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Abstract 

Background: Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated epithelial 
malignancy. Large-scale genetics or epigenetics studies of NPC have been relatively scarce and sporadic, and 
there are no effective targeted drugs for NPC. Integrative analysis of multiple different omics profiles has been 
proved to be an effective approach to shed new light on cancer. 
Methods: We developed a pipeline to aggregate consensus differentially expressed genes (DEGs) from 
multiple expression datasets from different platforms. Integrated bioinformatics analysis of DNA methylation 
and gene expression was used to prioritize key genes in NPC. We explored the biological and clinical 
importance of key genes, combining differential co-expression analysis, network analysis of protein-protein and 
microRNA (miRNA)-target interactions, and pan-cancer survival analysis. 
Results: We obtained 668 upregulated and 594 downregulated consensus DEGs, which enriched in the 
PI3K-AKT, NF-κB and immune-related pathways. In NPC, 98% of 3364 differentially methylated sites were 
hypermethylated. Actively expressed EBV gene EBNA1 was positively correlated with over-expressed genes 
coding DNA methyltransferase and Polycomb group proteins, suggesting that EBV infection may have an 
important role in the hypermethylation of NPC. Through integrated analysis of DNA methylation and mRNA 
and miRNA expression profiles, we prioritized 56 hypermethylated downregulated genes, including 7 tumor 
suppressor genes, and constructed a miRNA-target regulation network consisting of 12 hypermethylated 
miRNAs and 25 upregulated oncogenes. The promoter hypermethylation of PRKCB causing its downregulation 
was validated by experimental results and higher PRKCB expression was associated with longer overall survival 
in head-neck squamous cell carcinoma, suggesting the potential of PRKCB as a promising disease biomarker for 
NPC. 
Conclusions: Our integrative analysis provides reliable key genes for candidate biomarkers for diagnosis and 
prognosis in NPC. Based on the combined evidence of promoter hypermethylation, expression up-regulation, 
and association with overall survival, genes such as SCUBE2, PRKCB, IKZF1, MAP4K1, and GATA6 could be 
promising novel diagnostic biomarkers, and miRNAs including MIR150, MIR152, and MIR34 could be candidate 
prognosis biomarkers. 

Key words: integrative analysis; differently expressed genes; EBV infection; aberrant methylation; disease 
biomarkers 

Introduction 
Nasopharyngeal carcinoma (NPC) is a malignant 

neoplasm that arises from the epithelium of the 
nasopharynx and shows remarkably skewed 
geographic and racial distributions. NPC is rare 

worldwide but common in South China, with a 
strikingly higher incidence [1]. 

NPC pathogenesis has been reported to be 
strongly associated with multiple factors, including 
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host genetics, viral infection, and environmental 
effects, which can result in genetic and epigenetic 
alternations [2]. A recent study showed that different 
subtypes of NPC could be distinguished by 
differences in immune cell genes, and suggested that 
both tumor genetics and Epstein-Barr virus (EBV) 
infection could influence the tumor micro-
environment [3]. Aberrant epigenetic alterations such 
as DNA methylation can disrupt or over-activate 
critical signaling pathways. Compared with other 
cancer types, such as liver, head and neck, colon, lung, 
thyroid, kidney, breast, pancreatic, and prostate 
cancers, NPC has a higher hypermethylation 
frequency [4, 5]. Genes downregulated by promoter 
hypermethylation could represent biomarkers for 
disease progression and prognosis in NPC. However, 
transcriptome or epigenetics studies of NPC have 
been relatively scarce and sporadic. Compared with 
the use of a single dataset and single omics, 
integrative analysis of expression profiles and 
methylation profiles has proved to be an effective way 
to gain new insights and may shed more light on the 
molecular mechanism of carcinogenesis in NPC. 

In this study, we developed a pipeline to 
aggregate consensus differentially expressed genes 
(DEGs) from multiple datasets from different 
platforms, including both microarray and RNA 
sequencing (RNA-seq) data, and combined 
methylation profiles and microRNA (miRNA) 
expression profiles to identify aberrantly methylated 
DEGs or DEGs regulated by differentially methylated 
(DM) miRNAs. We prioritized DEGs using voting and 
robust rank aggregation (RRA) [6] methods and 
identified reliable DEGs based on votes and 
RRA-adjusted p-values. As the activation of 
oncogenes and loss of tumor suppressor genes (TSGs) 
have important roles in cancer evolution, oncogenes 
and TSGs were investigated to select likely 
biomarkers and therapeutic targets for NPC. 
Furthermore, owing to the lack of survival 
information for the sample and the availability of The 
Cancer Genome Atlas (TCGA) data, pan-cancer 

analysis of the associations between gene expression 
and survival was also performed to determine the 
biological importance of these genes. 

Materials and Methods 
Data sources for expression and methylation 
profiles of NPC 

We searched for “nasopharynx cancer” in EBI 
ArrayExpress (https://www.ebi.ac.uk/ 
arrayexpress/) and manually selected expression and 
methylation profiles of NPC. To identify biomarkers 
discriminating cancer from normal tissue, we studied 
human tissue samples using a cancer vs. cancer-free 
control design. Finally, six mRNA expression datasets 
and two methylation datasets were screened out for 
analysis (Table 1). To investigate differences in 
expression between aberrantly hypermethylated 
miRNAs in cancer and those in normal tissue, three 
miRNA expression datasets for more than 50 patients 
were used. Two additional datasets, GSE102349 and 
GSE103611, were used for interpretation or validation 
of our analysis results. GSE102349 contained both 
EBV and human expression profiles by RNA-seq 
from113 undifferentiated nasopharyngeal carcinoma 
tumors (no normal controls) and can be used to 
identify co-expressed EBV-host gene pairs in NPC. 
GSE103611 provided expression profiles for 24 NPC 
tumor tissues with distant metastasis after radical 
treatment and 24 without distant metastasis, and was 
used to annotate genes associated with distant 
metastasis. 

Prioritizing DEGs in NPC from multiple 
studies and identifying reliable consensus 
DEGs 

The R software [7] version 3.5.1 was used for 
data analysis. Different strategies were applied to 
integrate the six mRNA expression datasets from 
microarrays (Affymetrix and Agilent) and RNA-seq, 
crossing four platforms (Table 1). 

 

Table 1. Expression and methylation datasets analyzed and integrated in the study 

Technology Platform Raw Dataset #Samplea Design EBV infection DEGs dataset 
Microarray GPL570 (HG-U133_Plus_2) GSE34573 19(4+15) Unpaired EBV+ S1 
Microarray GPL570 (HG-U133_Plus_2) GSE12452 41(10+31) Unpaired EBV+ 
Microarray GPL570 (HG-U133_Plus_2) GSE64634 16(4+12) Unpaired Unknown 
Microarray GPL96 (HG-U133A) GSE13597 28(3+25) Unpaired EBV+ S2* 
Microarray GPL6480 (Agilent-014850 ) GSE53819 36(18+18) Unpaired Unknown S3 
RNA-seq Illumina Hiseq 2000 SRP058243 45(4+41) Unpaired EBV+ S4 
Methylation array Illumina HumanMethylation450 BeadChip GSE52068 48(24+24) Unpaired Unknown / 
Methylation array Illumina HumanMethylation450 BeadChip GSE62336 50(25+25) Paired Unknown / 
miRNA array GPL14722 GSE32960 330(18+312) Unpaired EBV+ / 
miRNA array GPL15311 GSE36682 68(6+62) Unpaired EBV+ / 
miRNA array GPL20699 GSE70970 264(17+246) Unpaired EBV+ / 
a Sample: n (normal + cancer); *for enough power to calculate DEGs, S2 included GSE13597 and S1. 
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Of the four Affymetrix datasets, three using the 
sample platform GPL570 were combined into one 
integrated dataset S1. S2 planned to be only 
GSE13597, which had only 3 normal and 25 cancer 
samples, and used the platform GPL96. However, to 
achieve sufficient power to get more reliable DEGs, 
we merged S1 and GSE13597 into S2 (Supplementary 
Figure 1A). During data integration, the merged 
dataset was normalized and batch effects were 
removed using the ComBat function from ‘sva’ 
package [8] (Supplementary Figure 1B). S1 contained 
20188 genes and 76 samples (18 controls and 58 NPC), 
and S2 contained 12403 genes and 104 samples (21 
controls and 83 NPC). 

S1, S2, S3 (Agilent), and S4 (RNA-seq) were used 
for DEGs identification. DEGs from microarrays were 
identified using the “limma” package [9], whereas 
those from RNA-seq were called using the “DESeq2” 
package [10]. We used STAR [11] to map RNA-seq 
reads to reference genome hg19. p-values were 
adjusted using the Benjamini-Hochberg (BH) method 
[12]. The criteria for DEGs were: 1) adjusted p<0.05; 2) 
absolute fold change > 2 between cancer and normal 
tissue. 

Meta-analysis was used to aggregate the DEGs 
from each dataset. We aggregated upregulated and 
downregulated DEGs, respectively, using two 
methods: voting and RRA [6]. The vote number is the 
number of datasets in which genes are significantly 
differentially expressed. As detectable genes were not 
the same across the four platforms, RRA was used to 
pick out DEGs that were markedly changed according 
to only one study but not detected in other studies as 
data were not available. RRA scores are negatively 
correlated with vote number (Spearman’s rho = -0.7 
for upregulated genes and -0.55 for downregulated 
genes, p<0.01). A DEG with vote number ≥2 or RRA 
BH-adjusted p<0.01 was considered reliable and used 
for further analysis. 

Differential co-expression analysis of DEGs 
DEG expression profiles from S1 were used for 

the differential co-expression analysis, because the 
gene number of S1 was largest among the 3 datasets 
with #normal sample >10. R package DCGL [13] was 
used to find differentially co-expressed gene pairs 
among the DEGs. Differential co-expression profile 
and differential co-expression enrichment methods 
were used to identify differentially co-expressed 
genes (DCGs) and differentially co-expressed links 
(DCLs). DCLs whose absolute correlation coefficients 
were not less than 0.5 in at least one situation (normal 
or cancer) were selected. To check types of link 
change, we classified DCLs into three types: “loss-of- 
association”, “gain-of-association”, and “reverse-of- 

association”. If the absolute correlation coefficient of a 
DCL in cancer was significantly stronger than that in 
the normal condition, it would be grouped into the 
“gain-of-association” type, if the reverse was true, it 
was considered to belong to the “loss-of-association” 
type. The “reverse-of-association” type was the case 
where the direction of the relationship of DCL 
switched between cancer and the normal condition. 

DEGs probably regulated by aberrant 
methylated promoters or miRNAs 

For we didn’t have matched samples with both 
expression and methylation profiles, we identify 
DEGs likely caused by aberrant Methylation through 
applying the strategy of ‘overlapping’. The “limma” 
package [9] was used to identify DM probes (DMPs). 
Both the methylation datasets used Illumina 
HumanMethylation450 BeadChip, but GSE62336 had 
matched normal controls, for which paired 
comparison design was appropriate, whereas 
GSE52068 used pooled normal controls and so pooled 
comparison design was preferable. DMPs were 
selected using the following cutoff: 1) adjusted p<0.05; 
2) absolute β change ≥0.2 in one dataset and > 0.1 in 
another. DMPs were annotated using the package 
IlluminaHumanMethylation450kanno.ilmn12.hg19 
[14]. The promoter region was defined as 1500bp 
before the TSS of each gene plus 5’ UTR. If the 
promoter region of a gene or miRNA had DMPs, we 
considered it to be a DMG or DM miRNA. Recurrent 
DMGs or DM miRNAs (identified in both datasets 
and with the same direction of change) were used to 
overlap with consensus DEGs to identify DEGs likely 
caused by aberrant methylation (Figure 1B). 

Hypomethylated upregulated or hyper-
methylated downregulated DEGs and over-expressed 
DEGs targeted by hypermethylated miRNAs or 
under-expressed DEGs targeted by hypomethylated 
miRNAs were considered to be aberrant methylation- 
regulated DEGs. 

Gene function enrichment analysis, 
transcription factors, and cancer gene 
annotation 

We used the R package clusterProfiler [15] to 
perform gene ontology and pathway enrichment 
analysis. Adjusted p-values less than 0.01 were 
obtained by the BH method were regarded as 
statistically significant. The human transcription 
factor list was downloaded from the supplementary 
file of Lambert et al. [16]. 

The oncogene list was obtained from the 
ONGene database [17] (http://ongene.bioinfo- 
minzhao.org/), and the tumor suppressor genes 
(TSGs) list was from the TSGene database [18] 
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(https://bioinfo.uth.edu/TSGene/index.html). The 
activation of oncogenes and inactivation of TSGs may 
be associated with the cancer development. 

Protein-Protein Interaction (PPI) and 
miRNA-target interactions (MTIs) 

PICKLE (Protein InteraCtion KnowLedgebasE) 
is a meta-database for the human direct protein- 
protein interactome, integrating publicly available PPI 
databases via genetic information ontology [19]. A 
total of 179738 standard and cross-checked PPIs were 
downloaded from PICKLE. miRNA-target 
interactions (MTIs) from the experimentally validated 
MTI database miRTarBase are validated 
experimentally by reporter assay, western blot, 
microarray and next-generation sequencing 
experiments [20]. A total of 502652 human MTIs 
(containing 2599 miRNAs and 15050 target genes) 
were obtained from miRTarBase. 

Survival analysis of hypermethylated 
downregulated genes and miRNAs using 
TCGA data 

TCGA PanCanAtlas gene and miRNA 
expression and patient survival information were 
obtained from the NCI Genomic Data Commons Data 
Portal (https://gdc.cancer.gov/about-data/ 
publications/pancanatlas). For tumor versus normal 
tissue comparisons, we only considered cancer types 
with more than 10 normal samples. The Cox 
regression model and log-rank test were used to 
determine prognostic power. 

DAC treatment, RNA isolation and qRT-PCR 
Human nasal epithelial cells (hNEPC) and NPC 

cell line C666-1 were planted to 6-well-plate, after 
growing for 24 hours, the cells were treated with 
vehicle (DMSO) or 10 mM DAC (5-aza-2’-deoxy-
cytidine, MCE NSC 127716). The medium containing 
DMSO/DAC were changed every 24 hours for 72 
hours. After treatment, total RNAs were extracted 
using TRIzol (Invitrogen Cat No.:10296010) according 
to the manufacturer’s instruction. cDNA was 
reversely transcribed from 500 ng total RNA by 
PrimeScript RT-PCR kit (Takara Cat No.: RR014). 
Real-time PCR was carried out on an ABI 7900HT Fast 
Real-Time PCR System. Data shown were the relative 
abundance of the indicated mRNA normalized to that 
of Gapdh by the change-in-cycling-threshold (∆∆CT) 
method. The primers for real-time PCR were listed in 
the Supplementary Table 1. 

Results 
Identification and Characteristics of consensus 
DEGs 

We collected all available qualified expression 
and methylation profiles for NPC including six 
mRNA expression datasets (Table 1). To integrate 
mRNA expression profiles from different studies and 
platforms we first merged datasets from the same 
platform by unique gene ID and removed batch 
effects using the ComBat method [21]. After merging, 
four datasets from four platforms were used to 
determine DEGs between NPC and normal tissues. 
The analysis pipeline for expression and methylation 
data is illustrated in Figure 1. 

In total, 2670 upregulated genes and 2217 
downregulated genes were identified at least one 
dataset (Figure 2A). Then we used meta-analysis to 
integrate DEGs from different platforms, using a 
combination of vote number and RRA to obtain 
consensus DEGs (see Materials and Methods). If a 
DEG had vote number ≥2 or RRA-adjusted p<0.01, it 
was considered to be reliable and used for further 
analysis. Finally, 1261 DEGs were obtained, including 
668 upregulated and 594 downregulated genes (gene 
S100A2 was downregulated in S3 and S4 but over- 
expressed in S1 and S2). Functional enrichment 
analysis of all DEGs revealed that they were enriched 
in cancer-related pathways including the PI3K-AKT 
signaling pathway, NF-κB signaling pathway, p53 
signaling pathway, focal adhesion and immune- 
related pathways, chemokine signaling pathway, 
IL-17 signaling pathway, and B cell receptor signaling 
pathway (Figure 2B). Virus-associated pathways 
(Kaposi sarcoma-associated herpesvirus infection and 
human papillomavirus infection) were also over- 
represented.  

To further understand the functions of DEGs, we 
annotated DEGs with oncogenes, TSGs, and 
transcription factors, and ranked them by vote 
number and RRA score (Supplementary Table 2; see 
Materials and Methods). Among the 1261 DEGs, there 
were 60 over-expressed oncogenes and 52 
downregulated TSGs. Oncogenes CXCL3, EPCAM, 
GATA6, NOV, and SOX4 were upregulated in all four 
datasets (Figure 2C), indicating their important roles 
in NPC carcinogenesis. LHX2 was the top upregulated 
gene based on RRA score. LHX2 is a transcription 
factor and a mesenchymal marker of epithelial–
mesenchymal transition (EMT), which has been 
reported to promote tumor growth and metastasis in 
pancreatic ductal adenocarcinoma and breast cancer 
[22, 23]. The top three downregulated genes were 
ELL3, GSTA3, and MUC16 (Figure 2C). Both GSTA3 
and MUC16 have protective roles against EMT [24, 
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25]. Additionally, through integrating the dataset 
with primary and metastatic NPC (GSE103611), we 
identified 11 up-regulated DEGs (including 
oncogenes like SOX4, FNDC3B and JUP, and EMT 
regulatory factors like SNAI2) and 2 down-regulated 
DEGs (immune-related genes CR2 and LAT2) 
associated with distinct metastasis (Supplementary 
Table 2). 

Next, we constructed co-expression networks of 
DEGs using the expression profiles in NPC and 
normal samples, respectively (see Materials and 
Methods). Differential co-expression analysis was 
performed to investigate changes in gene–gene links; 
388 DCGs and 33509 DCLs were identified. Our 
results showed that almost 96.3% DCLs lost 
associations, 3.2 % gained new associations, and only 
0.4% showed reversed associations (Supplementary 
Figure 2A). On the other hand, 288 (74.2%) DCGs 
were downregulated in NPC, significantly more than 
in the background (47% DEGs were downregulated, 
chi-square test p<0.01). These results indicate that the 
co-expression network of NPC has a trend of 
loss-of-association of downregulated genes, which 
may result in the dysregulation of normal gene links, 
especially silencing of TSG regulation. For example, 
TSG PAX5 is a B cell transcription factor, which is 
downregulated in NPC. PAX5 restoration can cause 

rapid repression of Myc and DNA replication factor 
[26]. In our study, 95% of 227 DCLs of PAX5 were of 
the loss-of-association type, and 83% differentially 
co-expressed partners (DCPs) were upregulated in 
NPC, probably owing to loss-of-regulation of PAX5 
(Figure 2D and Supplementary Figure 2B). Functional 
enrichment analysis suggested that PAX5 DCPs were 
enriched in the cell division biological function and 
the DNA replication signaling pathway. 

Global hypermethylation and association with 
EBV gene expression 

EBV is an important risk factor for NPC. EBV 
infection can cause epigenetic changes in the host 
genome and promote tumorigenesis. Previous studies 
have shown that EBV-associated tumors are globally 
hypermethylated. Here, we identified 3364 DM sites, 
and 3284 (98%) were hypermethylated (Figure 1B). 
Therefore, we tried to explore the molecular 
mechanism between EBV and hypermethylation. 
DNA methyltransferase and the Polycomb 
group (PcG) family proteins are critical to DNA 
methylation levels and often cooperate in silencing 
gene expression. We found that genes coding DNA 
methyltransferase (DNMT1, DNMT3A, DNMT3B) and 
PcG proteins (PRC1, EZH2, SUZ12) were over- 
expressed in NPC (Figure 3A). Analysis of RNA-seq 

 

 
Figure 1. Workflow for identifying prioritized DEGs caused by aberrant methylation. A. Integrated analysis of multiple expression profiles to prioritize DEGs. B. 
Pipeline for identifying aberrantly methylated DEGs and DM miRNAs-DEGs. 
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dataset S4, which contained both host and EBV 
transcriptomes, showed that seven lytic genes 
(BALF3, BALF4, BALF5, BILF1, LF1, BARF1, LF2), two 
latent genes (LMP-1, LMP-2B), and EBNA-1 were 
actively expressed in NPC patients. The lytic EBV 
gene products may directly induce DNA damage and 
contribute to NPC development. To explore whether 
EBV gene expression programs were associated with 
host gene expression of DNA methyltransferase and 
PcG proteins, we performed a correlation analysis 
between human genes and the top 10 highly 
expressed EBV genes. The significantly positively 
correlated pairs are shown in Figure 3B (Pearson’s 
correlation coefficient >0.3, p<0.05). EBNA1 was 
positively associated with both kinds of genes, which 
was confirmed by other study using dataset 

GSE102349 [3] (Supplementary Table 3). EBNA1 is the 
only nuclear EBV protein expressed in both latent and 
lytic modes of infection, and is required for the 
replication and maintenance of the episomal EBV 
genome. EBNA1 is significantly correlated with 
EZH2, SUZ12, and DNMT3B, indicating a potential 
role for EBNA1 in the global hypermethylation of 
NPC. 

Downregulated genes induced by promoter 
hypermethylation 

Hypermethylation in gene promoters is a 
well-known mechanism for the silencing of TSGs. We 
found 56 hypermethylated and downregulated genes 
in NPC (Supplementary Table 2). PPI data from 
PICKLE were used to investigate the interactions of 
these 56 genes and other genes. Functional 

 

 
Figure 2. Characteristics of consensus DEGs. A. Venn diagram of DEGs identified from each dataset; “up” means upregulated DEGs, “down” means downregulated DEGs. 
B. Functional enrichment of consensus DEGs. C. Heatmap of top-ranked upregulated and downregulated DEGs. D. DCLs of PAX5 in cancer. 
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enrichment analysis of all genes in the PPI network 
showed that they were enriched in the following 
immune-related pathways: “T cell receptor signaling 
pathway”, “Natural killer cell mediated cytotoxicity”, 
“Epstein-Barr virus infection”, and “TNF signaling 
pathway” (Supplementary Table 4). 

 

Table 2. Seven downregulated hypermethylated tumor 
suppressor genes in NPC 

Gene Transcriptional factor TF-domain EMT-related Comments* 
SCUBE2 NO - Yes Novel 
HOPX YES Homeodomain - Known 
IRF8 YES IRF Yes Known 
PRKCB YES Unknown - Novel 
IKZF1 YES C2H2 ZF - Novel 
MAP4K1 NO - - Novel 
SHISA3 NO - - Known 
*Novel: not reported in previous study. Known: validated by other studies. 

 
 
Among the 56 hypermethylated and 

downregulated genes, there were seven TSGs (Table 
2). These silenced TSGs are important for the 
carcinogenesis of NPC. Previous studies have 
reported that hypermethylation of HOPX, IRF8, and 
SHISA3 caused downregulation of gene expression 
and promoted the metastasis of NPC [27-29]. 
Although the roles of another four genes (SCUBE2, 
PRKCB, IKZF1, and MAP4K1) in NPC were not 
known, their functions were reported in other cancer 
types. SCUBE2 is silenced by CpG island hyper-
methylation in breast cancer, and its activation could 
inhibit cancer cell migration and invasion through the 
reversal of EMT [30]. Transcription factor IKZF1 is a 

critical regulator of lymphoid differentiation and its 
encoding protein Ikaros regulates the development 
and function of the immune system [31]. PRKCB and 
MAP4K1 are kinases and participate in many 
signaling pathways. 

To better understand the biological role of the 56 
hypermethylated and downregulated genes in cancer, 
we used data from TCGA to investigate their 
expression changes and relationship with survival 
(Figure 4A). We found that most of the 56 genes were 
downregulated in other cancers, especially in head- 
neck squamous cell carcinoma (HNSC). SCARA5, 
MAOB, MAP6, SHISA3, USP44, CH25H, TOX, and 
PRKCB were downregulated in at least 10 types of 
cancer. Expression of some genes tended to positively 
correlate with overall survival (hazard ratio <1, 
p<0.05). The pan cancer analysis indicates the 
potential functional roles of these genes in NPC. 

PRKCB is both tumor suppressor gene and 
transcriptional factor and higher PRKCB expression 
was associated with longer overall survival in HNSC 
(Figure 4B). To validate the relationship between 
expression of gene and methylation of its promoter in 
NPC, we examined the expression levels of PRKCB 
before and after treatment with the demethylating 
drug DAC using human nasal epithelial cells 
(hNEpC) and NPC cell line C666-1 (see Methods). 
qRT-PCR revealed that the mRNA level of PRKCB 
was significantly lower in NPC cell line C666-1 than 
hNEPC. After DAC treatment, the expression level of 
PRKCB statistically increased in C666-1 (p<0.001) 
(Figure 4C), which suggested PRKCB downregulation 
in NPC was due to its promoter hypermethylation. 

 

 
Figure 3. Ectopic expression of hypermethylation-associated genes and their association with EBV infection. A. Upregulated genes of DNA methyltransferase 
and PcG proteins in NPC. B. Significantly positively correlated gene pairs between actively expressed EBV genes and epigenetic regulator genes. Human epigenetic regulator 
genes were italicized and shown in ellipse while EBV genes were not italicized and shown in diamond. 
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Figure 4. Pan-cancer expression and survival analysis of 56 hypermethylated downregulated genes. A. Pan-cancer expression and survival analysis of 56 
hypermethylated downregulated genes. B. Higher PRKCB expression was associated with longer overall survival in HNSC. C. PRKCB down-expressed in NPC cell line and PRKCB 
expression was upregulated after DAC treatment. 

 

Oncogenes regulated by hypermethylated 
downregulated miRNAs through MTIs 

We found twelve miRNAs whose promoters 
were hypermethylated in NPC in both methylation 
datasets. To check whether hypermethylation in the 
miRNA promoters could lead to decreased 
expression, we analyzed three miRNA expression 
datasets with more than 50 patients: GSE32960, 
GSE36682, and GSE70970 (Table 1). Eight of the 
twelve hypermethylated miRNAs showed 
significantly lower expression in NPC than in normal 
tissue in at least one of the expression datasets 
(Supplementary Table 5). 

Pan-cancer analysis showed that MIR129-2, 
MIR149, MIR152, MIR150, MIR34B, and MIR34C were 
downregulated in at least four types of cancer, and 
MIR150 had a protective role against death in most 
types of cancer (Figure 5A). Seven miRNAs 

(MIR129-2, MIR149, MIR152, MIR137, MIR150, 
MIR34B, and MIR34C) have been reported as tumor 
suppressors in many types of cancer. Upregulation of 
the miR-34 family resulted in apoptosis and cell-cycle 
arrest through targeting p53 [32, 33]. MIR152 and 
MIR137 inhibited cell proliferation, migration, and 
invasion in human cancers [34-37]. Downregulation of 
MIR129-2 by promoter hypermethylation induced 
breast cancer cell proliferation and apoptosis [38]. 
MIR149 plays an important part in tumorigenesis and 
tumor progression, and its downregulation promoted 
the metastatic dissemination of tumor cells by 
supporting aberrant Rac activation in breast cancer 
[39]. Survival analysis of 312 NPC patients from 
GSE32960 showed that patients with higher MIR150, 
MIR137, or MIR152 had a better survival rate (log 
rank test, p<0.05, data not shown), suggesting that 
they also act as tumor suppressors in NPC. 
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Figure 5. Oncogenes regulated by hypermethylated downregulated miRNAs through MTIs. A. Pan-cancer expression and survival analysis of 12 hypermethylated 
miRNAs. B. Regulation network of hypermethylated miRNAs and their targeted upregulated oncogenes. 

 
Next, we explored the effects of 12 

hypermethylated miRNAs on their target genes. As 
miRNAs generally repress gene expression, our 
hypothesis was that hypermethylation of a miRNA 
promoter would reduce its expression and thus 
increase the expression of its target genes. We found 
181 MTIs between the 12 miRNAs and 128 
over-expressed target genes (Supplementary Table 6). 
Functional analysis of 128 target genes showed 
enrichment in the following cancer signaling 
pathways: “cell cycle”, “PI3K-Akt signaling 
pathway”, and “p53 signaling pathway”. 
Interestingly, PDL1 was highly expressed in NPC and 
regulated by hypermethylated MIR152 and MIR34b, 
indicating the potential for immunotherapy using 
agents mimicking miR-152 or miR-34 to inhibit PD-L1 
and enhance T cell proliferation and effector 
cytokines. 

Among the 128 over-expressed target genes, 25 
were oncogenes, forming a miRNA-oncogene 
network with 43 links (Figure 5B). Several oncogenes 
were regulated by multiple miRNAs. Oncogenes 
CCND1 and CDKN1A and transcription factor 
Homeobox C8 (HOXC8) were regulated by four 
miRNAs. Ectopic expression of HOXC8 can modulate 
NPC cell growth in vitro and in vivo, and EBV gene 
LMP1 represses HOXC8 [40]. Epigenetic regulator 
EZH2 was regulated by tumor suppressor MIR150 

and MIR137. Transcription factor SOX4 was over- 
expressed in all expression datasets and regulated by 
MIR129 and MIR212. The expression of MIR212 has 
been reported to be decreased in NPC tissues and 
cells, and its overexpression could inhibit the 
metastasis of nasopharyngeal carcinoma by targeting 
SOX4 [41]; patients with higher expression levels of 
SOX4 had poorer survival rates [42]. 

Discussion 
NPC is poorly understood at the genetic level, 

and there is an urgent need for more efficient 
approaches such as targeted therapy and 
immunotherapy. There have been few studies of the 
genomic changes in NPC. Lin et al. in 2014 found that 
enrichment of genetic lesions in NPC affected several 
important cellular processes and pathways, including 
chromatin modification, ERBB-PI3K signaling, and 
autophagy machinery [43]. Li et al. in 2017 also 
identified NF-κB pathway-activating mutations 
during cancer pathogenesis [44]. Different subtypes of 
NPC harbored different genomic alterations, and a 
high frequency of IHD2 mutations was detected in 
undifferentiated NPC [45]. However, a 
comprehensive and systemic study of gene expression 
and epigenetic changes was still lacking; this will be 
helpful to better understand how cancer evolves and 
find candidate biomarkers for NPC. 
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In our work, through integrating multiple types 
of datasets using bioinformatics analysis, we 
identified reliable consensus DEGs. Considering the 
difference in detectable genes among different 
platforms, we selected not only recurrent DEGs but 
also the top genes with markedly differential 
expression in only one study using the RRA method. 

Furthermore, we investigated the interaction 
between DEGs using differential co-expression 
analysis, and found that the majority of DCGs were 
downregulated and tended to lose association in 
cancer; 98% of DCPs that lost positive correlations 
with PAX5 were upregulated, whereas 85% of DCPs 
that lost negative correlations were downregulated 
(Supplementary Figure 1B). This suggested that 
owing to lost associations, downregulated TSG PAX5 
lost regulation of its target genes, and some 
mis-regulated oncogenes were overexpressed. 

NPC is distinguished by differences in immune 
cell genes, and both tumor genetics and EBV infection 
influence the tumor microenvironment [3]. 
Upregulated genes of DNA methyltransferase and 
PcG proteins were co-expressed with actively 
expressed EBV genes, especially EBNA1, suggesting 
EBV interacts with the host genome and affects host 
genome methylation, thereby causing NPC. 

Combining epigenetic data, we found DEGs 
regulated by aberrant methylation in gene promoter 
regions or DM miRNAs. 7 downregulated TSGs with 
aberrant hypermethylation in promoters and 43 
upregulated oncogenes regulated by hyper-
methylated miRNAs were potential biomarkers and 
therapeutic targets for the precise diagnosis and 
treatment of NPC. Our work did not analyze survival 
rates and prognoses owing to the unavailability of 
clinical data; however, pan-cancer analysis of 14 
cancers in TCGA showed that hypermethylated and 
downregulated MAP4K1, PRKCB, IKZF1, MAP4K1, 
and SHISA3 were associated with longer overall 
survival in HNSC and other cancers. Furthermore, 
our experimental results validated that PRKCB 
downregulation in NPC was caused by its promoter 
hypermethylation. Dysregulated transcription factor 
PRKCB could be an appropriate target for the 
development of anticancer drug [46]. 

Conclusion 
Through comprehensive integrative analysis of 

different types of data, we have shed more light on 
the molecular mechanism of carcinogenesis in NPC 
and provided disease biomarkers for NPC and the 
hypermethylation of PRKCB could be a novel and 
promising diagnosis marker. 
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