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Abstract 

Breast cancer (BC), with complex tumorigenesis and progression, remains the most common malignancy 
in women. We aimed to explore some novel and significant genes with unfavorable prognoses and 
potential pathways involved in BC initiation and progression via bioinformatics methods. BC 
tissue-specific microarray datasets of GSE42568, GSE45827 and GSE54002, which included a total of 651 
BC tissues and 44 normal breast tissues, were obtained from the Gene Expression Omnibus (GEO) 
database, and 124 differentially expressed genes (DEGs) were identified between BC tissues and normal 
breast tissues via R software and an online Venn diagram tool. Database for Annotation, Visualization and 
Integration Discovery (DAVID) software showed that 65 upregulated DEGs were mainly enriched in the 
regulation of the cell cycle, and Search Tool for the Retrieval of Interacting Genes (STRING) software 
identified the 39 closest associated upregulated DEGs in protein-protein interactions (PPIs), which 
validated the high expression of genes in BC tissues by the Gene Expression Profiling Interactive Analysis 
(GEPIA) tool. In addition, 36 out of 39 BC patients showed significantly worse outcomes by Kaplan–Meier 
plotter (KM plotter), and an additional Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis revealed that seven genes (cyclin E2 (CCNE2), cyclin B1 (CCNB1), cyclin B2 (CCNB2), mitotic 
checkpoint serine/threonine kinase B (BUB1B), dual-specificity protein kinase (TTK), cell division cycle 20 
(CDC20), and pituitary tumor transforming gene 1 (PTTG1)) were markedly enriched in the cell cycle 
pathway. Analysis of the clinicopathological characteristics of hub genes revealed that seven cell cycle- 
related genes (CCRGs) were significantly highly expressed in four BC subtypes (luminal A, luminal B, 
HER2-positive and triple-negative (TNBC)), and except for the CCNE2 gene, high expression levels were 
significantly associated with tumor pathological grade and stage and metastatic events of BC. 
Furthermore, genetic mutation analysis indicated that genetic alterations of CCRGs could also 
significantly affect BC patients’ prognosis. A quantitative real-time polymerase chain reaction (qRT-PCR) 
assay found that the seven CCRGs were significantly differentially expressed in BC cell lines. Integration 
of published multilevel expression data and a bioinformatics computational approach were used to 
predict and construct a regulation mechanism: a transcription factor (TF)-microRNA 
(miRNA)-messenger RNA (mRNA) regulation network. The present work is the first to construct a 
regulatory network of TF-miRNA-mRNA in BC for CCRGs and provides new insights into the molecular 
mechanism of BC. 

Key words: bioinformatics analysis, microarray dataset, breast cancer, differentially expressed gene, cell cycle, 
TF-miRNA-mRNA 
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Introduction 
Based on the biennial update of the American 

Cancer Society on female breast cancer (BC) statistics 
in the United States, BC is still the most commonly 
diagnosed malignant disease and the second most 
common cause of cancer-related death among women 
after lung cancer [1]. In 2018, the number of new 
diagnoses of female BC cancers worldwide was 
approximately 2.1 million, leading to approximately 1 
in 4 cancer deaths [2]. Currently, the main screening 
methods for BC are limited to traditional 
mammography, ultrasound, and tumor markers in 
blood samples, such as carcinoembryonic antigen and 
carcinoma antigen 15-3 [3]. In addition, surgical 
resection, chemotherapy, radiotherapy and hormone 
therapy are the most commonly chosen treatment 
strategies in clinical practice. However, there is no 
doubt that the diagnostic methods and treatment 
strategies are not precise enough, especially in the 
current era of precision medicine. Therefore, pursuing 
more novel and precise therapeutic agents is urgently 
needed in clinical practice to obtain a more 
satisfactory prognosis for BC patients. 

The tumorigenesis and progression of BC at the 
molecular level, particularly the genes and pathways 
involved, are still unknown, and these are helpful for 
acknowledging tumor behavior and exploring novel 
targets or strategies for cancer diagnosis or treatment. 
Excitingly, the rapid expansion of biological micro-
array analysis greatly promotes the understanding of 
driver genes and functional pathways in BC by 
screening DEGs between tumor and normal tissues in 
the gene expression profiles of tumors [4]. Increasing 
data in various cancers have led to the identification 
of specific genes or pathways that play important 
roles in the biology and prognosis of tumors via the 
use of microarrays and bioinformatics methods [5-8]. 
Although significant expression of DEGs in BC has 
been reported in some previous studies [9-12], those 
individual studies provide a relatively limited 
amount of data regarding carcinogenesis. Hence, 
integrating multiple sets of BC gene expression data 
across microarrays to identify significant DEGs via 
bioinformatics analysis is a promising approach to 
demonstrate the potential driver genes, associated 
pathways and interaction networks underlying BC. 

In the present study, a cross-tissue gene 
expression comparison in BC was conducted by 
integrating three BC gene expression datasets, which 
contained stroma samples from invasive ductal 
carcinoma and breast tissues. Differential analysis, 
enrichment analysis, protein-protein interaction (PPI) 
network analysis, RNA sequencing expression 
analysis, survival analysis, clinicopathological 

characteristics analysis, mutation analysis and 
quantitative real-time polymerase chain reaction 
assay were performed to identify hub genes 
associated with BC and to further construct a 
transcription factor (TF)-microRNA (miRNA)- 
messenger RNA (mRNA) regulatory network. While 
revealing the potential molecular mechanism of BC 
occurrence, these findings may provide a basis for 
developing potential therapeutic targets for BC. 

Materials and Methods 
Collection of microarray data information 
from GEO datasets 

The Gene Expression Omnibus (GEO; https:// 
www.ncbi.nlm.nih.gov/geo/) is known as a public 
functional genomics data repository containing array- 
and sequence-based data, which allows users to 
search, browse and download gene expression 
profiles. After careful review and comparison, we 
obtained three gene expression profiles of BC and 
normal breast tissues, namely, GSE42568, GSE45827 
and GSE54002. Microarray datasets of GSE42568, 
GSE45827 and GSE54002 were all processed on the 
GPL570 platform ([HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 Array) and contained 
104 BC tissues and 17 normal breast tissues, 130 BC 
tissues and 11 normal breast tissues, and 417 BC 
tissues and 16 breast tissues, respectively. 

Data processing and differential analysis 
We detected and removed batch effects in each 

dataset (Supplementary Figure S1) and then classified 
the BC specimens and normal breast specimens in 
three microarray datasets using R software (version 
3.4.4) packages edgeR and limma to identify DEGs. 
The cutoff criteria were |log2FC| >2 and adjusted p 
value <0.05. Next, DEGs in each dataset were 
exported to an online Venn diagram tool 
(http://bioinformatics.psb.ugent.be/webtools/Venn
/) to identify the intersecting DEGs among the three 
datasets. Finally, the intersecting DEGs with log2FC>2 
were deemed to be upregulated genes, and those with 
log2FC<-2 were considered downregulated genes. 

Functional and pathway enrichment analyses 
Gene Ontology (GO) analysis [13] and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis [14] were performed on 
the intersecting DEGs using Database for Annotation, 
Visualization and Integration Discovery (DAVID) 
version 6.8 [15]. DEGs enriched in biological processes 
(BPs), cellular components (CCs) and molecular 
functions (MFs) were included in the GO analysis 
(p<0.05). 
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PPI network construction and module analysis 
A PPI network of intersecting DEGs was 

constructed by an online tool, Search Tool for the 
Retrieval of Interacting Genes (STRING) [16] version 
11.0, to evaluate the protein functions and cellular 
regulatory mechanisms of DEGs at the molecular 
level. The Molecular Complex Detection (MCODE) 
app was a plugin in Cytoscape [17] version 3.7.2 and 
was applied to check modules of the PPI network. The 
module with the highest MCODE score is our 
interesting target. 

Validation of RNA sequencing expression of 
central genes 

Gene Expression Profiling Interactive Analysis 
(GEPIA; http://gepia.cancer-pku.cn/index.html) and 
GEPIA2 (http://gepia2.cancer-pku.cn/#index) were 
the functional tools for analyzing the prevalence and 
expression of a gene signature in the Cancer Genome 
Atlas (TCGA) and Genotype-Tissue Expression 
(GTEx) samples [18]. To further validate the 
intersecting DEGs, GEPIA and GEPIA2 were used to 
probe the RNA sequencing expression between BC 
and normal breast tissues. P<0.05 was considered 
significant. 

Survival analysis of central genes 
The Kaplan–Meier plotter (KM plotter) system 

contained gene ChIP and RNA-seq data sources from 
the TCGA, European Genome-phenome Archive 
(EGA) and GEO and was generally used for survival 
analysis and survival biomarker validation [19]. In 
our study, KM plotter was applied to assess the effect 
of hub genes and miRNAs on survival in BC. The 
log-rank p value and hazard ratio (HR) with 95% 
confidence intervals were automatically determined 
and displayed on the plot. A log-rank p value <0.05 
was considered significant. 

Oncomine™ analysis 
Oncomine™ is a web-based data-mining 

platform consisting of multiple integrated cancer 
microarray databases and additional clinicopatho-
logical data [20]. The hub gene-related clinical 
pathological data of tumors were searched for in this 
platform to explore the relationship between hub 
genes and aggressive biological behavior of tumors 
and analyzed in GraphPad Prism 8. Transcriptional 
expression of hub genes in 20 different types of cancer 
diseases was explored in Oncomine™ databases. 
Differences in transcriptional expression were 
compared by Student’s t-test. The cutoff p value was 
0.01; the cutoff fold change was 1.5; the gene rank was 
10%, and data type was mRNA. Tumor pathological 
grade and stage of BC were investigated via the Curtis 

breast dataset (2136 cases), and metastatic event status 
of BC was studied via the Desmedt breast dataset (198 
cases). The threshold of the p value was set as 1E-4, 
and the fold change was 2 in the dataset filter. 

cBioPortal analysis 
cBioPortal (www.cbioportal.org) is an open 

source platform for exploring, visualizing, and 
analyzing multidimensional cancer genomics and 
clinical data [21]. The dataset we explored is BC 
(METABRIC, Nature 2012 & Nat Commun 2016) with 
a total of 2509 samples, among which 1904 samples 
with complete mutation and copy number alterations 
were built to analyze the genomic profiles of hub 
genes. Genetic mutations in hub genes and their 
association with overall survival (OS) of BC patients 
were displayed as Kaplan-Meier plots, and the 
log-rank test was performed to identify the 
significance of the differences between the survival 
curves. When a p value <0.05, the difference was 
considered statistically significant. 

Cell culture 
A mammary gland epithelial cell line MCF-10A 

and BC cell lines MCF-7 and MDA-MB-231 were 
purchased from the Cell Resource Center of the 
Shanghai Institutes for Biological Sciences. MCF-10A 
cells were grown in complete growth medium 
consisting of a 1:1 mixture of Dulbecco's modified 
Eagle's medium (DMEM) and Ham's F12 medium 
supplemented with 5% (v/v) horse serum, 10 µg/ml 
insulin, 100 ng/ml cholera toxin, 20 ng/ml 
recombinant human epidermal growth factor, 0.5 
µg/ml hydrocortisone and 1 unit (U)/ml penicillin/ 
streptomycin. MCF-7 cells and MDA-MB-231 cells 
were cultured in DMEM (Gibco, Carlsbad, CA, United 
States) containing 10% fetal bovine serum (Gibco), 1% 
penicillin (100 U/ml) and 1% streptomycin (100 
U/ml). The cells were all incubated in a humidified 
incubator at 37°C with 5% CO2. 

qRT-PCR 
Total RNA of the target gene was extracted from 

the cultured cells using TRIzol reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.) and quantified using an 
Ultra-micro UV analyzer Q6000Uv (Quawell 
Technology, Inc.). The first cDNA strand specific to 
each gene was synthesized from total RNA using the 
Bestar™ qPCR RT Kit (cat. no. 2220; DBI Bioscience) 
on a PCR Amplifier (product no. K960; Hangzhou 
Jingge Scientific Instrument Co., Ltd.). Real‑time PCR 
was conducted using Stratagene Mx3000P (Agilent 
Technologies, Inc.) and by applying Bestar™ qPCR 
Master Mix (cat. no. 2043; DBI Bioscience). GAPDH 
was used as an endogenous control and analyzed 
with the 2-ΔΔCq method. The assay was conducted in 
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triplicate. The primer sequences for each gene are 
listed in Supplementary Table S1. 

IHC analysis 
The Human Protein Atlas (http://www. 

proteinatlas.org) is a large-scale protein research 
project, and its main purpose is to map the location of 
proteins encoded by genes and their expression in 
human tissues and cells. Each immunohistochemistry 
(IHC) image in this database has been evaluated by 
specially educated personnel. We explored the IHC 
and RNA expression of genes with prognostic value 
in normal mammary tissues and BC tissues from the 
Human Protein Atlas. 

Construction of a regulatory network 
We generated an miRNA-mRNA regulatory 

network by using the intersecting DEGs from TarBase 
version 8 (http://carolina.imis.athena-innovation.gr/ 
diana_tools/web/index.php?r=tarbasev8%2Findex) 
and miRTarBase (http://mirtarbase.cuhk.edu.cn/ 
php/index.php). The curated TF-miRNA regulations 
were derived from the TransmiR version 2.0 database 
(http://www.cuilab.cn/transmir) [22]. The following 
parameters were selected to reduce false positives 
during processing: (i) number of supporting 
experiments ≥1 means that at least one high- 
throughput sequencing of RNA isolated by cross-
linking immunoprecipitation (CLIP-Seq) experiment 
supported the predicted miRNA target site; (ii) up- or 
downregulated expression patterns between miRNA 
and mRNA were included; and (iii) level 1 or 2 
evidence for supporting the predicted TF in breast 
tissue was included, and the prediction of literature 
evidence was excluded. The above interaction 
information was imported into Cytoscape software 
version 3.7.2 to construct the TF-miRNA- 
mRNA regulatory network. 

Statistical analysis 
GraphPad Prism 8 (GraphPad Software, Inc.) 

was used for statistical analyses. The results are 
expressed as the mean ± standard deviation (SD). 
One-way analysis of variance and Tukey's post hoc 
test were used to analyze the differences among three 
or more groups. A p value < 0.05 was considered to 
indicate a statistically significant difference. 

Results 
Identification of DEGs in BC 

A total of 651 BC tissues and 44 normal breast 
tissues were included in our study. The series from 
each chip, or sample, was separately analyzed via R 
software, resulting in the list of DEGs. GSE42568, 
GSE45827 and GSE54002 chips were screened, 

resulting in 1196 (470 upregulated and 726 
downregulated), 2334 (1714 upregulated and 620 
downregulated) and 624 (138 upregulated and 486 
downregulated) DEGs, respectively (Figure 1A). After 
using an online Venn diagram software, a total of 65 
upregulated DEGs (logFC>2) and 59 downregulated 
DEGs (logFC<-2) that overlapped in the BC tissues 
were extracted and identified from these three chips 
(Figure 1B and Supplementary Table S2). 

GO function and KEGG pathway enrichment 
analyses of DEGs 

All 124 overlapping DEGs were further used to 
explore the biological functions via DAVID software. 
The BP results suggested that upregulated DEGs were 
significantly enriched in collagen fibril organization, 
regulation of cell cycle, mitotic sister chromatid 
segregation and mitotic cytokinesis (Supplementary 
Figure S2A), and downregulated DEGs were mainly 
enriched in negative regulation of anoikis, insulin 
receptor signaling pathway, cellular response to 
starvation and positive regulation of cell proliferation 
(Supplementary Figure S2B). MF analysis indicated 
that upregulated DEGs were significantly enriched in 
proteinaceous extracellular matrix, midbody, spindle 
microtubule, cytoplasm and nucleus (Supplementary 
Figure S2C), and downregulated DEGs were mainly 
enriched in extracellular space, membrane raft, 
extracellular region, focal adhesion and proteinaceous 
extracellular matrix (Supplementary Figure S2D). CC 
results revealed that upregulated DEGs were 
significantly enriched in ATP binding, heparin 
binding, extracellular matrix structural constituent 
and microtubule motor activity (Supplementary 
Figure S2E), and downregulated DEGs were mainly 
enriched in heparin binding, signal transducer 
activity, protein binding, bridging and metallo-
endopeptidase activity (Supplementary Figure S2F). 

KEGG pathway analysis showed that 
upregulated DEGs were significantly enriched in cell 
cycle, extracellular matrix (ECM)-receptor interaction, 
oocyte meiosis, p53 signaling pathway and protein 
digestion and absorption (p<0.05), while down-
regulated DEGs displayed no significantly enriched 
signaling pathways (Supplementary Table S3). 

PPI network construction and modular 
analysis 

A total of 124 overlapping DEGs were mapped 
with STRING to explore potential interactions of the 
DEGs at the protein level. Ninety-seven nodes and 
881 edges were constructed and represented in the 
PPI network with a PPI enrichment p value <1.0E-16 
and included 60 upregulated and 37 downregulated 
DEGs (Figure 2A). A significant module was 
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subsequently applied and constructed with 39 nodes 
and 709 edges, which gained the highest score in 
MCODE (yellow part in Figure 2A). Interestingly, the 

39 central nodes were all upregulated genes in BC 
tissues. 

 

 
Figure 1. Identification of the DEGs in three datasets (GSE42568, GSE45827 and GSE54002). (A) The volcano map for each dataset; red dots indicate upregulated DEGs; green 
dots represent downregulated DEGs; and gray dots indicate nonsignificant (NS) DEGs. (B) A total of 124 common DEGs were identified in an online Venn diagram tool. Different 
colors represent different datasets. Sixty-five overlapping upregulated DEGs in the three datasets (log2FC > 2) and 59 overlapping downregulated DEGs in the three datasets 
(log2FC < -2) were identified. 

 
Figure 2. Overlapping DEGs constructed from the PPI network by STRING and MCODE plugin app were analyzed again with the KEGG enrichment pathway. (A) A total of 97 
DEGs are involved in the PPI network complex. The nodes represent proteins, and the edges indicate the interaction of proteins. Blue circles represent downregulated DEGs, 
and red and yellow circles represent upregulated DEGs. Yellow circles are identified with the highest score by MCODE module analysis (degree cutoff= 2, node score cutoff= 
0.2, k-core = 2, and max. depth = 100). (B) Seven genes (CCNE2, CCNB1, CCNB2, BUB1B, TTK, CDC20 and PTTG1, labeled with a red star) were significantly enriched in the cell 
cycle pathway, especially in G2/M phases. Mps1 represents TTK; BubR1 represents BUB1B; CycB represents both CCNB1 and CCNB2; and CycE represents CCNE2. 
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Expression analysis of core genes via GEPIA 
and survival analysis via KM plotter 

The 39 core genes were imported into the online 
GEPIA analysis tool with |log2FC| cutoff value=1 
and p value cutoff value=0.01. The results showed that 
these 39 core genes were all significantly expressed in 
BC patients compared with patients with normal 
breast tissue (Supplementary Figure S3 and 
Supplementary Table S4). To further clarify the 
significance of these 39 core genes for BC survival, 
KM plotter was applied for analysis. It turned out that 
36 out of the 39 upregulated genes showed a 
markedly worse survival (p<0.05, Supplementary 
Figure S3 and Supplementary Table S5). 

KEGG pathway enrichment of the 36 selected 
core genes 

A total of 36 selected core genes were analyzed 
again using KEGG pathway enrichment analysis by 
DAVID to explore the vital functions driving 
tumorigenesis in BC. The results indicated that seven 
hub genes (cyclin E2 (CCNE2), cyclin B1 (CCNB1), 
cyclin B2 (CCNB2), mitotic checkpoint serine/ 
threonine kinase B (BUB1B), dual-specificity protein 
kinase (TTK), cell division cycle 20 (CDC20), and 
pituitary tumor transforming gene 1 (PTTG1)) were 
significantly enriched in the cell cycle pathway 
(p=1.42E-07, Figure 2B and Supplementary Table S6). 

Transcripts and survival analysis of hub genes 
Seven cell cycle-related genes (CCRGs) were 

explored again at the transcript level via GEPIA and 
confirmed via the Oncomine™ database. The results 
showed that CCNE2, CCNB1, CCNB2, BUB1B, TTK, 
CDC20 and PTTG1 were significantly highly 
expressed in BC patients (p<0.05, Figure 3A) and 
confirmed that the transcriptional expression of these 
seven CCRGs was significantly higher in the BC 
population (p<0.01, green frame, Figure 3B) than in 
the normal population. KM plotter analysis indicated 
that high expression of these seven CCRGs led to an 
unfavorable prognosis (p<0.05, Figure 3C). 

Analysis of clinicopathological characteristics 
of hub genes 

Seven CCRG signatures were processed as a 
CCRG set, and correlation analysis of BC subtypes 
and stages between BC and normal patients was 
performed via GEPIA2. As shown in Figure 4A, the 
expression level of the CCRG set was obviously high 
in BC patients, and the difference was statistically 
significant (p<0.05). Similarly, analysis of the BC 
subgroups demonstrated that the CCRG set was 
significantly highly expressed in the four BC subtypes 
(luminal A, luminal B, HER2-positive and 

triple-negative (TNBC)) (p<0.05, Figure 4B). High 
expression of CCRGs was significantly associated 
with tumor pathological grade (p<0.05), indicating 
that a higher grade accompanied higher expression of 
CCRGs, except for the CCNE2 gene (Figure 4C). In the 
clinical tumor stage study, the worse prognosis of 
stage III and IV tumors was associated with higher 
expression of CCRGs (p<0.05, respectively), except for 
the CCNE2 gene (Figure 4D). Metastatic event 
analysis showed that an elevated expression level of 
CCRGs was significantly related to the metastasis 
event (p<0.05, Figure 4E). 

Genetic mutations in CCRGs and their 
association with copy number alteration 
frequency and OS of BC patients 

The genetic alteration in CCRGs and their 
association with copy number alteration frequency 
and OS of BC patients were probed via cBioPortal. As 
shown in Figure 5A, a high mutation rate of CCRGs 
was observed in BC patients. In 1904 gene sequences 
with complete information for BC patients, genetic 
alterations were found in 641 BC patients, and the 
mutation rate was 34%. CCNE2 was ranked as the 
gene with the highest number of genetic alterations, 
and the mutation rate was 22%. Then, genetic 
alterations of CCRGs in 641 patients were classified as 
the altered group, and the remaining 1263 patients 
were classified as the unaltered group. Further study 
revealed that more genetic mutations synergistically 
occurred in the altered group (Figure 5B), and the top 
10 genes with the highest alteration frequency were 
markedly enriched in the altered group (Figure 5C). 
Kaplan–Meier plots and log-rank tests showed that 
genetic alterations in CCRGs were associated with 
shorter OS (Figure 5D, p=0.0035) in BC patients. These 
results implied that genetic alteration of CCRGs could 
also significantly affect BC patients’ prognosis. 

Expression levels of CCRGs in BC cell lines 
Next, qRT-PCR assays were performed to detect 

the expression levels of the seven CCRGs in the 
MCF-10A, MCF-7 and MDA-MB-231 cell lines. The 
results shown in Figure 6 indicated that CCNE2, 
CCNB1, CCNB2, BUB1B, TTK, CDC20 and PTTG1 
were all highly expressed in BC cell lines (MCF-7 and 
MDA-MB-231), and there were significant differences 
(p<0.05) when compared to the MCF-10A cell line. 

Validation of CCRGs in clinical tissue samples 
To further confirm the protein expression of 

CCRGs in BC, we used IHC to compare the protein 
expression between normal mammary tissues and BC 
tissues via the Human Protein Atlas database. The 
IHC map of CCRGs is shown in Figure 7 and 
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confirmed that CCNE2, CCNB1, CCNB2, TTK, CDC20 
and PTTG1 were significantly overexpressed in BC 
tissues compared with normal mammary tissues 
(p<0.05); however, BUB1B was not confirmed to be 
significantly overexpressed in BC tissues due to the 
lack of data available in the Human Protein Atlas. 

TF-miRNA-mRNA regulatory network 
Using the KM plotter, we obtained a total of 34 

predicted miRNAs targeted to CCRGs (Figure 8A) 

and confirmed that the expression of 22 out of 34 
miRNAs significantly affected BC patient survival 
(bold miRNAs in Figure 8A and Supplementary 
Figure S5). Of these, 17 miRNAs with TF binding sites 
were used to construct the miRNA-mRNA regulatory 
network (Figure 8B, Supplementary Table S7). The top 
ten regulating TFs were KDM5B, ARNTL, E2F1, 
HIF1A, ESR1, FOXA1, CTCF, NRF1, MYC and AR. 

 

 
Figure 3. Transcription and survival analysis of hub genes. (A) Transcription levels of seven cell cycle-related hub genes via GEPIA (p<0.05); red dots represent BC samples, and 
green dots represent normal tissue samples. (B) Transcriptional expression of seven CCRGs was significantly high in BC (p<0.01, green frame, Oncomine™ database). Numbers 
represent the significantly differential expression datasets. (C) Survival analysis of seven CCRGs via KM plotter (p<0.05); the red line represents high expression, and the dark line 
represents low expression in BC patients. 
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Figure 4. Analysis of the clinicopathological characteristics of hub genes. (A) The expression level of the CCRG set in BC and normal patients; the red box represents tumor 
tissues, and the gray box represents normal tissues. (B) The expression level of the CCRG set in four BC subtypes (luminal A, luminal B, HER2-positive and TNBC); the red box 
represents tumor tissues, and the gray box represents normal tissues. (C) The relation between CCRGs and pathological grade. (D) The relation of CCRGs and tumor stages; 
n=492, 372, 579, 90 and 10 in stages 0, I, II, III and IV; (E) the relation between the expression level of seven CCRGs and metastatic events (MEs). NS means nonsignificant, *p<0.05, 
**p<0.01, ***p<0.001 and ****p<0.0001. 
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Figure 5. Genetic mutations in CCRGs and their associations with copy number alteration frequency and OS of BC patients (cBioPortal). (A) A high mutation rate (43%, 
641/1904) of CCRGs was observed in BC patients. CCNE2 was ranked as the gene with the highest number of genetic alterations, with a 22% mutation rate. (B) Putative DNA 
copy number alterations showed more genes with copy number alterations clustered in the altered group, and (C) the top 10 genes with the highest alteration frequencies were 
markedly enriched in the altered group. (D) Genetic alterations in CCRGs were associated with shorter OS in BC patients. 

 
Figure 6. Expression of seven hub genes in the mammary gland epithelial cell line and BC cell lines. The expression levels of CCNE2, CCNB1, CCNB2, BUB1B, TTK, CDC20 and 
PTTG1 were significantly higher in the BC cell lines (MCF-7 and MDA-MB-231) than in the MCF-10A cell line. *p<0.05, **p<0.01 and ***p<0.001. 

 

Discussion 
Numerous studies have revealed that specific 

genes involved in the cell cycle may play a critical role 
in the biology of BC and may be of clinical relevance 
in BC, knowledge which should assist in improving 
disease prognoses and therapy [23]. In our present 
work, seven potentially prognostic biomarker genes 
(CCNB2, CCNB1, CDC20, PTTG1, BUB1B, TTK and 
CCNE2) that were remarkably enriched in the cell 
cycle pathway and significantly associated with BC 
prognosis were screened and evaluated via 
bioinformatics methods. These genes were confirmed 

and further analyzed in the OncomineTM platform, 
indicating that the high expression of seven CCRGs 
was significantly related to the aggressive biological 
behavior of tumors, which manifested as a higher 
level of pathological grade and stage and were more 
prone to metastasis. Genetic mutation analysis 
revealed that genetic alteration of CCRGs could also 
contribute to poor prognosis of BC patients. 
Verification by qRT-PCR assay in BC cell lines and by 
IHC in clinical tissue samples further supports the 
bioinformatics results. Construction of the TF- 
miRNA-mRNA regulatory network reveals the 
potential mechanism of CCRGs participating in 
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tumorigenesis and indicates that targeting cell cycle 
treatment would be a potentially effective choice for 
BC patients to have a more satisfactory prognosis. 

CCNB2, a member of the cyclin family of 
proteins, which cyclin B1 and cyclin B2, binds to 
cyclin-dependent kinases (CDKs) and regulates the 
activity of CDKs and different cyclin functions in 
specific phases of the cell cycle [24]. Abnormal 
expression of CCNB2 leads to G2/M checkpoint 
failure during the cell cycle, which may create gene 
mutations and carcinogenesis [25]. CCNB1, a highly 
conserved member of the cyclin family of proteins, is 

expressed in almost all tissues of the human body [26] 
and is a key monitoring protein in controlling cell 
cycle progression from the G2 phase to mitosis by 
regulating cyclin dependent kinase 1 (CDK1) [27, 28]. 
Studies have indicated that CCNB1 is also involved in 
some biological behaviors, such as apoptosis, chemo-
resistance, and epithelial–mesenchymal transition of 
tumor cells [29, 30]. CDC20 is an essential cell cycle 
regulator that drives mitosis from metaphase to 
anaphase by activating the anaphase-promoting 
complex [31]. A study revealed that CDC20 mutations 
blocked cell division and stopped cell cycle 

 

 
Figure 7. IHC analysis and RNA expression analysis of genes with prognostic values. (A) Differentially expressed proteins of genes with prognostic values in normal and BC 
tissues in the Human Protein Atlas database. (B) RNA expression of genes with prognostic values between normal and BC tissues in the Human Protein Atlas database. 
Significance was tested by the Student’s t‑test (****p < 0.0001; number of normal samples and tumor samples were 290 and 1075, respectively). 
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progression toward anaphase and chromosome 
segregation [32]. Some reports have indicated that 
CDC20 plays an oncogenic role in human 
tumorigenesis and that genetic ablation of CDC20 
blocks in vivo tumorigenesis [33, 34]. PTTG1, also 
known as securin, is located on chromosome 5 
(5q35.1) and is involved in regulating sister chromatid 
separation and the transition from metaphase to 
anaphase [35, 36]. In-depth research indicated that 
PTTG1 acts as an oncogene and plays an important 
role in promoting cell cycle progression, sustaining 
chromosomal stability, and modulating 
transformation in vitro and tumorigenesis in vivo 
[37-39]. BUB1B is essential for controlling mitotic 
timing, and its main functions in mitosis include 
activation, maintenance, and silencing of the spindle 
assembly checkpoint protein as well as regulating 
chromosome-spindle attachment [40, 41]. BUB1B was 

reported to interact with CDC20 directly and activate 
the anaphase-promoting complex/cyclosome by 
inhibiting CDC20 activity to ensure proper 
chromosome segregation by blocking the initiation of 
anaphase [42]. TTK, also known as monopolar spindle 
1 (Mps1), is crucial for the mitotic checkpoint and 
ensures exact chromosome segregation and proper 
attachments [43-45]. A higher abundance of mitotic 
checkpoint genes in cancer cells is markedly 
associated with increased genome instability and is 
even correlated with tumor cell spread and cancer 
metastasis [46, 47]. CCNE2 is a member of the cyclin 
family of proteins and plays a role in the cell cycle by 
regulating the G1 to S phase transition to ensure cell 
division [48]. Upregulated CCNE2 in various cancers 
was shown to be correlated with tumorigenesis and 
tumor proliferation, invasion, and migration by 
affecting tumor cell viability and apoptosis [49]. 

 

 
Figure 8. Identification of predicted miRNAs targeted to CCRGs and construction of the TF-miRNA-mRNA regulatory network. (A) Using the intersecting DEGs from TarBase 
and miRTarBase to select predicted miRNAs and confirm significant expression of miRNAs via the KM plotter (bold miRNAs). (B) Construction of the TF-miRNA-mRNA 
regulation network via the integration of published multilevel expression data and a bioinformatics computational approach; red oval indicates mRNA of CCRGs, yellow diamond 
represents TF and green rectangle means miRNA. 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

751 

The cell cycle, also known as the cell-division 
cycle, is a series of processes that occur in cell 
progression, resulting in genome duplication and cell 
division to produce two daughter cells [23]; several 
checkpoints are required to maintain genomic 
stability and decrease the possibility of tumorigenesis. 
Cyclins and CDKs are involved in and run through 
the whole cell cycle, and their expression levels and 
effects occur across specific phases [23, 50]. Ignoring 
the many safeguards and checkpoints of the cell cycle, 
cancer cells start to exhibit limited proliferation 
regardless of their aneuploidy and other cellular 
defects. This phenotype is achieved through 
alterations of various genetic and epigenetic 
molecules that hyperactivate or inactivate key 
components of the cell cycle [51]. Different subtypes 
of BC display different molecular alterations and 
dependencies on the cell cycle and its checkpoints 
[52]; for example, multiple studies have revealed that 
TNBC tumors are dependent on the spindle assembly 
checkpoint and showed high expression levels of 
mitotic checkpoint genes (e.g., TTK and BUB1B) [53, 
54]. Given that dysregulation of the cell cycle by 
aberrant activation of cyclins or other mitotic 
checkpoint genes is essential for cancer cell 
proliferation, targeting the cell cycle is a promising 
anticancer therapeutic strategy [55]. 

Accumulating evidence has demonstrated that 
genetic mutations are associated with the occurrence 
and prognosis of tumors [56-58]. In the present study, 
it was identified that mutations in CCRGs were 
associated with the biological features of BC. 
Mutations in CCRGs were identified to affect OS. 
Notably, these genes may represent potential novel 
biomarkers for assessing the prognosis of patients 
with BC and may be considered potential targets for 
treating BC. 

MiRNAs, a type of noncoding RNA with 21-25 
nucleotides, play a critical role in regulating the 
expression of mRNAs by forming the RNA-induced 
silencing complex (RISC) to inhibit the translation or 
degrade the mRNA directly. Seventeen miRNAs 
targeting CCRGs were identified and may be a part of 
the mechanism by which CCRGs participate in tumor 
aggressive BPs. Studies have revealed that miRNA 
expression is related to transcriptional TFs [59,60]. 
However, the involvement of several miRNAs and 
TFs in the transcriptional regulation of mRNA and 
miRNAs has rarely been reported in BC. Therefore, 
we firstly constructed a TF-miRNA-mRNA regulatory 
network in BC, which consists of CCRGs. This study 
provides new insight into the molecular mechanism 
of BC. 

Abundant studies and our results have 
demonstrated that seven CCRGs contribute to the 

aggressive biological behavior of tumors. Some of 
these CCRGs have been suggested to be significantly 
related to poor prognosis in BC based on clinical 
research; however, some of these CCRGs, namely, 
PTTG1, TTK and CCNE2, have not. In addition, some 
of these CCRGs have been used as antitumor targets 
or suggested to be related to therapeutic resistance in 
BC; however, some of them, including CCNB2, 
CDC20, PTTG1 and BUB1B, have not yet been 
determined as antitumor targets or to be related to 
therapeutic resistance in BC. Furthermore, the 
expression level of seven CCRG mRNAs was 
significantly high in BC cell lines via qRT-PCR, 
suggesting that they might be effective agents for BC 
treatment. We attempted to reveal the potential 
mechanism driving the CCRG-induced uncontrolled 
cell cycle in BC by constructing a TF-mRNA-mRNA 
regulatory network. However, further in-depth 
studies are still urgently needed. Our data could 
theoretically lay the foundation and provide a 
significant direction for future investigations of these 
seven CCRGs to investigate the aggressive biological 
behavior of tumors and target cell cycle treatments in 
BC. 

Conclusion 
In summary, this bioinformatics analysis study 

determined seven CCRGs (CCNB2, CCNB1, CDC20, 
PTTG1, BUB1B, TTK and CCNE2) with poor prognosis 
in BC based on tissue-specific microarray datasets. 
The results indicated that these seven CCRGs all 
played a part in the aggressive biological behavior of 
tumors by regulating the cell cycle, and this study is 
the first to construct a TF-miRNA-mRNA regulatory 
network for CCRGs in BC. This study provides new 
insights into the molecular mechanism of BC. 
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