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Abstract 

Background: Pancreatic ductal adenocarcinoma (PDAC) is difficult to diagnose and many efforts have 
been made to evaluate EVs-derived RNAs as biomarkers to predict PDAC. However, lack of robust 
internal references largely limited their clinical application. Here we proposed an RNA ratio-based, 
normalizer-free algorithm to quantitate EVs-derived RNAs in PDAC.  
Methods: Differentially expressed RNAs in the training group were identified using “limma” package. 
The ratio of any two candidate RNAs in the same sample was calculated and used as a new biomarker. 
LASSO regression was performed to build prediction models based on those RNA ratios. RNA-seq data 
of 116 plasma samples and RT-qPCR data of 111 plasma samples were used for internal and external 
validation, separately. Three algorithms (lasso regression, logistic regression, and SVM) were compared 
to improve the performance of this RNA signature.  
Results: We developed an RNA-ratio based prediction model which comprised eight EVs-derived 
RNAs, including FBXO7, MORF4L1, DDX17, TALDO1, AHNAK, TUBA1B, CD44, and SETD3. This 
model could well differentiate PDAC patients with a minimal AUC of 0.86 in internal verification using 
testing group. External validation using RT-qPCR data also exhibited a good classifier ability with an AUC 
of 0.89 when distinguishing PDAC from healthy controls.  
Conclusion: We’ve developed a qPCR-based, normalizer-free circulating EVs RNA classifier, which 
could well distinguish PDAC patients from noncancerous controls. 
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Introduction 
Pancreatic cancer (PC) is predicted to be the 

second most common cause of cancer-related death 
around the world by 2030[1]. Pancreatic ductal 
adenocarcinoma (PDAC) is the most common subtype 
of PC. More than 85% of PC confirmed to be PDAC 
after histological confirmation[2]. PDAC has 
properties of early metastatic potential and resistance 
to existing treatment such as chemotherapy or 
radiotherapy, which leads to its poor prognosis and 

high mortality. The 5-year survival rate of PDAC is 
less than 8%[3][4]. Thus, screening tools which could 
identify PDAC from general population in its 
resectable stage are crucial and urgently needed. 
Traditional biomarkers such as CA-199 and CEA have 
poor sensitivity and specificity, resulting in 
misdiagnosis. Emerging biomarkers such as plasma 
miRNAs, plasma lncRNAs, circulation tumor DNAs, 
and plasma extracellular vesicles (EVs) exhibited 

 
Ivyspring  

International Publisher 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

1446 

better accuracy in detecting various types of 
cancer[4][5].  

EVs are membrane-encapsulated heterogenous 
vesicles delivering various macromolecules including 
proteins, miRNAs, lncRNAs, mRNAs, or lipids 
between different microenvironments, resulting in 
initiation of various biological processes due to their 
different cargoes[6]. Tumor cells produce a large 
number of EVs, and EVs cargoes play important roles 
in tumorigenesis, angiogenesis, metastasis, and other 
pathological processes. Tumor-specific expression 
patterns and nonnegligible biological functions make 
EVs one of the excellent biomarker sources. Our 
previous study has also proved that plasma 
EVs-derived RNAs provided higher classifier ability 
than RNAs directly isolated from plasma and are 
more suitable to be biomarkers[7]. 

There are several methods could be used to 
detect EVs-derived RNAs such as next generation 
sequencing (NGS), RNA chip, and RT-qPCR. NGS 
and RNA chip are relatively accurate but not suitable 
for large-scale clinical application because of their 
high-cost. Real-time quantitative PCR (RT-qPCR) is an 
alternative way to detect RNAs which is more 
cost-effective than omics tools. However, the absence 
of a well-established normalizer for plasma EVs 
derived RNA quantification largely hampered the 
development of qPCR-based assays, and resulted in 
unfavorable data consistency and reproducibility 
across different studies[8–13].  

To solve this problem, here we proposed a 
ratio-based normalization for circulating EVs derived 
long RNA data. The ratio of any two candidate RNAs 
in the same sample was calculated and used as a new 
biomarker, and then the ratios were compared 
between different groups instead of a single RNA 
level. Considering the two RNAs in an RNA-pair are 
simultaneously measured under the same condition, 
their ratio could reflect the true difference among 
samples by canceling systematic biases. So instead of 
absolute quantification of a single RNA, we 
established a new scoring system based on 
RNA-pairs, which enables us to build a quantitative 
RNA classifier without an RNA internal reference.  

Materials and Methods 
Patients Cohorts 

Circulating EVs-derived long RNA NGS data 
from GSE133684[14] in GEO database were obtained 
for analysis. Clinical details of GSE133684 were 
shown in Table 1. GSE133684 was randomly divided 
into a training group and a testing group. Training 
group was used to establish RNA pair prediction 
model and testing group was used for internal 

validation. 111 receivers including PDAC patients, 
chronic pancreatitis patients (CP) and normal controls 
(NC) from Beijing Friendship Hospital were recruited 
for external validation of these prediction models. 
Inclusion criteria of patients in external validation 
group were (1) patients pathologically diagnosed 
PDAC or CP in Beijing Friendship Hospital during 
2018-1-1 to 2020-1-1; (2) patients agreed to attend this 
research and assigned the informed consent forms; (3) 
blood samples were available before surgery or 
treatment. Exclusion criteria were (1) other kinds of 
tumors were diagnosed in the same patient; (2) 
patients with IgG4-related disease or any other 
autoimmune disease were not proper to attend this 
study; (3) patients with severe inflammation or septic 
shock were not able to attend this study; (4) patients 
with severe coagulation dysfunction; (5) patients 
refused to attend this research. Clinical details of these 
subjects were also shown in Table 1. All participants 
had signed the informed consent, and this study was 
approved by the ethics committee of Beijing 
Friendship Hospital. Flowchart of this study was 
shown in Figure 1. 

 

Table 1. Clinical characteristics of enrolled patients 

 GSE133684 External validation samples 
 NC CP PDAC NC CP PDAC 
Number 117 100 284 27 40 44 
Age Range (y) 41-91 8-78 31-84 50-73 30-89 20-89 
Gender       
Male 71 73 167 12 26 22 
Female 46 27 117 15 14 22 
Serum CA19-9(U/ml) NA 2-1200 0.6-1200 NA 0.8-673.9 0.8-1972 
Clinical Stage       
I   59   10 
II   77   13 
III   42   7 
IV   106   11 

 

Differentially expressed RNA analysis and GO 
analysis 

For NGS data in training group, RNAs which 
TPM lower than 50 were excluded because of the 
difficulty in qPCR verification. Differentially 
expressed (DE) RNA analysis was performed to 
training group using “limma” package in R 3.5.2[15]. 
To shrink rang of DE RNAs, cut-off levels of DE RNAs 
were identified as |Log fold change| > 3 and adjusted 
p-value < 0.0001. Volcano plot and heatmap were also 
performed to show the expression differences 
between PDAC patients and healthy controls. 
Moreover, to better understand the biological 
processes (BP), cellular components (CC) and 
molecular features (MF) of these DE RNAs, Gene 
Ontology (GO) analysis was also performed by using 
“clusterProfiler” package in R[16].  
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Figure 1. Flowchart of study. Establishment of a new scoring system based on RNA-pairs. Briefly, the GSE133684 dataset was randomly divided into a training group and a 
testing group. DEGs were identified and constructed RNA-pairs. PDAC prediction models were built based on 2-4 RNA-pairs, and verified by both internal NGS data and 
external RT-qPCR data. 

 

RNA-pair matrix construction and prediction 
model construction 

RNA pair ratio was calculated from any two DE 
RNAs expression values in the same sample. 
Univariate logistic regression was subsequently 
performed for each RNA pair to roll out pairs not 
significantly associated with PDAC occurrence and 
constructed an RNA pair matrix of training group. 
Next, we used lasso regression to select variables from 
RNA pair matrix under 7-fold cross-validation by 
“glmnet” package in R. Prediction models enrolled 2, 
3, 4 RNA pairs were established by a step-wise 
variable selection process by controlling lambda 
values in lasso regression. Then, logistic prediction 
models, support vector machine (SVM) models and 
Lasso regression models for each of these RNA pair 
signatures were constructed by “glm” function, 
“e1071” package and “glmnet” package[17] in R, 
separately. Receiver operator characteristic (ROC) 
curves and area under the curve (AUC) of all these 
prediction models were calculated to evaluate their 

performance. 

Internal verification by NGS data in testing 
group 

Testing group of GSE133684 was used for 
internal verification of these models. ROC curves of 
these models were drawn by using “plotROC” 
package[18] and “ggplot2” package in R. AUC values 
of internal verification for each model were also 
calculated. 

EVs isolation 
This study isolated EVs of plasma samples of 111 

PDAC patients, CP patients and normal controls. 3 
mL plasma sample was collected from each subject. 
We performed ultracentrifugation (UC) method for 
EVs isolation. Firstly, we centrifugated plasma 
samples at 3000 × g for 15min after thawing at 37°C 
in order to remove cell debris. Then, we diluted 
supernatant of each sample by 7-fold volume of 
phosphate-buffered saline (PBS). Next we centrifuged 
the mix again at 13,000 × g for 30min and a 0.22μm 
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filter was applied in order to filter large vesicles. 
Then, a P50AT2-986 rotor (CP100NX; Hitachi, Brea, 
CA, USA) was used at 150,000 × g, 4°C for 4h to pellet 
EVs. Pellet was resuspended in PBS and centrifuged 
again at 150,000 × g 4°C for 2h. Finally, the EVs 
enriched fraction pellet was re-suspended in 100µL 
PBS.  

EV protein quantification  
Pierce BCA Protein Assay Kit (Thermo Scientific, 

Product No. 23,225) were used to quantify the protein 
concentration of EVs-enriched fractions following the 
manufacturer’s protocol. 10μL of each standard and 
samples were pipetted into 96-Well Plates. After 
mixture of 200μL of the WR to each well and shaking 
for 30 second on the shaker, plates were covered and 
incubated at 37°C for 30min. Then we measured their 
absorbance at 562nm on the plate reader. Finally, we 
build a standard curve and quantified EVs-enriched 
fraction samples. 

Nanoparticle tracking analysis (NTA) 
The ZetaView PMX 110 (Particle Metrix, 

Meerbusch, Germany) with 405 nm laser was applied 
to find out size and quantity of EVs in concentrations 
ranged 1x107 /mL to 1x109 /mL. We took a 60-second 
video with a frame rate of 30 frames/sec, and 
analyzed it by using NTA software (ZetaView 
8.02.28).  

Transmission electron microscopy (TEM) 
We next placed 20µL EVs enriched solution on a 

copper mesh for 10min in room temperature. Then, 
we contrasted solution with uranyloxalate solution 
for 1min after washed by sterile distilled water. The 
solution was subsequently dried for 2min under 
incandescent light. The copper mesh was then 
photographed under a TEM (JEOL-JEM1400, Tokyo, 
Japan).  

Western blot 
Special markers for extracellular vesicles have 

been previously reported. In the present study, we 
used a combination of two positive markers (CD63 
and TSG101) and one negative markers (calnexin) to 
characterize the exosomes we extracted. Rabbit 
polyclonal antibody CD63 (sc-5275, Santa Cruz, CA, 
USA), TSG101 (sc-13611, Santa Cruz, CA, USA) and 
calnexin (10427-2-AP, Promega, Madison, WI) were 
used in Western Blot procedures. The protein bands 
were detected using an enhanced chemiluminescence 
system (Bio-Rad, USA). 

RNA isolation and RT-qPCR validation 
Total RNA isolated was extracted and purified 

from plasma EVs using the miRNeasy Mini kit 

following the manufacturer’s protocol (No. 217004, 
Qiagen, Hilden, Germany). A total RNA was 
reverse-transcribed and cDNA was synthesized using 
PrimeScriptTM RT Master Mix (TAKARA RR036a). 
The amplification of cDNA was performed in 10-μL 
reaction system following the SYBRGREEN life assays 
manufacturer's instructions. Primer sequence was 
shown in Table S1. Expression ratios of any two of 
these RNAs were calculated separately and taken into 
prediction models. ROC curves were drawn by using 
“plotROC” package and “ggplot2” package. AUC 
values of external verification by RT-qPCR were also 
calculated. 

Statistical analysis 
All statistical analyses were calculated by R 

software (version 3.5.2; https://www.r-project.org/). 
DE RNAs were identified by “limma” package 
(version 3.38.3). ROC curves were graphed using 
“plotROC” package (version 2.2.1). Lasso regression 
was performed using “glmnet” package (version 
2.0-18). SVM were performed using e1071 package 
(version 1.7-2). All statistical significance was defined 
as P < 0.05. 

Results 
Differentially expressed RNA identification 

Samples in the GSE133684 dataset were 
randomly divided into two cohorts, and 287 
low-abundant RNAs with an average TPM lower than 
50 were excluded for the difficulty in qPCR 
quantification. With cut-off levels of |Log fold 
change| > 3 and adjusted p-value < 0.0001, 229 
differentially expressed RNAs were identified in the 
training cohort (Table S2). Volcano plot and heatmap 
of these DE RNAs were shown in Figure 2A and 2B, 
separately.  

GO analysis of differentially expressed RNAs 
GO analysis was performed in these 

differentially expressed RNAs by “clusterProfiler” 
package in R. We find that DE RNAs were 
significantly enriched in neutrophil related biological 
processes (BP) such as neutrophil activation and 
neutrophil mediated immunity (P < 0.001, Figure 2C, 
Figure S1A, 1B). CD44, NCKAP1L, and DOCK2 play 
important roles in these biological processes (Figure 
S1C). As for molecular functions (MF) of RNAs, we 
found that they were significantly enriched in actin 
binding and cell adhesion molecule binding (P < 
0.001, Figure 2D, Figure S1D, 1E). EEF2 and AHNAK 
participated in these GO terms (Figure S1F). 
Furthermore, we explored cellular component (CC) 
information of DE RNAs and found that they were 
mostly enriched in focal adhesion and cell-substrate 
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junction (P < 0.001, Figure S1G, 1H). CD44 and 
AHNAK played crucial roles in these GO terms 
(Figure S1I).  

RNA-pair matrix establishment and 
construction of prediction models 

We paired any two of 229 candidate RNAs and 
conducted an RNA-pair matrix containing 26106 
RNA-pairs. Among those RNA-pairs, 516 candidates 
achieved an AUC above 0.8 and were selected for the 
construction of prediction models. Lasso regression 
was applied in variable selection and three RNA-pair 
signatures were constructed by controlling lambda 
values in the regression (Figure 3A, Table 2, Figure 
S2A). Violin plot representing expression level 
between PDAC patients and healthy controls of these 
RNA-pair ratios were shown in Figure 3B-E. Ratios of 

these 4 RNA-pairs in healthy controls were 
significantly higher than those in PDAC patients (P < 
0.001). 

 

Table 2. RNA models establishing 

Gene-pair models RNA-pairs coefficient Lambda AUC 
2-RNA-pair model FBXO7/MORF4L1 -0.005 0.26 0.901 
 DDX17/TALDO1 -0.095   
3-RNA-pair model FBXO7/MORF4L1 -0.020 0.25 0.919 
 DDX17/TALDO1 -0.193   
 AHNAK/TUBA1B -0.002   
4-RNA-pair model FBXO7/MORF4L1 -0.037 0.24 0.935 
 DDX17/TALDO1 -0.277   
 AHNAK/TUBA1B -0.017   
 CD44/SETD3 -0.003   

 
 

 

 
Figure 2. DE RNAs identification and GO analysis. A. Volcano plot showing DE RNAs. DE RNAs were identified as |Log fold change| > 3 and adjusted p-value < 0.0001. 
Red dots represent up-regulated RNAs, and blue dots represent down-regulated RNAs. B. Heatmap of DE RNAs. C. Dot plot to show DE RNAs enriched biological processes. 
Neutrophil activation and neutrophil mediated immunity were significantly enriched. D. Dot plot to show DE RNAs enriched molecular function. Actin binding and cell adhesion 
molecule binding were significantly enriched. 
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Figure 3. Identification of EVs derived RNA pairs to detect PDAC. A. Lasso regression was applied in variable selection and constructed three RNA-pair based models 
with 2-4 RNA-pairs by controlling lambda values in the regression. B-E. Violin plot showing RNA ratios distribution and differences between PDAC and NC group. ***: P < 0.001. 

 

Internal validation of prediction models in the 
testing cohort 

NGS data from 116 samples were used for 
internal validation, and we constructed Lasso 
regression models, logistic models, and SVM models 
for internal validation of these signatures. For 2 RNA 
pair model, AUC values of Lasso regression 
algorithm, logistic algorithm, and SVM algorithm 
were 0.83, 0.85 and 0.79, separately (Figure 4A). For 3 
RNA pair model, AUC values of these 3 algorithms 
were 0.84, 0.91 and 0.90 (Figure 4B), separately. For 4 
RNA pair model, Logistic algorithm and algorithm 
model achieved the highest AUC value of 0.90 in 
distinguishing PDAC from normal controls (Figure 
4C).  

Characterization of EVs isolated from plasma 
In order to further evaluate the expression of 

EVs-derived RNAs in PDAC patients and 
non-cancerous individuals, we isolated EVs from 
plasma samples and characterized them according to 
the MISEV2018 guideline. We obtained images of oval 
or bowl-shaped microvesicles with diameters of 50–
100 nm by TEM (Figure 5A). NTA was also performed 

with the peak value of diameters in 100nm (Figure 
5B). We further verified distinctive markers for 
extracellular vesicles by Western Blot. Enrichment of 
two positive markers (TSG101 and CD63) were 
observed (Figure 5C). On the contrary, no protein 
band was detected around molecular weight of 
calnexin which was considered as a negative marker 
(Figure 5C). 

External validation by RT-qPCR data in our 
own cohort 

We further verified those signatures by RT-qPCR 
in an independent cohort of our own cohort including 
111 samples (Clinical data was shown in Table 1). For 
3 RNA pair model, SVM algorithm achieved the 
highest AUC of 0.71 in distinguishing PDAC from 
chronic pancreatitis patients and 0.78 in 
distinguishing PDAC from health individuals (Figure 
6A-B, Figure S2B). For 4 RNA pair model, the SVM 
algorithm achieved the highest AUC of 0.77 in 
distinguishing PDAC from chronic pancreatitis 
patients and 0.89 in distinguishing PDAC from health 
individuals (Figure 6C-D, Figure S2C). 
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Figure 4. Internal NGS verification of RNA-pair based models. A. The ROC of models constructed by 2 RNA-pair with different algorithms in internal NGS verification. 
B. The ROC of models constructed by 3 RNA-pair with different algorithms in internal NGS verification. C. The ROC of models constructed by 4 RNA-pair with different 
algorithms in internal NGS verification. 

 
Figure 5. Identification of EVs isolated in patients’ plasma. A. TEM revealed the external features of EVs isolated from plasma. The exosomes were oval or bowl-shaped 
capsules without the nucleus. B. NTA demonstrated EVs isolated from patients’ plasma were 75-200nm in diameter. C. Verification of characteristic markers of EVs by Western 
Blot. Enrichment of two positive markers (TSG101 and CD63) were detected while the negative marker (calnexin) was absent in the isolated EVs samples. 

 

Discussion 
Detection of PDAC at a resectable stage is 

challenging to gastroenterologists[14, 19]. Many 
efforts have been made to evaluate EVs-derived 
RNAs as biomarkers in cancer diagnosis[7, 20], 
especially in PDAC. Xian-yin Lai et al.[21] developed 
an exosomal miRNA signature to predict PDAC, and 
found this signature has better diagnostic value 
comparing to CA19-9 and GPC1. Tetsuya Takikawa et 
al.[22] focused on miRNAs in pancreatic stellate cell 
(PSC)-derived exosomes, and firstly clarified miRNA 
expression profile of PSC-related exosomes. They also 
confirmed the roles of PSC-exosome miRNAs in 
stimulating the proliferation or migration of PDAC 
cells. Shulin Yu et al.[23] conducted the largest NGS 
study of EV-derived RNAs in PDAC with 501 
participants, developed a diagnosis signature based 
on 8 EV-derived RNAs and exhibited high accuracy 
no matter in internal or external validation. They 
firstly characterized the plasma EV-derived RNA 
profile in PDAC. Their creative work had laid the 
groundwork of PDAC biomarker field and provided 
convincing evidence for EV-derived RNAs to be good 
PDAC diagnostic biomarkers.  

However, there are still many problems 
preventing these signatures from clinical application. 
Testing cost is the major problem bothering 
physicians. Many researches were based on NGS or 
RNA chip data, however, these methods are not 
suitable for large-scale clinical application because of 
their high-cost. As a cost-effective tool, RT-qPCR 
could be widely used in the evaluation of EVs-derived 
RNAs, but the controversial normalization of 
RT-qPCR data generated from plasma EVs largely 
reduced the reproducibility across different studies as 
well as our enthusiasm in the development of 
liquid-biopsy based PDAC diagnostic tools.  

Three regular ways were often used to normalize 
plasma EVs-derived RNAs. Traditional reference 
genes were often used to normalize RT-qPCR data, 
such as GAPDH and β-actin, which were considered 
stably expressed in somatic cells. However, these 
genes were proved to be differential expressed in 
plasma EVs. Moreover, during the isolation of EVs, 
different expression manners between target RNAs 
and internal reference RNAs result in variance in their 
relative expression levels and bring poor 
reproducibility. Consequently, they are not the ideal 
tool for data normalization in plasma EVs-derived 
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RNAs quantification. Some researchers chose to 
screen more specific reference RNAs by many 
algorithms such as Normfinder, Genorm and 
DataAssist[24–29]. Dozens of reference RNAs were 
found in different diseases and various experiment 
situations; however due to insufficient sample volume 
of these studies and poor external validations, few of 
these reference RNAs were widely accepted by the 
scientific community. Spike-in exogenous RNAs to 
EVs such like cel-miR-39[30–32] as external references 
to partially eliminate deviations from experimental 
processes was also a choice. However, sample specific 
deviations couldn’t be corrected by those exogenous 
calibrators.  

Here we proposed an RNA-pair ratio-based 
algorithm to quantitate plasma EVs-derived RNAs. 
The ratio of any two candidate RNAs were calculated 
in the same sample, then ratios between two RNAs 
were treated as new variables to construct a 
ratio-based prediction system by three machine 
learning algorithms. Subsequently, we validated these 
prediction models internally and externally, and 
found they were capable to predict PDAC occurrence 

with high AUC levels no matter in NGS data or 
RT-qPCR data.  

The innovation points of this study lie on several 
aspects. Our major breakthrough is making the 
clinical application of diagnosis biomarker much 
easier. By using RT-qPCR method other than NGS or 
RNA chip, we reduced the cost of cancer screening. By 
using this normalizer-free algorithm, our model 
achieved high accuracy no matter in the NGS data or 
RT-qPCR data, which means we avoided the unstable 
factors induced by controversial reference genes and 
made RT-qPCR assays stable and reproducible. 
Cost-effective and high accuracy made our algorithm 
easier for clinical application. Moreover, three 
machine learning methods including lasso regression, 
SVM and logistic regression were simultaneously 
applied to assess the robustness of prediction model, 
making the result more convincing. Cross-platform 
property also enhanced the reproducibility of this 
research. Last but not least, our innovation is localized 
in methodology level and could be helpful to 
researchers intending to discover reliable biomarkers 
for other cancer types.  

 

 
Figure 6. External q-PCR verification of RNA-pair based models. A. The ROC of models constructed by 3 RNA-pair with different algorithms in external RT-qPCR 
verification (PDAC vs. CP). B. The ROC of models constructed by 3 RNA-pair with different algorithms in external RT-qPCR verification (PDAC vs. NC). C. The ROC of models 
constructed by 4 RNA-pair with different algorithms in external RT-qPCR verification (PDAC vs. CP). D. The ROC of models constructed by 4 RNA-pair with different 
algorithms in external RT-qPCR verification (PDAC vs. NC). PADC: pancreatic ductal adenocarcinoma; CP: chronic pancreatitis; NC: normal control. 
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Mattia Boeri etc.[11] firstly used RNA ratio 
signatures to predict patients’ prognosis with 
minimum AUC level of 0.85. However, due to its 
sufficient sample volume and no mathematically 
proofs were given, it was still hard for researchers to 
understand this method. Deng etc.[33] firstly 
mathematically verified RNA ratio methods. Their 
findings showed that RNA ratio could reflect true fold 
change between 2 RNAs by eliminating disturbance 
of various reference RNAs because expression levels 
of two RNAs were simultaneously measured under 
same conditions. Moreover, they also found that RNA 
ratios method was independent of spiked-in and 
internal controls, and was more robust than internal 
or external reference RNAs by comparing their 
diagnostic capacity, which gave this article a robust 
theoretical basis.  

We identified 8 biomarkers to predict PDAC, i.e. 
FBXO7, MORF4L1, DDX17, TALDO1, AHNAK, 
TUBA1B, CD44, and SETD3. Among them, CD44 was 
proved to be involved in biological process as cell-cell 
interactions, cell adhesion and migration, which was 
also enriched in GO analysis of this study[34, 35]. In 
recent years, researchers found CD44 was a biomarker 
of PDAC cancer stem cells [36], and could reflect 
initiation and metastasis of PDAC, which made CD44 
a potential biomarker to predict PDAC. AHNAK is a 
large scaffold protein and participates in focal 
adhesion and cell-substrate junction[37, 38], which is 
also enriched in GO analysis. AHNAK is proved to be 
associated with poor prognosis of PDAC patients 
through epithelial-mesenchymal transition, and could 
be a biomarker to predict PDAC patients’ 
outcome[39]. FBXO7 is a component of 
ubiquitin-protein ligase complex and plays vital roles 
in mediating ubiquitination and proteasomal 
degradation of proteins[40–42]. However, its roles in 
predicting PDAC remains unknown. Most of these 
biomarkers were related to tumorigenesis or 
metastasis. Biological or pathological functions of 
them were still unclear, further experiments would be 
performed to explore their roles in EVs and their 
relationship with PDAC.  

Conclusion 
In conclusion, we firstly developed a 

qPCR-based, normalizer-free circulating EVs RNA 
classifier, which could well distinguish PDAC 
patients from noncancerous controls. After validation 
of both NGS data and RT-qPCR data of our 
independent cohort, we rigorously confirmed the 
robustness and cross-platform stability of this 
approach. The gene-pair focused methodology we 
established here would also be helpful to find more 
qPCR-based, normalizer-free models from the public 

available EVs RNA databases in the studies of other 
cancer types.  
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