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Abstract 

Abnormal glycolysis is one of the hallmarks of cancer and plays an important role in its development. This study 
was devoted to identify glycolysis related genes as prognostic biomarkers for non-small cell lung cancer 
(NSCLC). The mRNA expression profile and clinical follow-up data were obtained using The Cancer Genome 
Atlas (TCGA) database. The validation set was obtained by bootstrap method of random repeated sampling. A 
total of 200 glycolysis-related genes were obtained from Gene Set Enrichment Analysis (GSEA) and 46 genes 
were significantly associated with overall survival (OS). Five genes (PKP2, LDHA, HMMR, COL5A1 and 
B3GNT3) were eventually identified to calculate risk score of NSCLC patients. 
The univariate and multivariate Cox regression analysis indicated that the risk score was an independent 
prognostic factor (training set: HR=2.126, 95% CI [1.605, 2.815], p<0.001; validation set: HR=2.298, 95%CI 
[1.450, 3.640], p<0.001). Patients assigned to the high-risk group were associated with poor OS compared with 
patients in the low-risk group (training set: P=7.946e-06; validation set: P=6.368e-07). Receiver operating 
characteristic (ROC) curve and stratification analysis also demonstrated the potential prognostic performance. 
In conclusion, we constructed a novel glycolysis related risk signature which might contribute to predicting the 
prognosis of NSCLC. 
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Introduction 
Lung cancer is one of the leading causes of 

cancer-related death [1], especially in developed 
countries, where it has ascended to number one in 
cancer deaths [2]. NSCLC accounts for approximately 
80% of all lung cancer cases [3]. Despite progress in 
treatment, the prognosis of NSCLC remains poor, due 
to the lack of early identification markers [4]. To date, 
the prognosis mainly depends on histopathologic 
diagnosis and tumor staging [5]. However, this has 
limitations as patients with the same degree of 
progression will show distinct outcomes due to 
individual differences [6]. Some evidence has shown 
that the discovery and application of molecular 
biomarkers can provide prognostic value [7-10]. 
Therefore, new diagnosis markers must be urgently 
identified for assessing prognosis of NSCLC. 

Glycolysis is one of the earliest evidence of 

metabolic changes in tumor [11,12]. Even in 
oxygenated circumstances, the glycolysis activity of 
tumor cells is also active. This metabolic characteristic 
is known as Warburg effect, which shows high 
glucose uptake, active glycolysis and large amounts of 
lactic acid production [13,14]. Increased glycolysis 
satisfies the increasing proliferation of cancer cells 
[15]. In addition, studies have shown that enhanced 
glucose metabolism could alter apoptosis pathway in 
cancer cells [16]. The oncogenic regulation of 
glycolysis provides us with new explanation for 
tumor progression [17]. Many studies have found that 
glycolysis changes take an important role in cancer 
progression. For example, tumor glycolysis promotes 
immune evasion by participating in immuno-
suppressive networks [18]. The tumor suppressor 
protein p53 has a serious effect on glucose metabolic 
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reprogramming [19]. Glucose transporter GLUT1 is 
involved in the uptake of glucose and has 
significantly lower expression in highly differentiated 
endometrial carcinoma, than in poorly differentiated 
tumors [20]. However, the concrete role of glycolysis 
in tumorigenesis of NSCLC is poorly known. Ma et al. 
found that NSCLC harboring EML4-ALK 
rearrangements displayed higher glucose metabolism 
[21]. Li et al. reported that the anaerobic metabolism 
offers new targets and orientation for tumors, 
especially lung cancer [22]. Further work is needed to 
demonstrate the significance of glycolysis gene 
expression signatures in NSCLC. 

In the present study, transcriptome profiling was 
downloaded from TCGA database and 200 mRNAs 
were identified that significantly relate to glycolysis. 
Furthermore, a risk predictive signature including 
five genes was conducted to calculate the risk of 
NSCLC patients and further successfully validated in 
the validation set. Univariate and multivariate Cox 
regression analysis revealed the signature was an 
independent predictive factor for OS. The risk score 
also performed better than other clinical parameters 
in prognosis. This study might present a new thinking 
for assessing the prognosis of NSCLC. 

Materials and Methods 
Data collection and processing 

Detailed information of NSCLC patients’ 
containing transcriptome profiling and clinical 
follow-up data, were downloaded from TCGA 
database on April 2, 2020. Patients meeting the 
following criteria were excluded: 1) patient had no 
survival time or survival status, 2) patient had clinical 
information but no gene expression data. There were 
935 patients included in this study. The detailed 
clinical characteristics are summarized in Table 1. 

Gene set enrichment analysis 
GSEA analysis was used to explore whether the 

selected gene sets were associated with downloaded 
transcriptome data [23]. We determined gene sets for 
further investigation at normalized p values (p<0.05) 
and normalized enrich score (|NES|≥1). 

Establishment and validation of glycolysis 
related gene signature 

We intersected glycolysis related genes and their 
expression in TCGA for matching. Differentially 
expressed glycolysis related genes was obtained using 
limma R package with |log2 FC| ≥1.5 and false 
discovery rate (FDR) <0.05 [24]. Then differentially 
expressed genes combined with TCGA clinical data 
for screening prognostic genes. We identified 
differentially glycolysis related genes whose 

expression was significantly associated with OS by 
univariate Cox regression analysis (P<0.05). Signature 
genes were ultimately determined by multivariate 
Cox regression analysis. The prognostic signature for 
NSCLC patients was established. Risk score = 
([Coefficient mRNA1] × [Expression of mRNA1]) + 
([Coefficient mRNA2] × [Expression of mRNA2]) + ⋯ 
+ ([Coefficient mRNAn] × [Expression of mRNAn]). 
Independent analyses were applied to verify the 
independence of the signature. Then NSCLC patients 
were divided into two groups based on a median risk 
score. The Kaplan-Meier curve was visualized using 
the survival R package and survminer R package. P < 
0.05 was regarded as statistically significant. Survival 
ROC R package was used to compare the ROC areas. 
The validation set was acquired by bootstrap method 
[25]. Furthermore, stratification analysis also verified 
the prognostic implication of the signature. 

 

Table 1. Clinical characteristics of included patients with 
non-small cell lung cancer (NSCLC) 

Clinical characteristic N Percentage (%) 
Age (years)   
≤65 407 43.5 
>65 528 56.5 
Gender   
Male 561 60.0 
Female 374 40.0 
TNM stage   
I-II 746 79.8 
III-IV 189 20.2 
T stage   
T1-2 785 84.0 
T3-4 150 16.0 
N stage   
N0 599 64.1 
N1-3 336 35.9 
M stage   
M0 697 74.5 
M1-3 238 25.5 

 

Prognostic genes expression and alteration 
were shown by online databases 

In our study, five prognostic genes involved in 
the signature were all upregulated in NSCLC. The 
gene expression was further validated in the 
Oncomine database and Tumor Immune Estimation 
Resource (TIMER) database [26,27]. The alternation of 
the signature genes was shown by cBioportal for 
Cancer Genomics [28,29]. 

Results 
Establishment a prognostic signature of five 
glycolysis related genes in NSCLC 

Clinical information and corresponding gene 
expression data from 935 NSCLC patients were 
obtained from TCGA. GSEA results showed gene sets 
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which were significantly enriched, with normalized 
p-values <0.05 and NES ≥1, including glycolysis, 
oxidative phosphorylation, DNA repair, 
inflammatory response, mitotic spindle, bile acid 
metabolism, E2F targets and G2M checkpoint (Table 
2, Figure 1). We selected GLYCOLYSIS (P = 0.000, 
NES =2.46) for further analysis. Total 200 glycolysis 
related genes were obtained from GSEA, of which 46 
genes were considered statistically significant (FDR < 
0.05, |log2FC)| ≥1.5). The heatmap (Figure 2a) and 
boxplot (Figure 2b) showed the expression of these 
genes. A total of 10 genes expression pattern had a 
significant association with OS (P < 0.05) using 
univariate COX regression analysis. Subsequently, 5 
of 10 genes were identified as independent prognosis 
genes to establish model using multivariate COX 
regression analysis. Finally, five prognosis genes and 
the expression coefficient of each gene were obtained, 
and a gene-based prognostic signature was 
constructed for calculating risk score of each NSCLC 
patient. The five genes were LDHA, HMMR, 
B3GNT3, PKP2, and COL5A1 (Table 3). The risk score 
= (0.2170 × Expression of LDHA) + (0.1200 × 
expression of HMMR) + (0.1088 × expression of 
B3GNT3) + (0.0960 × expression of PKP2) + (0.1344 × 
expression of COL5A1). The heatmap displayed the 
expression of five signature genes (Figure 3a). The five 
genes were all significantly up-regulated (Figure 
3b-3f). Based on the median risk score, the NSCLC 
patients were divided into high- and low-risk groups. 
Patients of high-risk group tended to have a shorter 
survival time than those in low-risk group 
(P=7.946e-06) (Figure 3g). The risk score and survival 
state distribution were also visualized (Figure 3h, 3i). 
Furthermore, we used cox regression analysis to 
identify the independence of the risk score. Univariate 
independent prognostic analysis illustrated that TNM 
stage, T stage, N stage and risk score have statistical 
significance with OS (P<0.001) (Figure 4a). 
Multivariate independent prognostic analysis 
illustrated that risk score was an independent 
prognostic factor (P<0.001) (Figure 4b). Thus, our 
results confirmed that the glycolysis-related gene 
signature could be used as an independent prognostic 
factor in clinical practice (Table 4). 

Clinical correlation analysis 
ROC curves of OS helped to assess the prognosis 

significance of gene signature with AUC of 0.649, 
whereas lower scores were shown in other clinical 
parameters, such as age (AUC = 0.547), gender (AUC 
= 0.551), TNM stage (AUC = 0.634), T stage (AUC = 
0.629), N stage (AUC = 0.579) and M stage (AUC = 
0.501) (Figure 5a). The connection between signature 
and other clinical pathological factors was also used 
to demonstrate prognostic performance. Patients 
grouped by age (≤65, >65) or gender (male, female) or 
TNM stage (I-II, III-IV). Risk score was found to be 
significantly associated with age (p = 0.027) and TNM 
stage (p <0.001), but not with gender (Figure 5b-d). 
Additionally, these five genes in signature with 
showed substantial difference among some clinical 
parameters. Differential expression of HMMR 
showed across different gender, N stage and TNM 
stage (Figure 5e-g). The differential expression of 
PKP2 exhibited across age and gender (Figure 5h, 5i). 
B3GNT3 was expressed differently across different 
gender and TNM stage (Figure 5j, 5k). The differential 
expression of LDHA was found in N stage and TNM 
stage (Figure 5l, 5m). 

Stratification analysis 
Patients were grouped in the same manner as the 

previous step for stratification analysis where 
high-risk patients with poorer OS were grouped by 
age, no matter if they were older or younger than 65 
(Figure 6a, 6b). The same was true of TNM stage 
(Figure 6e, 6f). Therefore, the potential associations 
between risk score with patients’ age and TNM stage 
were statistically significant. However, there was no 
significant difference in gender stratification (Figure 
6c, 6d). 

 

Table 2. Gene sets enriched in non-small cell lung cancer 
(NSCLC) 

GS follow link to MSigDB SIZE NES NOM p-value Rank at MAX 
Glycolysis 200 2.46 0 9022 
Oxidative phosphorylation 200 1.84 0.034 8207 
DNA repair 150 2.16 0 8719 
Inflammatory response 200 -1.88 0.024 6162 
Mitotic spindle 198 1.81 0.014 5517 
Bile acid metabolism 112 -1.68 0.015 6354 
E2F targets 198 2.18 0 4960 
G2M checkpoint 196 2.18 0 7277 

 

Table 3. The information of five mRNAs involved in the signature 

mRNA Ensemble ID (ENSG0000) Location  coef  HR HR.95L HR.95H  p-value 
LDHA 0134333 Chr11: 18, 394, 389-18, 408, 425 0.21695 1.24228 1.05311 1.46544 0.01006 
B3GNT3 0179913 Chr19: 17, 794, 828-17, 813, 576 0.10884 1.11498 1.03914 1.19636 0.00246 
PKP2 0057294 Chr12: 32, 790, 745-32, 896, 846 0.09602 1.10067 0.98912 1.22481 0.07853 
COL5A1 0130635 Chr9: 134, 641, 774-134, 844, 843 0.13439 1.14384 1.05674 1.23811 0.00088 
HMMR 0072571 Chr5: 163, 460, 203-163, 491, 945 0.12004 1.12754 0.96947 1.31138 0.11932 
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Figure 1. Gene sets significantly enriched in the NSCLC using GSEA. This includes the following: glycolysis, oxidative phosphorylation, DNA repair, inflammatory 
response, mitotic spindle, bile acid metabolism, E2F targets, G2M checkpoint. 

 

Prognostic significance in validation set 
Internal validation was conducted using the 

bootstrapping method. The original dataset was acted 
as training set. The validation set was performed as 
described above, including survival analysis, risk 
analysis, independent prognosis analysis and ROC 
curve drawing. The AUC of ROC was 0.631, which 
showed that this model has superior accuracy (Figure 
7a). The OS was notably shorter in high-risk group 
than in the low-risk group (P-value=6.368e-07; Figure 
7b). Besides, univariate and multivariate regression 
analysis were performed on the validation set to 

demonstrate the independent prognostic significance 
of the signature (Figure 4c, 4d). The heatmap, risk 
score curve and survival status data in validation set 
were shown in Figure 7c-e. The prognostic 
significance of our signature was further verified in 
the validation set. 

External validation using online database 
We analyzed the alterations of the five genes in 

1144 NSCLC samples in the cBioPortal for Cancer 
Genomics. The results showed that the genes in 
signature were mutated in 191 (17%) of the sequenced 
cases. As shown in Figure 8b.The five genes in the 
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signature were all up-regulated in NSCLC.This is also 
confirmed in the Oncomine database (Figure 8a) and 
the Timer database (Figure 9). 

Discussion 
NSCLC remains a major challenge for global 

public health, with incidence and mortality still 
increasing in many countries. Although great 
progress has been made, the underlying molecular 
pathogenesis of NSCLC is still unclear. Considering 
the poor prognosis of NSCLC due to its later 
diagnosis, identification reliable prognostic markers 

and establishment of more accurate prognostic 
models are urgently needed. 

 

Table 4. Univariate and multivariate analysis for each clinical 
feature 

Clinical feature Univariate analysis P Multivariate analysis P 
HR 95%CI HR 95%CI 

Age 1.012 0.998-1.026 0.083 1.017 1.003-1.032 0.015 
Gender 1.11 0.862-1.43 0.417 1.108 0.859-1.428 0.430 
Stage 1.452 1.282-1.644 <0.001 1.253 0.93-1.686 0.138 
T 1.411 1.216-1.636 <0.001 1.138 0.94-1.378 0.184 
M 1.835 1.088-3.095 0.023 1.115 0.505-2.46 0.787 
N 1.438 1.239-1.669 <0.001 1.127 0.869-1.463 0.368 
Risk score 2.383 1.810-3.137 <0.001 2.126 1.605-2.815 <0.001 

 

 
Figure 2. Differentially expressed glycolysis related genes. The red color indicates the higher gene expression value while the green color indicates the lower gene 
expression value. N indicates non-tumor tissues. T indicates tumor tissues. a) Heatmap; and, b) boxplot. 
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Figure 3. The expression patterns of five genes in the signature. a) Heatmap of five genes expression profiles. b-f) Different expression of five genes in the normal tissue 
and tumor tissue based on TCGA (*** represents P<0.001). g) Kaplan-Meier curve for NSCLC patients with high/low risk. h) Risk score distribution. I) Survival status 
distribution. 

 
Figure 4. The independent prognostic significance of the signature was demonstrated by univariate and multivariate regression analysis. 

 
In recent years, the glycolysis mechanism in 

various diseases has caused wide attention [30-32]. 
Growing evidence show that glycolysis key genes 
play an important role in regulating cancer cell 
metabolism and may be a potential therapeutic option 
[33,34]. In lung cancer, glucose metabolism feature 
has also been further elucidated [35-37]. For instance, 
significantly upregulated OTUB2 in NSCLC 
stimulated the Warburg effect and was closely related 

to metastasis, advanced tumor stages, poor survival, 
and recurrence [38]. Transcription factor BACH1 
stimulates glycolysis-dependent lung cancer 
metastasis by increasing glucose uptake, glycolysis 
rates, and lactate secretion [39]. 

In this study, we established a new predictive 
signature including five glycolysis related genes. 
Univariate and multivariate cox regression analysis 
determined the independent prognostic effect for 
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predicting the risk of NSCLC. ROC curve and 
stratification analysis also proved the prognostic 
significance. More importantly, we established a 
validation set to verify the reliability of this signature. 
Similar studies have been published before. Zhang et 

al. and Liu et al. respectively identified glycolysis- 
related gene signature for predicting survival of lung 
adenocarcinoma patients [40,41]. However, their 
signatures were not validated internally, which is the 
advantage of this study. 
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Figure 5. Clinical correlation analysis. a) The ROC analysis of OS for the signature and various clinical parameters. b-d) The statistical connection between signature and 
different clinical pathological factors. e-m) Five genes in signature with different expression among some clinical parameters. 

 

 
Figure 6. Patients were grouped by different pathological parameters for stratification analysis. a-b) Age; c-d) gender; and, e-f) stage. 
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Figure 7. Verification of the prognostic signature with the validation set. a) ROC curve; b) Kaplan-Meier curve; c) Heatmap of five genes expression profiles in 
validation set; d) Risk score distribution; e) Survival status distribution. 
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Figure 8. The expression and alterations of the five prognostic genes. a. The expression profiles of the five genes in the Oncomine database. b. The alteration 
proportion for the five genes in 1144 clinical samples of non-small cell lung cancer in the cBioPortal database. 

 
For the five signature genes, there have been 

some studies on its role in cancer. LDHA, a key 
enzyme which catalyzes the formation of lactic acid 
from pyruvic acid, is a key gene in aerobic glycolysis 
and is widely seen as a therapeutic target for cancer 
[42]. Phosphorylated LDHA could promote head and 
neck cancer and breast cancer cells invasion and 
metastasis [43]. Besides, LDHA inhibitors can be used 
together with other chemotherapy drugs to play a 
synergistic role in anti-tumor [44]. HMMR plays an 
important role in neural development by correcting 
spindle position. HMMR knockout mice suffer 
defective neural development [45]. Furthermore, the 
overexpression of HMMR in numerous tumor types is 
also associated with tumor relapse and propagation. 
HMMR also supports the cancer stem cell properties 
in gastric cancer and glioblastoma [46,47]. HMMR 
might be a potential prognostic marker and 
therapeutic target [48,49]. Some studies have 
suggested that the B3GNT3 were significantly 
overexpressed in various tumors [50,51]. The 

expression level of B3GNT3 in patients with NSCLC 
or early-stage cervical cancer was associated with 
unfavourable clinicopathological parameters. These 
patients with high B3GNT3 expression had a shorter 
OS and disease-free survival (DFS) compared with 
those with low expression [52,53]. In contrast, 
B3GNT3 predicts a favorable cancer behavior 
of neuroblastoma [54]. In addition, down-regulation 
of B3GNT3 can enhance cytotoxic T-cell-mediated 
anti-tumor immunity in triple-negative breast cancer 
[55]. COL5A1 is collagen family member that encodes 
an alpha chain for one of the low abundance fibrillar 
collagens. Upregulated COL5A1 indicated poor 
prognosis in breast cancer, clear cell renal cell 
carcinoma, lung adenocarcinoma and tongue 
squamous cell carcinoma [56-59]. PKP2, a member of 
the arm-repeat protein family, is important for the 
assembly of junctional proteins. But as far as we 
know, the mechanism of PKP2 in cancer is still 
unclear. 
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Figure 9. Five signature genes expression data from TIMER database. 
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The risk score was based on mRNA expression 
which could be easily acquired. The signature can 
effectively evaluate the prognosis of NSCLC patients 
and may be a complement to CT and pathological 
methods. Despite practical independent prognosis of 
our results, our study leaves much to be desired. First, 
our study only involved 200 glycolysis related genes, 
not the entire mRNA expression profiles. Second, 
validating the signature in a larger independent 
external set is necessary. Third, cell and animal 
experiments are needed to clarify specific mechanism 
of the five mRNAs in the regulation of tumor 
glycolysis. Nevertheless, the present study provides a 
novel suggestion for predicting prognosis of NSCLC 
patients from the perspective of glycolysis. 

Conclusion 
In summary, we recognized five glycolysis 

related genes associated with OS of NSCLC patients, 
and constructed a risk score signature to make a 
survival prediction. Our risk score model could 
distinguish NSCLC patients with different survival 
outcomes, which may contribute to the clinical 
decision of individualized treatment program. 
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