MicroRNAs (miRNA/miRs) are small, non- 
coding single-stranded RNAs that post- 
transcriptionally modulate target gene expression, 
and participate in cellular processes, including 
proliferation, differentiation and apoptosis. 
Understanding the roles of miRNAs in monocyte 
heterogeneity provides insights into the association 
between miRNAs and specific cell types. As 
monocytes are involved in the pathogenesis of chronic 
inflammation, which is associated with the loss of 
tissue homeostasis and function, identifying 
monocyte-associated miRNAs may also aid the 
development of novel therapeutic strategies [11,12]. 
Furthermore, miRNAs are also critically involved in 
immunoregulation [13]. However, miRNA research is 
experimentally challenging at the single cell-level, 
which limits the use of this methodology. Identifying 
cell-specific miRNA subsets in diseased tissues is 
therefore an important step towards the discovery of 
potential diagnostic markers and therapeutic targets. 

Numerous bioinformatics methods have recently 
been developed to analyze bulk RNA-seq data [14,15], 
including mRNAs and miRNAs; this may help to 
determine the potential function of miRNAs in 
specific cell components (CCs). In the present study, 
we hypothesized that gene expression was the same 
in each T cell component. Bulk RNA-seq measures the 
average expression of genes, which is the sum of 
different cell type-specific gene expression weighted 
by cell type proportions [14]. Therefore, to identify 
CC-associated miRNAs, bulk RNA-seq data from 
HCV-HCC samples were deconvoluted using known 
T-cell single cell (sc)RNA-seq data as a reference, 
following by correlated with miRNA expression 
across the corresponding samples, providing valuable 
insights into the effects of T cell-associated miRNAs in 
HCV-HCC. 

Materials and methods 
Data collection 

The scRNA-seq data of infiltrating T cells 
isolated from 6 patients with HCC were downloaded 
from the Gene Expression Omnibus (GEO) database 
[16] (dataset no. GSE98638 [17]). HCV-HCC- 
associated mRNA and miRNA RNA-seq data were 
also downloaded from the GEO (dataset no. 
GSE140845 and GSE140370, respectively), as well as 
the two validation independent datasets (dataset no. 

GSE82177 and GSE15421, respectively). 

Preprocessing raw mRNA and miRNA 
RNA-seq data 

Adapters in raw sequencing files (.fq) were 
trimmed using fastp (v0.20.0) [18]. The trimmed short 
reads from mRNAs and miRNAs were then aligned to 
the primary human genome assembly GRCh38 (hg38) 
from the Genome Reference Consortium using 
HISAT2 (v2.1.0) [19] and STAR aligner (v2.7.1a) [20], 
respectively. Samples with low mapping rate (< 40%) 
were filtered out. SAMtools (v1.9) [21] was used to 
manipulate the mapped sequencing reads (.bam). 
FeatureCounts v2.0.0 (a software program of the 
Subread package) [22] was used to count reads to 
mRNAs and miRNAs in the Ensembl human gene 
annotation (v99) and miRBase (v22) [23] databases, 
respectively. 

Identification of cell type composition in 
HCV-HCC tissues 

Using the scRNA-seq data of infiltrating T cells 
as a reference, the RNA-seq data of bulk HCV-HCC 
tissues were deconvoluted using the MUlti-Subject 
SIngle Cell deconvolution (MuSiC) method [14]. 
Student’s t-test was used to determine the significance 
of the difference between HCV-HCC and normal in 
each CC. P<0.05 was considered to indicate statistical 
significance. 

CCs of scRNA-seq data 
The C01_CD8-LEF1 is dominant in the 

peripheral blood and specifically expressed naive 
marker genes such as LEF1 and CCR7. C03_CD8- 
SLC4A10, characterized by specific expression of 
SLC4A10, ZBTB16 and RORC, is largely composed of 
mucosal-associated invariant T cells, which are 
confirmed by the expression of semi-invariant TCR 
alpha chains with TRAV1-2/TRAJ33, TRAV1-2/ 
TRAJ20 or TRAV1-2/TRAJ12. C04_CD8-LAYN, 
which is predominantly composed of cells from 
tumor tissues, expresses high levels of the exhaustion 
markers CTLA4, PDCD1 and HAVCR2, thus 
represents exhausted CD8+ T cells. For CD4+ T cells, 
C06_CD4-CCR7 comprise CD4+ cells with high 
expression of naive marker genes, including SELL, 
TCF7 and CCR7. C08_CD4-CTLA4 comprise FOXP3+ 
regulatory T cells, and expresses high levels of 
CTLA4. C09_CD4-GZMA expresses GZMA, and 
C10_CD4- CXCL13 specifically expresses CXCL13, 
PDCD1, CTLA4 and TIGIT, suggestive of an 
exhausted CD4+ T cell phenotype [17]. Unclassified 
CC was defined as cells without T cell-related 
markers, which are regarded as “other cell types”. 
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Differential expression analysis 
DEGs between the HCV-HCC and normal 

groups were detected using an R/Bioconductor 
package DESeq2 (v1.26.0) [24]. Multiple testing 
correction was performed using the 
Benjamini-Hochberg method and false discovery rate 
(FDR). Genes with an FDR<0.1 were identified as 
significantly differentially expressed. 

Correlation analysis and plotting 
Co-expression analysis between miRNAs and 

CCs was performed using Pearson’s Correlation 
analysis in the Python package scipy (v1.4.1). P<0.05 
was considered to indicate a significant correlation 
between miRNAs and CCs. Plots were generated 
using the Python package seaborn (v0.10.0) and the 
R/Bioconductor ggplot (v3.1.1) and complexheatmap 
(v2.4.2) [25] packages. 

Chromosomal location, disease, Gene 
Ontology (GO) term, and pathway enrichment 
analysis 

miRNA functional enrichment analysis was 
performed using miEAA (v2.0) [26], which detects 
significantly enriched chromosomal locations, 
diseases, and GO terms based on gene annotations 
from miRbase (v22) [23], MNDR [27], and GO [28]. 
Adjusted P-values using Benjamini-Hochberg method 
that <0.05 was considered to indicate statistical 
significance. Gene set enrichment analysis (GSEA) 
[29,30] was performed to detect significantly enriched 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[31] pathways. 

Target predictions of miRNAs 
Targets of miRNAs were predicted by 

algorithms including PITA [32], RNA22 [33], miRmap 
[34], microT [35], miRanda [36], PicTar [37], and 
TargetScan [38], which have been implemented in 
starBase v3.0 [39]. Targets that predicted by not less 
than 4 of these algorithms were considered as 
high-confidence. KEGG pathways and GO term 
enrichment analysis of the predicted targets were 
performed by the R/Bioconductor clusterprofiler 
(v3.16.0) package [40]. Adjusted P-values using 
Benjamini-Hochberg method that <0.05 was 
considered to indicate statistical significance. 

Results 
Increased proportions of naïve T cells in 
HCV-HCC 

Generally, only differentially expressed genes 
between groups, but not CCs of each tissue sample, 
could be detected using bulk RNA-seq data. Using 
scRNA-seq data and MuSiC (detailed in the Materials 

and methods), the bulk HCV-HCC RNA-seq data 
were decomposed into CCs using various T cell 
signatures. CCs varied significantly between the 
different sample groups (Fig. 1A). Notably, C06_ 
CD4-CCR7 and unclassified CCs showed significant 
difference between the HCV-HCC and normal groups 
(Fig. 1B; P=1.91×10-3 and P=7.39×10-3, respectively). 
CCs without significant differences are displayed in 
Fig. S1. We then investigated the relation between the 
proliferation marker MKI67 and CCs. The Pearson’s 
correlation coefficient between MKI67 and CCs (Table 
SI) showed the only significant positive correlation in 
the gene expression of MKI67 and CD4-CCR7 naïve T 
cells (P=2.37×10-2). Moreover, gene expression of 
MKI67 is upregulated in HCV-HCC liver tissue (Fig. 
S2). Therefore, the higher proportion of C06_CD4- 
CCR7 between the HCV-HCC and normal groups 
represented a potentially more proliferative naïve T 
cell population in the HCV-HCC group. In “other 
diseases” (such as leishmaniasis), a higher count of 
CCR7+ naïve T cells was also reported, compared 
with those of the normal groups [41], indicating 
greater proliferative potential in these diseases. GSEA 
enrichment analysis (detailed in the Materials and 
methods) for the C06_CD4-CCR7 revealed a close 
relationship between pathways of the immune system 
and cancer (Fig. 1E). For example, consistent with the 
known finding that HCV infection may cause the 
acute rejection of transplanted kidneys [42], the 
increased proportion of C06_CD4-CCR7 in HCV-HCC 
was also shown to be involved in allograft rejection. 

Limited numbers of overlapping miRNAs were 
detected between CCs and differentially 
expressed (DE) miRNAs 

A total of 200 miRNAs (Table SII) were found to 
correlate with 8 CCs (unclassified, C01_CD8-LEF1, 
C03_CD8-SLC4A10, C04_CD8-LAYN, C06_CD4- 
CCR7, C09_CD4-GZMA, C08_CD4-CTLA4 and C10_ 
CD4-CXCL13). The number of CC-related miRNAs 
are listed in Table 1, with the number of positive 
correlations listed in brackets. miRNAs that only 
correlated with one CC were defined as unique 
miRNAs. For example, C09_CD4-GZMA had the 
highest number of unique miRNAs, and 41 out of 43 
were positively correlated, indicating that these 
miRNAs may exclusively function in C09_CD4- 
GZMA. 

Furthermore, 20 DE miRNAs were identified 
between the HCV-HCC and normal groups, which 
showed limited overlap with CC miRNAs (Fig. 2A-C, 
Table SIII); these included hsa-miR-10b-5p, -183-5p, 
-190b-5p, -204-3p, -216a-5p, -4521 and -552-5p. Among 
these CC-DE miRNAs, hsa-miR-190b-5p was 
correlated with two CCs, namely C06_CD4-CCR7 and 
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unclassified. hsa-miR-190b-5p has been proven to 
serve as an initiation and progression factor in breast 
cancer [43]. In the present study, hsa-miR-190b-5p 
was consistently expressed in combination with C06_ 
CD4-CCR7 across all samples, indicating a potential 
role for naïve T cell-associated hsa-miR-190b-5p in the 
development of HCV-HCC. Moreover, three other 
overlapping miRNAs (hsa-miR-10b-5p, hsa-miR- 
204-3p and hsa-miR-552-5p) were also correlated with 
C06_CD4-CCR7, which has been associated with 
estrogen receptor-positive breast cancer [44] and 
colon cancer [45-47]. hsa-miR-4521, hsa-miR-183-5p 
and hsa-miR-216a- 5p, which were identified as 
significantly DE miRNAs, also act as oncogenes in 
renal cell carcinoma [48-50] and bladder cancer [51]. 
These miRNAs were not difficult to detect, as their 
expression levels varied considerably between 
cancerous and normal tissues. 

 

Table 1. The number of cell components-related miRNAs 

Cell components CC-related miRNAs (positive)  Unique miRNAs (positive) 
C01_CD8-LEF1 36 (27)  14 (6) 
C03_CD8-SLC4A10 14 (13) 10 (10) 
C04_CD8-LAYN 37 (37) 34 (34) 
C06_CD4-CCR7 45 (23) 33 (18) 
C08_CD4-CTLA4 14 (12) 12 (12) 
C09_CD4-GZMA 47 (45) 43 (41) 
C10_CD4-CXCL13 28 (27) 6 (6) 
Unclassified CC 22 (15) 7 (6) 

 

Key roles of C06_CD4-CCR7 T cell-associated 
miRNAs in multiple cancer types 

As the fixed proportion of genes in one CC, a 
positive relation, (indicating that the increased 
number of miRNAs is consistent with the increased 
proportion of CCs), suggests that the miRNAs were 
involved in the CC. On the contrary, a negative 
relation suggests a non-inclusive association between 
miRNAs and CCs, which would not be further 
analyzed. Here, we focused only on miRNAs that 
were positively related to CCs; a correlation network 
was subsequently constructed based on the positive 
correlation between CCs and miRNA expression, 
including 199 positive correlations between 173 
miRNAs and 8 CCs (Fig. 3). Besides DE miRNAs, 
another considerable miRNA population was found 
to exclusively correlate with CCs that may serve vital 
roles in HCV-HCC. Enrichment analysis was 
performed for such miRNAs that associated with 
C06_CD4-CCR7 (highlighted in Fig. 3). 

Among the miRNAs that correlated with 
C06_CD4-CCR7, hsa-miR-452-5p, hsa-miR-222-3p, 
hsa-miR-664b-5p, hsa-miR-221-3p, and hsa-miR-98-5p 
were enriched in chromosome X (FDR=2.62×10-2, 
Table SIV). As chromosome X contains a high density 

of immune-related genes and regulatory elements 
that are extensively involved in both the innate and 
adaptive immune responses [52], we could infer that 
these miRNAs play vital roles in directly function or 
indirectly regulate immune system. 

Although these C06_CD4-CCR7-associated 
miRNAs did not show significantly differential 
expression in HCV-HCC, they were detected as 
significantly enriched in different cancer types, 
implying an underlying relationship between these 
miRNAs and cancers (Table SIV). Thus, C06_CD4- 
CCR7, the naïve T cells might play key role in 
microenvironments of various types of cancers. For 
example, as reported in breast cancer, blocking the 
recruitment of naïve CD4+ T cells into tumor 
significantly reduces intratumoral regulatory T cells 
and inhibits tumor progression [53]. 

Furthermore, these C06_CD4-CCR7-associated 
miRNAs were significantly enriched in negative 
regulation by host of viral genome replication (FDR= 
4.32×10-3), indicating only few naïve T cells would 
differentiate to maturity and interfere with virus 
proliferation or immigration. 

In summary, the aforementioned miRNAs serve 
key roles in different types of cancer, and their 
upregulation was consistent with the C06_CD4-CCR7. 
The data indicate that these miRNAs are involved in 
C06_CD4-CCR7, and serve important roles in 
C06_CD4-CCR7 in patients with HCV-HCC. 

Validation of the increasing trend of C06_CD4- 
CCR7 in two independent HCV-HCC datasets 

The same analysis pipeline was performed to 
two independent HCC datasets. In GSE82177 dataset, 
the mean proportion of C06_CD4-CCR7 was 50.18% 
in 9 normal samples as compared to 55.51% in HCV- 
HCC samples (Fig. S3A), indicating an increasing 
proportion of C06_CD4-CCR7 in HCV-HCC than 
normal ones. In GSE154211 dataset, the proportion of 
C06_CD4-CCR7 was higher in HCV-HCC samples 
comparing to the paired non-tumor samples (Fig. 
S3B). Taken together, be in line with our findings, the 
validation datasets showed an increased proportion 
of C06_CD4-CCR7, the naïve T cells in HCV-HCC. 

Discussion 
Immunotherapy is one of the current methods 

for the treatment of cancer. For those suffering with 
cancer, immunotherapeutic developments have 
accelerated the translation of immunological 
knowledge into medical breakthroughs. However, 
research has predominantly focused on 
transcriptomics, with few studies considering 
immunotherapy beyond regulation of the 
transcriptome. 
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Figure 1. CCs in HCV-HCC and normal control tissues. (A) Proportion of CCs in different samples; normal control group (left) and HCV-HCC group (right); n=5 per 
group. Each bar represents one sample, and different colors in each bar represent a single cell component. (B and C) Boxplot of significantly different CC proportions between 
the HCV-HCC and normal control groups (two-tailed t-test; P<0.05). (B) Unclassified CC. (C) C06_CD4-CCR7 cell component. (D and E) KEGG pathway enrichment results 
for two significantly different CCs; the x-axis represents -log10 (P-value), where P is the significant value for enrichment. KEGG pathway names are presented on the y-axis. (D) 
Unclassified CC. (E) C06_CD4-CCR7. CC, cell component; HCV-HCC, HCV-induced HCC; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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Figure 2. Correlation between miRNAs and CCs. (A) Venn diagram of DE miRNAs and CC-related miRNAs. (B) Volcano plot of DE miRNAs between the HCV-HCC 
and normal control groups. Significantly DE miRNAs (FDR<0.1) are red dots with miRNA names, while black dots represent those that are not DE; the x-axis represents the 
log2(fold change) and the y axis is the -log10(FDR). (C) Complex heatmap of miRNA expression and CCs across samples. A total of 213 miRNAs are represented in the upper 
heatmap, whose type was determined according to (A). Each line in the bottom bar plots represents the proportion of each CC across the samples. CC, cell component; miRNA, 
microRNA; DE, differentially expressed; FDR, false discovery rate. 

 
 
 

 
Figure 3. Network representing related CCs and miRNAs. Each circle represents a miRNA, and each diamond represents a different CC. Lines between nodes 
represent CCs and miRNAs which consistently differed across samples (Pearson’s correlation; P<0.05). There is no line if the change of the CC and miRNA displayed opposing 
the trends. Except for DE miRNAs, unique miRNAs that positively correlated with C06_CD4-CCR7 were highlighted in bold. CC, cell component; miRNA, microRNA. 
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The present study outlines a pilot analysis that 
provides a glimpse into the correlation between 
miRNAs and specific T cell-associated CCs. The 
expression of various miRNAs has been reported to 
correlate with tumor progression and proliferation, 
but few studies have considered the associated cell 
types. CD4+ T cells represent a unique branch of the 
adaptive immune system that is crucial for the 
effective regulation of antipathogenic responses, thus 
their function is vital for survival. With distinct 
phenotypes according to their respective cytokine 
profiles, CD4+ T cells modulate the functions of 
innate immune cells as well as members of the 
adaptive immune system. Thus, elucidating the 
relationship between miRNAs and T cells may 
facilitate the therapeutic regulation of the immune 
system. 

In the present study, CD4+ naïve T cells were the 
principal CC differing between HCV-HCC and 
normal liver tissues. This indicates that during HCV 
infection, naïve T cells would proliferate, but few 
would differentiate to maturity and interfere with 
virus proliferation or immigration. T cells must be 
activated in order to differentiate, which is a topic for 
further research. Other CCs, except for the 
unclassified CC, showed no significant difference 
between HCV-HCC and normal liver tissues. For 
example, because of the proliferation but no 
differentiation of the CD4+ naïve T cells, the CD4+ 
regulatory T cells (C08_CD4-CTLA4), which are 
thought to be derived from the same lineage as the 
CD4+ naïve T cells [54], showed the similar 
proportion in HCV-HCC and normal liver tissue. 

In our study, we only focused on the C06_ 
CD4-CCR7-associated miRNAs, which serve key roles 
in different types of cancer, while other CC-associated 
miRNAs would not be discussed in this work. For 
example, hsa-miR-7706 was revealed to be a 
prognostic marker in HCC. Downregulation of hsa- 
miR-7706 was found to inhibit the proliferation of 
HCC cells, and may potentially be used as a novel 
target for the treatment of HCC [55]. In the present 
study, hsa-mir-7706 expression was upregulated in 
the HCV-HCC group, and was consistently present 
with C06_CD4-CCR7, indicating the potential 
activation of C06_CD4-CCR7 in HCC. Although no 
previous studies have reported the relationship 
between hsa-miR-10b-3p and HCC, this miRNA has 
been found to be significantly upregulated in the 
tumor tissues and serum samples of patients with 
esophageal squamous cell carcinoma [56]. Due to the 
correlation between hsa-miR-10b-3p and C06_CD4- 
CCR7 identified in the present study, hsa-miR-10b-3p 
could be inferred as a biomarker of naive T cells, 
where it may induce the progression of cancer in 

general. Moreover, hsa-miR-10b-3p has also been 
identified as a prognostic biomarker of overall 
survival in colorectal cancer [57]. 

Another correlated miRNA (hsa-miR-151a-3p) 
has been found to inhibit LPS-induced interleukin 
(IL)-6 production by targeting Stat3 [58]. As IL-6 is 
critical for the signal transduction and subsequent 
function of cytokines, as well as the production of 
pro-inflammatory cytokines, hsa-miR-151a-3p may 
influence the regulation of innate immunity and 
inflammation. hsa-miR-98-5p has also been revealed 
to inhibit proliferation and metastasis in non-small 
cell lung cancer [59]. In chemotherapy-resistant 
epithelial ovarian cancer, hsa-miR-1307-3p was 
significantly differentially expressed [60]. hsa-miR- 
221-3p and hsa-miR-222-3p were found to be widely 
distributed in eukaryotic organisms and critically 
involved in posttranscriptional gene regulation. Their 
expression levels are also closely associated with 
tumor stage and prognosis. Thus, the combined 
expression of these two miRNAs has been suggested 
as a biomarker for the diagnosis of premalignant 
tumors, as well as a novel target for tumor therapy, 
and a therapeutic tool for drug resistance or 
sensitivity to anticancer treatment [61]. Elevated hsa- 
miR-222-3p expression may promote the proliferation 
and invasion of endometrial carcinoma by targeting 
estrogen receptor (ER) [62]. In Kawasaki disease, 
platelet-associated hsa-miR-222-3p serves as a 
distinguishing marker for early recognition, based on 
its significant upregulation in the platelets of patients 
in the acute stages of disease. Furthermore, Kyoto 
Encyclopedia of Genes and Genomes pathway 
analysis revealed that targets of miR-222-3p are 
enriched in immune-related signaling pathways [63]. 

hsa-miR-320a-3p serves as a negative regulator 
in the progression of gastric cancer by targeting 
RAB14. The reintroduction of RAB14 partially 
abrogated its miR-320a-mediated downregulation 
and reversed the miR-320a-induced effects on gastric 
cancer cell proliferation [64]. 

The targets of hsa-miR-222-3p and hsa-miR- 
221-3p, two C06_CD4-CCR7 related miRNAs, were 
significantly enriched in the cellular senescence 
pathway (KEGG: hsa04218, FDR=4.03×10-5 for hsa- 
miR-222-3p, FDR=7.75×10-4 for hsa-miR-221-3p). 
Factors that drive T cell differentiation and senescence 
were related [65]. Cellular senescence might be one of 
the factors in the inhibition of naïve T cell 
differentiation. Besides, targets of hsa-miR-222-3p 
were highly associated with mitochondrial functions, 
protein insertion into mitochondrial membrane 
(biology process: GO:0051204, FDR=2.65×10-5), 
establishment of protein localization to mitochondrial 
membrane (biology process: GO:0090151, 
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FDR=2.99×10-5), positive regulation of mitochondrial 
membrane permeability (biology process: 
GO:0035794, FDR=9.32×10-5). Mitochondrial mass was 
proved as increasing for rapid proliferation during 
differentiation [66,67], indicating that hsa-miR-222-3p 
played potential role in naïve T cell proliferation and 
differentiation. 

The results of the present study were generated 
with bioinformatics methods, thus further 
experimental validation is required to support these 
conclusions. As a biotechnological limitation, high- 
throughput miRNA profile scanning in single cells is 
difficult to conduct. The current strategy provides a 
means of analyzing bulk RNA-seq and corresponding 
small RNA-seq data, which may reveal novel 
conclusions from previous datasets, and the 
correlation between miRNAs and corresponding CCs. 

Based on high-throughput scanning and low- 
throughput validation, increasing research into the 
correlation between miRNAs and specific types of 
cancer cells may help to clarify the effects of post- 
transcriptome regulation in heterogeneity, evolution 
and drug resistance. 
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