
Journal of Cancer 2021, Vol. 12 
 

 
http://www.jcancer.org 

1563 

Journal of Cancer 
2021; 12(5): 1563-1574. doi: 10.7150/jca.54252 

Research Paper 

Metabolomics study reveals the potential evidence of 
metabolic reprogramming towards the Warburg effect 
in precancerous lesions 
Xun Chen1#, Chen Yi1#, Man-Jun Yang2, Xueqi Sun3*, Xubin Liu3, Hanyu Ma3, Yiming Li1, Hongyu Li1, Chao 
Wang1, Yi He1, Guanhui Chen1, Shangwu Chen4, Li Yu3 and Dongsheng Yu1 

1. Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of 
China. 

2. Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, 
School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China. 

3. Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People’s Republic of China. 
4. Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for 

Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China. 

#These authors contributed equally to this work. 

*Present address: Ganzhou People’s Hospital. 

 Corresponding author: Dongsheng Yu, Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Sun Yat-sen University, 56 
Lingyuan West Road, Guangzhou 510055, People's Republic of China. Tel: +86-20-8386-2543; Fax: +86-20-8382-2803; E-mail: yudsh@mail.sysu.edu.cn. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2020.10.09; Accepted: 2020.12.21; Published: 2021.01.10 

Abstract 

Background: Most tumors have an enhanced glycolysis flux, even when oxygen is available, called the 
aerobic glycolysis or the Warburg effect. Metabolic reprogramming promotes cancer progression, and is 
even related to the tumorigenesis. However, it is not clear whether the observed metabolic changes act 
as a driver or a bystander in cancer development. 
Methods: In this study, the metabolic characteristics of oral precancerous cells and cervical 
precancerous lesions were analyzed by metabolomics, and the expression of glycolytic enzymes in 
cervical precancerous lesions was evaluated by RT-PCR and Western blot analysis. 
Results: In total, 115 and 23 metabolites with reliable signals were identified in oral cells and cervical 
tissues, respectively. Based on the metabolome, oral precancerous cell DOK could be clearly separated 
from normal human oral epithelial cells (HOEC) and oral cancer cells. Four critical differential 
metabolites (pyruvate, glutamine, methionine and lysine) were identified between DOK and HOEC. 
Metabolic profiles could clearly distinguish cervical precancerous lesions from normal cervical epithelium 
and cervical cancer. Compared with normal cervical epithelium, the glucose consumption and lactate 
production increased in cervical precancerous lesions. The expression of glycolytic enzymes LDHA, HK 
II and PKM2 showed an increased tendency in cervical precancerous lesions compared with normal 
cervical epithelium. 
Conclusions: Our findings suggest that cell metabolism may be reprogrammed at the early stage of 
tumorigenesis, implying the contribution of metabolic reprogramming to the development of tumor. 

Key words: metabolic reprogramming; precancerous lesions; metabolomics; the Warburg-like effect; glycolytic 
enzymes 

Introduction 
Metabolic reprogramming is one of the 

hallmarks of cancer. Metabolic changes in cancer 
involve many aspects of metabolism, such as the 

deregulation of glucose and amino acid uptake and 
consumption, and the application of glycolysis/tri-
carboxylic acid (TCA) cycle intermediates in 
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biosynthesis [1]. The survival and growth of cancer 
cells are more dependent on glycolysis, even if there is 
sufficient oxygen [2]. This type of aerobic glycolysis, 
discovered nearly a century ago, is now known as the 
Warburg effect [3, 4]. Glycolysis is a basic metabolic 
pathway of carbohydrates, in which one glucose 
molecule is converted into two molecules of pyruvate. 
Hexokinase (HK), phosphofructokinase (PFK), and 
pyruvate kinase (PK) are key enzymes in the control 
of cellular glycolytic flux. Pyruvate can be reduced to 
lactate by lactate dehydrogenase (LDH) under 
hypoxia. Glucose transporters (GLUTs) transport 
glucose into cells, whilst monocarboxylate 
transporters (MCTs) facilitate the export of lactate into 
extracellular space. Thus, these enzymes and proteins 
are involved in regulating the rate of glycolysis. 
Hypoxia-inducible factor-1α (HIF-1α) is a 
transcription factor that transactivates the expression 
of GLUTs and many glycolytic enzymes, promoting 
glycolysis in tumors. Although most cancer cells rely 
on high glycolysis rates, metabolic reprogramming as 
a cause of cancer development or a consequence of 
tumorigenesis remains an open question. 

The development of cancer is a complex process 
that is not fully understood. Precancerous 
lesions/stages are often observed in the development 
of some cancers, such as squamous cell carcinoma. For 
example, oral lichen planus, leukoplakia, and 
erythroplakia are considered as oral potentially 
malignant disorders that may develop into oral 
squamous cell carcinoma (OSCC) [5]. Human 
papillomavirus (HPV) infection can cause cervical 
squamous intraepithelial lesions (SIL), which are 
cervical precancerous lesions [6]. Low-grade 
squamous intraepithelial lesions (LSIL) reflect 
morphologic changes of transient HPV infection with 
a high rate of regression, whilst high-grade squamous 
intraepithelial lesions (HSIL) represent persistent 
high-risk HPV infection and viral integration with a 
significant rate of progression to invasive carcinoma 
[7]. Although a few studies have investigated 
metabolic alterations in precancerous lesions, it is 
unclear whether metabolic reprogramming occurs in 
precancerous lesions [8]. Reprogrammed metabolism 
in precancerous lesions probably indicates that such 
reprogramming plays an important role in the 
development of cancer. 

Metabolomics aims to characterize small 
molecules in biological samples and is widely applied 
in many aspects of cancer research, including cancer 
pathophysiology, biomarker discovery, and 
therapeutic response [9, 10]. Mass spectrometry (MS) 
and nuclear magnetic resonance (NMR) spectroscopy 
are common methods used in metabolomics. In this 
study, the metabolic changes in oral precancerous 

cells and cervical precancerous lesion tissues were 
analyzed by mass spectrometry. The expression of 
glycolysis-related enzymes and proteins in cervical 
precancerous lesions was examined by RT-PCR and 
Western blot analysis. The results will be helpful to 
provide evidence for metabolic reprogramming in 
precancerous stages and its role in the development of 
cancer. 

Materials and methods 
Cell culture 

This study involved a normal human oral 
epithelial cell (HOEC) (Bnbio, Beijing, China), a 
dysplastic oral keratinocyte (DOK) (Sgdbio, Shanghai, 
China), and three tongue squamous cell carcinoma 
cell lines Tca8133 (Shuaiyue, Shanghai, China), SCC-9 
and SCC090 (Sgdbio, Shanghai, China). Cells were 
maintained in RPMI-1640 medium (DOK, Tca8133), 
DMEM (HOEC, SCC-9) and McCoy’s 5A (SCC090) 
with 10% FBS (GIBCO, Australia), 100 U/mL 
penicillin G and 100 μg/mL streptomycin in a 
humidified atmosphere of 5% CO2 at 37°C. 

Tissue samples 
In total, for this study 80 frozen biopsies, 

including 24 normal cervical epithelial tissues, 13 
low-grade squamous intraepithelial lesions (LSIL), 22 
high-grade squamous intraepithelial lesions (HSIL) 
and 21 squamous cell carcinoma (SCC) tissues, were 
obtained from the Department of Pathology, the First 
Affiliated Hospital, Sun Yat-sen University. All 
specimens were diagnosed by histopathology and 
stored at -80°C. Forty-eight specimens, including 15 
normal cervical epithelia, 6 LSIL, 14 HSIL and 13 SCC, 
were used for real-time reverse transcription- 
polymerase chain reaction (RT-PCR), and 32 
specimens, including 9 normal cervical epithelia, 7 
LSIL, 8 HSIL and 8 SCC, for Western blot analysis. 
The research involving human tissues was approved 
by the Medical Ethics Review Board of the First 
Affiliated Hospital, Sun Yat-sen University, in 
accordance with the guidelines for the protection of 
human subjects. All patients signed consent forms. 

RNA extraction and quantitative real-time 
RT-PCR 

Biopsy samples were rapidly cryo-sectioned and 
the tissues of normal squamous epithelia, SIL and 
SCC were isolated under microscopy. Tissues of about 
20 mg or adherence cells in a 25-cm2 culture flask were 
incubated with 1 mL TRIzol reagent (Invitrogen Life 
Technologies, Carlsbad, CA, USA) for RNA isolation 
in accordance with the manufacturer’s instructions. 
RNAs were treated with gDNA Eraser to remove the 
genomic DNA and reverse-transcribed with random 
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hexamer primers using PrimeScript RT Enzyme Mix I 
(PrimeScriptTM RT reagent Kit with gDNA Eraser, 
TaKaRa, Shiga, Japan). Real-time PCR was performed 
in a 20 μL reaction volume with SYBR® Premix Ex Taq 
II (Tli RNaseH Plus, TaKaRa, Shiga, Japan) and the 
ABI PRISM®7900 system (ABI). Reactions were 
processed in triplicate, and the threshold cycles and 
relative fold differences were calculated with 2-ΔΔCt. 

Western blot 
Proteins were extracted by a total protein 

extraction kit and quantified by a BCA protein assay 
kit (CoWin Biotech, Beijing, China). About 20 μg of 
proteins were separated in 10% sodium dodecyl 
sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE) gel and transferred to polyvinylidine 
difluoride membranes (Millipore, Bedford, MA, 
USA). The membranes were blocked with 5% 
skimmed milk powder in TBST buffer and then 
incubated with primary antibodies (anti-Hexokinase 
II antibody, 1:1000 dilution, Abcam; anti-Fructose 6 
Phosphate Kinase antibody, 1:1000 dilution, Abcam; 
PKM2 (D78A4)XP® Rabbit mAb, 1:1000 dilution, Cell 
Signaling Technology; LDHA (C4B5) Rabbit mAb, 
1:1000 dilution, Cell Signaling Technology; 
anti-Glucose Transporter GLUT1 antibody, 1:5000 
dilution, Abcam; β-actin Rabbit mAb, 1:1000 dilution, 
Cell Signaling Technology) at 4°C overnight. After 
being washed, membranes were incubated with 
corresponding horseradish peroxidase-conjugated 
secondary antibodies (anti-rabbit IgG or anti-mouse 
IgG, HRP-linked antibody, Cell Signaling Technology, 
Danvers, MA, USA), and signals were visualized by 
the enhanced chemoluminescence method (Millipore, 
Bedford, MA, USA). The relative expression levels of 
proteins were quantified by ImageJ software with 
β-actin as the loading control. 

Gas chromatography-mass spectrometry 
(GC-MS) 

GC-MS was used to detect the metabolic changes 
in several oral cells, fresh tissues of normal cervical 
epithelium, LSIL, HSIL, and SCC. 

Sample preparation and derivatization 
The HOEC, DOK, SCC-9, SCC090 and Tca8113 

cells were cultured to confluence in a petri dish and 2 
× 106 cells were collected as previously described, 
with some modifications [11]. Briefly, cells were 
rinsed with distilled saline and then quenched 
thoroughly with 1 mL -20°C cold methanol 
(Sigma-Aldrich, St. Louis, MO, USA). The sediments 
were isolated by centrifugation with 6000 × g at 4°C 
for 10 min. The metabolites were extracted with 1 mL 
methanol by means of an ultrasonic cell disruptor 
(Scientz-950E, Ningbo, China) at a vibrational 

frequency of 360 W/40 kHz for 5 min. Then, a 
quantity of 10 µL ribitol (0.1 mg/mL) was added to 
each sample tube as an internal quantitative standard. 
The supernatant was harvested by centrifugation at 
12,000 × g for 10 min and concentrated in a rotary 
vacuum centrifuge device (LABCONCO). The dried 
polar extracts were used for metabolite derivatization 
in GC-MS analysis. The dried residue was dissolved 
in 100 µL methoxyamine pyridine solution (20 
mg/mL) and incubated at 37°C for 120 min in an 
incubator shaker. The mixture was treated with 100 
µL N,O-Bis(trimethylsilyl)trifluoroacetamide 
(TMSTFA) with 1% trimethylchlorosilane (TMCS) and 
incubated at 37°C for 30 min. Every experiment was 
repeated by four biological replicates. In the case of 
biopsy samples, tissues of about 20 mg were 
homogenized in liquid nitrogen and supplemented 
with 1 mL methanol. 

GC-MS detection 
The derivatized sample of 1 μL was injected into 

a HP-5MS column (Agilent Technologies, 30 m × 250 
μm × i.d. 0.25 μm) by splitless injection, and analysis 
was carried out by Agilent 7890A GC equipped with 
an Agilent 5975C VL MSD detector (Agilent 
Technologies, Santa Clara, CA, USA). The initial 
temperature of the GC oven was held at 85°C for 5 
min, followed by an increase to 280°C at a rate of 15°C 
per min, holding for 5 min, and increasing to 310°C at 
a rate of 20°C per min. Helium was used as the carrier 
gas, and flow was kept constant at 1 mL per min. The 
MS was operated at a range of 50-600 m/z. 

Spectrum processing for GC-MS 
The deconvolution and calibration of the 

acquired mass spectra were performed with AMDIS 
(Agilent OpenLAB CDS ChemiStation C.01.01). To 
avoid false positives, we excluded peaks with a 
signal-to-noise ratio (S/N) lower than 30 [12], and 
removed the artifact peaks by comparison with the 
blank samples. Metabolites were identified by 
retrieval of their mass spectra in the NIST 2011 
(National Institute of Standards and Technology, 
USA) library and GMD 2011 (Golm Metabolome 
Database, Potsdam, Germany) according to the 
following criteria: match value ≥750, reverse match 
value ≥800 and a probability ≥60% [13]. The relative 
peak area value of ribitol was taken as the internal 
standard for the calculation of metabolite abundance. 
This data array file can be used for subsequent 
multivariate statistical analyses. 

Bioinformatics analysis 
Data transformation and manipulation were 

done in Excel. The differences in the metabolite 
contents between the two groups were compared by 
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Analysis of Variance (ANOVA, α = 0.01) with SPSS 
23.0 (IBM, USA). A multivariate statistical analysis of 
the metabolomic data was further performed via the 
MetaboAnalyst online Web site (www.metaboanalyst. 
ca/) [14-16]. Z-score analysis scaled each metabolite 
according to a reference distribution. Z-score was 
calculated according to the formula, 𝑍 =

𝑥𝑖𝑗−𝐴𝑉𝐺𝑖
𝑆𝐷𝑖

, in 
which xij, AVGi and SDi represented the metabolites’ 
peak area, average of the control group and standard 
deviation of the control group, respectively. A 
hierarchical cluster analysis (HCA) was performed 
with the distance matrix calculated by the Euclidean 
method. Principal component analysis (PCA) and 
partial least squares-discriminant analysis (PLS-DA) 
were conducted for investigation of the relationships 
among the test samples. Based on the PLS-DA 
analysis, the compounds whose weight values of 
variable importance in the projection (VIP) were 
greater than 1 were filtered and shown in a scatter 
plot. For pathway enrichment analysis, the 

MetaboAnalyst online platform (www. 
metaboanalyst.ca/) [14-16] was used to determine the 
metabolic pathway of the metabolites showing 
differences between the test groups. The –log(P) value 
and a value reflecting the impact of each metabolic 
pathway were calculated by a hypergeometric test, 
and the metabolic pathways with P < 0.05 were 
retained. Prism v5.01 (GraphPad, La Jolla, CA, USA) 
was used to draw the histogram and the scatter plot. 

Results 
Metabolomic profiling of human oral 
precancerous cells 

For exploration of the metabolic alterations in 
precancer, a DOK cell, a precancerous cell established 
from human dysplastic oral mucosa [17], together 
with HOEC, a normal human oral epithelial cell and 
three oral cancer cells (SCC-9, SCC090 and Tca8113) 
were first subjected to GC-MS analysis. In total, 240 
aligned individual peaks were obtained from each 

sample (Figure 1). After removal 
of the internal standard ribitol and 
any known artificial peaks and 
integration of the same 
compounds, 115 metabolites with 
reliable signals were identified in 
each sample. Four samples of each 
cell line, with two technical 
repeats, were examined, yielding a 
total of 40 data sets. The 
correlation coefficient between 
technical replicates varied 
between 0.9799 and 0.9999, 
demonstrating good 
reproducibility of the data (Figure 
S1 A). According to annotation in 
KEGG (http://www.kegg.jp/) 
and NCBI PubChem (https:// 
pubchem.ncbi.nlm.nih.gov/), the 
metabolites were classified into 
five categories, including 25.22% 
carbohydrates, 28.70% amino 
acids, 17.39% nucleotides, 6.96% 
fatty acids and 21.74% other 
compounds (Figure S1B). 

Metabolic discrimination of 
DOK and HOEC cells 

We wanted to know which 
metabolic biomarkers can 
distinguish these oral cells. 
ANOVA and a permutation test 
were used to determine the 
differential abundance of 

 

 
Figure 1. Metabolomics profiles of oral cell lines HOEC, DOK, SCC090, SCC-9 and Tca8113. Representative total 
ion current chromatograms are shown (A-E). X-axis, retention time (min); Y-axis, abundance. 
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metabolites in different oral cell lines. Seventy-three 
significant metabolites, presented as a heatmap of 
hierarchical cluster analysis (HCA) (Figure 2), were 
identified in these cells (P < 0.01), which 
corresponded to the greatest false discovery rate 
(FDR) of phosphoric acid (0.01301). Oral cancer cells 
were clearly separated from DOK and HOEC cells. 

In order to identify the candidate metabolites 
discriminating normal human oral epithelial cells 
(HOEC) and oral precancerous cells (DOK), we 
conducted unsupervised and supervised pattern 
discriminant analyses by using the principal 
component analysis (PCA) and orthogonal partial 
least squares discriminant analysis (OPLS-DA). PC1 

(97.6%) and PC2 (0.6%) of PCA (Figure 3A) and 
Component 1 (T score [1] = 89.9%) and Component 2 
(orthogonal T score [1] = 1.4%) of OPLS-DA 
(R2X=0.899, R2Y=0.999, Q2=0.999) separated the 
samples into two colonies (Figure 3B). PC1 and 
Component 1 clearly separated the DOK cells from 
HOEC cells (Figure 3A, 3B). Discriminating variables 
are shown as an S-plot (Figure 3C) when cut-off 
values of covariance p[1] and correlation p(corr) were 
set as greater than or equal to 10 and 0.9, respectively. 
Twenty-two candidate metabolites, highlighted in 
blue oval boxes (Figure 3C), were identified through 
the screen of component p[1] and p(corr)[1], whose 
weight values are shown in Figure 3D. 

 

 
Figure 2. Differential metabolomics profiles of normal human oral epithelial cells (HOEC), dysplastic oral keratinocyte (DOK) and oral cancer cell lines SCC090, SCC9 and 
Tca8113. The heatmap shows 73 differential metabolites. Wine red and pewter indicate increased and decreased metabolites relative to the median metabolite levels, 
respectively (see color scale). 
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Figure 3. Identification of metabolomic candidates. PCA analysis of metabolites of HOEC and DOK cells (A). Each dot represents the technological replicate analysis of samples 
in the plot. PC1 and PC2 used in this plot explain 98.2% of the total variance, which allows for confident interpretation of the variation. Orthogonal partial least squares 
discriminant analysis (OPLS-DA, R2X=0.899, R2Y=0.999, Q2=0.999) (B). Score plot drawn with OPLS-DA (C). The crucial metabolomic candidates, shown in the light blue oval 
box (C), were selected by the weight absolute values of p[1] and p(corr)[1], which are more than 10 and 0.9, respectively (D). 

 
Identification of enriched metabolic pathways is 

important for understanding the metabolomic 
alterations in the development of cancer. Metabolite 
pathway enrichment analysis revealed that 10 
metabolic pathways were enriched in HOEC and 
DOK cells (Figure 4A), which were sorted by their 
impact values. It is particularly interesting that amino 
acid metabolism may play an important role in the 
development of HOEC to DOK (Figure 4B). 

Eventually, 4 crucial differential biomarkers 
(pyruvate, glutamine, methionine and lysine) were 
identified between HOEC and DOK by the integration 
of 27 significant metabolites from metabolite pathway 
enrichment analysis and 22 metabolomic candidates 
from pattern discrimination analysis, which may be 
related to the development of DOK (Figure 4C). 

Metabolomic profiling of human cervical 
precancerous tissues 

Metabolic changes in precancerous tissues were 
further verified. Metabolic profiles of cervical 
precancerous tissues were analyzed as described 
above, and compared with those of normal cervical 
epithelium and squamous cell carcinoma (SCC) 
(Figure S2). Twenty-three metabolites with reliable 
signals were identified (Table S1). PCA and PLS-DA 
analyses completely distinguished cervical 
precancerous lesions (LSIL and HSIL) from normal 
cervical epithelium and cervical cancer (Figure 5A, 
5B). Interestingly, the comparison of peak areas of 
metabolites indicated that glucose consumption and 
lactate production increased from LSIL to the peak at 
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HSIL and SCC compared with those of normal 
cervical epithelium (Figure 5C). The content of several 
amino acids, such as glycine, aspartate, alanine, 
tyrosine and serine, increased in SCC (Figure 5C). An 

increase of glycine, aspartate, alanine and serine in 
HSIL and of alanine and tyrosine in LSIL was also 
observed. Most of these amino acids can be derived 
from the intermediates of the glycolytic pathway. 

 

 
Figure 4. Enrichment analysis of metabolic pathways and its combination with pattern discrimination analysis. Significantly enriched pathways were selected to be plotted (A). 
From 1 to 10 represent glutamine and glutamate metabolism; valine, leucine and isoleucine biosynthesis; alanine, aspartate and glutamate metabolism; glycine, serine and 
threonine metabolism; arginine and proline metabolism; cysteine and methionine metabolism; aminoacyl-tRNA biosynthesis; glutathione metabolism; pantothenate and CoA 
biosynthesis; and nitrogen metabolism, respectively. The relative abundance of each metabolite is shown (B). Integration of metabolite pathway enrichment analysis and pattern 
discrimination analysis identified 4 crucial differential biomarkers responsible for the phenotype of DOK (C). 
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Figure 5. Metabolomics characteristics of cervical epithelial tissues. PCA and PLS-DA completely separated cervical precancerous lesions (HSIL and LSIL) from normal cervical 
epithelial tissues (N, Normal) and cervical cancer tissues (SCC) (A and B). Levels of several key metabolites in different cervical tissues were detected by GC-MS (C). LSIL, 
low-grade squamous intraepithelial lesions; HSIL, high-grade squamous intraepithelial lesions. *P < 0.05 vs Normal and **P < 0.01 vs Normal. 

 

Expression of glycolytic enzymes and proteins 
changed in cervical precancerous lesions 

Enzymes and proteins such as HK Ⅱ, PFK1, 
PKM2, LDHA, GLUT1, MCT1 and HIF-1α are closely 
associated with glycolysis. The mRNA levels of these 
proteins in 48 cervical biopsies, including 15 normal 
cervical epithelia, 6 LSIL, 14 HSIL and 13 SCC, were 
detected by RT-PCR. The levels of HK Ⅱ, PKM2 and 
MCT1 in SCC were higher than those in normal 
cervical epithelia and LSIL (P<0.05) (Figure 6A, 6B, 
6C). Whilst the expression of LDHA in SCC was 
significantly up-regulated compared with that in 
normal cervical epithelia and LSIL (P < 0.01), the level 
of LDHA in HSIL was also higher than that in normal 
cervical epithelia and LSIL (P < 0.05) (Figure 6D), 
suggesting that the expression of some glycolytic 
enzymes was deregulated in cervical precancerous 

lesions. The expression of GLUT1, PFK1 and HIF-1α 
showed no statistically significant change in different 
tissues (Figure 6E-G). 

Western blot analysis was further used to 
confirm the expression of HK Ⅱ, PFK1, PKM2, LDHA 
and GLUT1 in 32 cervical biopsies, including 9 normal 
cervical epithelia, 7 LSIL, 8 HSIL and 8 SCC (Figure 
7A). The gray values of protein bands were analyzed 
according to the results of Western blot analysis. The 
levels of HK Ⅱ and PKM2 in SCC were higher than 
those in normal cervical epithelia and cervical 
precancerous lesions (Figure 7B), which were 
consistent with RT-PCR results. The expression of HK 
II and PKM2 in precancerous tissues also showed an 
increased trend compared with normal cervical 
epithelia (Figure 7B). The expression levels of PFK1, 
LDHA and GLUT1 were not significantly different 
among the 4 groups analyzed. 
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Figure 6. RT-PCR was used to detect the expression of HK II, PKM2, LDHA, MCT1, GLUT1, HIF-1α and PFK1 in cervical biopsies, including 15 normal cervical epithelial tissues, 
6 low-grade squamous intraepithelial lesions (LSIL), 14 high-grade squamous intraepithelial lesions (HSIL) and 13 squamous cell carcinomas (SCC). *P < 0.05, **P < 0.01. 

 

Discussion 
Metabolic reprogramming characterized by the 

Warburg effect is one of the hallmarks of cancer. In 
this study, the metabolome of human oral 
precancerous cell and cervical precancerous tissues 
was analyzed by GC-MS, and 115 metabolites in cell 
samples and 23 metabolites in tissue specimens were 
identified. By comparison of the metabolomes of these 
cells, the oral cancer cells could be clearly 
distinguished from the DOK and HOEC cells. Four 
metabolites (pyruvate, glutamine, methionine and 
lysine) were identified as critical differential 
molecules between DOK and HOEC. Glucose 
consumption and lactate production increased in the 
cervical squamous intraepithelial lesions (LSIL and 
HSIL), a kind of human cervical precancerous lesion. 
Some amino acids such as glycine and aspartate 
increased in cervical precancerous tissues (HSIL). The 
expression of several glycolysis-related enzymes and 
proteins such as HK II, PKM2 and MCT1 increased in 
cervical squamous cell carcinoma, and the expression 
of LDHA, HK II and PKM2 increased, to some extent, 
in cervical precancerous lesions. 

It is well-known that cancer cells maintain a high 
glycolytic flux to meet the energy and intermediates 
needed for survival and rapid growth [2, 18]. 
Compared with adjacent non-tumor tissues, many 
glycolytic enzymes are up-regulated in tumors [19]. 
Recent studies have also shown the metabolic 
characteristics and preferences of a tumor change 
during tumor progression [20, 21]. In fact, metabolic 
alteration in the precancerous stage or role of 

metabolic reprogramming during carcinogenesis has 
not been well-understood. Several investigators have 
investigated metabolic changes in the precancerous 
stage and found some preliminary signs of metabolic 
reprogramming in premalignant cells or tissues. For 
example, an early imaging study showed increased 
glycolysis and glutamine consumption in 
precancerous epithelial tissues [22]. Detection of the 
metabolism-related genes in colorectal biopsies 
revealed that the expression of HIF-1α, GLUT1, PKM2 
and LDHA in precancerous colorectal lesions was 
significantly higher than that in normal controls, 
which provided evidence for early Warburg-like 
metabolic changes in premalignant colorectal mucosa 
[23]. Transcriptome analysis in a familial 
adenomatous polyposis (FAP) model confirmed that 
glucose metabolism was reprogrammed in the 
precancerous adenoma stage [24]. A shift from 
oxidative phosphorylation to glycolysis was found in 
the very early stage of hepatocarcinogenesis in a rat 
model [25]. Glycolytic enzymes such as HK Ⅱ, PKM2 
and aldolase A were up-regulated were up-regulated 
in precancerous cirrhotic livers, which is closely 
related to an increased risk of hepatocellular 
carcinoma [19]. The metabolites of glycolysis and the 
pentose phosphate pathway were up-regulated in the 
early stages of pancreatic cancer in a mouse model [8]. 
However, metabolomic evidence for the Warburg 
effect in precancerous lesions remains limited. In this 
study, we found that the level of pyruvate increased 
in oral precancerous cells, and glucose consumption 
and lactate production were enhanced in cervical 
precancerous lesions. Some glycolytic enzymes such 
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as LDHA increased in cervical precancerous lesions as 
well. Our findings, including metabolites and related 
genes, further support metabolic reprogramming to 
the Warburg effect in precancerous lesions. 

Metabolic reprogramming for cancer also 
involves the metabolism of amino acids, characterized 
by increased consumption of glutamine [1]. Increased 
biosynthesis of some amino acids may even 
contribute to cell transformation and tumorigenesis 
[26]. In this study, glutamine, methionine and lysine 
were considered to be important differential amino 
acids between DOK and HOEC cells, and glycine and 
aspartate increased in HSIL tissues, suggesting that 
amino acid metabolism may play an important role in 

the development of squamous epithelial lesions or 
progression of epithelial lesions to invasive 
carcinomas. These amino acids have been associated 
with dysplasia or cancer. Increasing glutamine by 
reprogramming glutamine metabolism promotes 
nucleotide biosynthesis and liver cancer formation 
[27]. It was found that tumor-initiating cells (TICs) are 
metabolically dependent on methionine. The 
methionine cycle activity of these cells was highly 
enhanced, and inhibition of the methionine cycle was 
enough to damage the tumor-initiating capability of 
TICs [28]. Dietary restriction of methionine inhibited 
tumor growth and made tumor sensitive to 
chemotherapy by disrupting one-carbon metabolism 

 

 
Figure 7. Expression of HK II, PFK1, PKM2, LDHA and GLUT1 in cervical biopsies was detected by Western blot analysis. In total, 32 biopsies were examined, including normal 
cervical tissues (samples 1, 2, 3, 14, 15, 16, 17, 23, 24), LSIL (samples 4, 5, 6, 18, 19, 25, 26), HSIL (samples 7, 8, 9, 10, 20, 27, 28, 29) and SCC (samples 11, 12, 13, 21, 22, 30, 
31, 32) (A). The relative expression of HK II, PFK1, PKM2, LDHA and GLUT1 was normalized by β-actin (B). *P < 0.05, **P < 0.01. 
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[29]. Glycine can produce one-carbon units and 
integrate into the purine ring, and de novo synthesis of 
glycine can fuel purine nucleotide biosynthesis in 
tumor tissues [30, 31]. It has been reported that the 
serine, glycine, one-carbon (SGOC) metabolic 
network was up-regulated in neuroendocrine prostate 
cancer [32, 33]. The content of aspartate in breast 
cancer tissues and cells was significantly higher than 
that in adjacent non-tumor tissues and breast 
epithelial cells, suggesting that tumor increased the 
utilization of aspartate [34]. The level of aspartate and 
its downstream metabolites was up-regulated when 
prostate cancer cells underwent epithelial 
mesenchymal transition (EMT) [35]. Aspartate is 
considered to be a limiting metabolite for tumor 
growth [36, 37]. Enhanced glycolysis can also provide 
intermediates for the biosynthesis of amino acids. For 
example, glycine can be derived from 
3-phosphoglycerate. 

Although a few studies have found that 
metabolic alterations occur in precancerous cells and 
contribute to the development of cancer, their exact 
significance and mechanisms in tumorigenesis remain 
open questions. In this study, we revealed that the 
metabolism of glucose and amino acids has been 
reprogrammed in precancerous epithelial cells and 
tissues. We noted that the metabolic changes in oral 
precancerous cell lines and in cervical precancerous 
lesions were not identical. That makes sense. The 
heterozygosity of tumors is great, and the 
pathogenesis of different tumors is also diversified. 
The status of metabolic reprogramming in different 
tumor should be different. In addition, some results 
obtained by RT-PCR were not exactly consistent with 
those achieved in Western blot analysis. The sample 
size might have been a contributing factor. Our 
findings provide potential evidence for the 
Warburg-like effect in precancerous lesions. Further 
studies are needed to evaluate or verify this 
phenomenon. 
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