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Abstract 

Background: To develop machine-learning based models to predict the progression-free survival (PFS) and 
overall survival (OS) in patients with gliomas and explore the effect of different feature selection methods on 
the prediction. 
Methods: We included 505 patients (training cohort, n = 354; validation cohort, n = 151) with gliomas 
between January 1, 2011 and December 31, 2016. The clinical, neuroimaging, and molecular genetic data of 
patients were retrospectively collected. The multi-causes discovering with structure learning (McDSL) 
algorithm, least absolute shrinkage and selection operator regression (LASSO), and Cox proportional hazards 
regression model were employed to discover the predictors for 3-year PFS and OS, respectively. Eight machine 
learning classifiers with 5-fold cross-validation were developed to predict 3-year PFS and OS. The area under 
the curve (AUC) was used to evaluate the prognostic performance of classifiers. 
Results: McDSL identified four causal factors (tumor location, WHO grade, histologic type, and molecular 
genetic group) for 3-year PFS and OS, whereas LASSO and Cox identified wide-range number of factors 
associated with 3-year PFS and OS. The performance of each machine learning classifier based on McDSL, 
LASSO, and Cox was not significantly different. Logistic regression yielded the optimal performance in 
predicting 3-year PFS based on the McDSL (AUC, 0.872, 95% confidence interval [CI]: 0.828-0.916) and 3-year 
OS based on the LASSO (AUC, 0.901, 95% CI: 0.861-0.940). 
Conclusions: McDSL is more reproducible than LASSO and Cox model in the feature selection process. 
Logistic regression model may have the highest performance in predicting 3-year PFS and OS of gliomas. 
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Introduction 
Gliomas are the most common primary 

malignant central nervous system in adults [1], which 
account for 80% of malignant brain tumors [2]. 
Gliomas are associated with substantial mortality and 
morbidity [3]. The prediction of clinical behavior, 
response to treatment, and survival outcome of 

glioma is challenging. Prognostic assessment of 
gliomas is very crucial for patient counseling, 
treatment strategy planning, and disease monitoring 
[4]. 

Low-grade gliomas typically affect younger 
adults and carry a favorable prognosis, while 
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high-grade tumors generally have the worst 
progression-free survival (PFS) and overall survival 
(OS). The OS for WHO grades II, III, and IV 
astrocytomas is approximately 6–8 years, 2 years, and 
15 months, respectively [5]. Additional factors 
associated with survival outcome are age, sex, 
Karnofsky Performance Status (KPS), tumor 
morphology, extent of tumor resection, and treatment 
methods (surgery, radiotherapy, and chemotherapy) 
[5-7]. However, the prognostic value of these factors 
depends on the tumor grade and histological subtype. 
What’s more, some of these factors are correlated with 
or confounded by other factors, and higher tumor 
grade is correlated with more advanced age. The 
influence of extent of resection on survival could be 
confounded by tumor location, whether it is 
resectable or non-resectable, and/or by clinical 
judgement [8]. 

The tumor biology is associated with the status 
of different molecular markers, such as isocitrate 
dehydrogenase (IDH), 1p/19q codeletion, and 
telomerase reverse transcriptase (TERT) mutation [9]. 
As compared with the WHO 2007 classification, the 
new classification announced by the WHO in 2016 
recognized several new entities of diffuse glioma 
based on genotypes (IDH mutation and 1p/19q 
codeletion) in addition to the histologic phenotypes of 
tumors [10-12]. On the basis of previous studies of 
tumor biology, Eckel-Passow JE et al. proposed five 
molecular groups according to the three biomarkers: 
triple-positive (mutations in both TERT and IDH plus 
1p/19q codeletion), mutations in both TERT and IDH, 
mutation in IDH only, mutation in TERT only, and 
triple-negative [9]. Recent studies on gliomas using 
The Cancer Genome Atlas database have revealed the 
association of IDH mutation, 1p/19q codeletion, and 
TERT promoter mutation with OS [9, 13, 14]. 
Favorable prognosis has been observed in tumors 
with IDH mutation and/or 1p/19q codeletion but 
poor prognosis in those with TERT promoter 
mutation. 

The success of precision oncology relies on 
accurately categorizing patients on the basis of their 
prognostic characteristics. Therefore, we aimed to 
develop machine learning based clinical models to 
predict the 3-year PFS and OS among patients with 
gliomas and explore the effect of different feature 
selection methods on the predictive performance of 
machine learning classifiers. 

Materials and Methods 
Patient population and data collection 

This retrospective study was approved by the 
local Institutional Review Board before data collection 

and analysis, which waived the requirement for 
written consent. We included a total of 505 
consecutive patients at the neurosurgery department 
between January 1, 2011 and December 31, 2016. 
Inclusion criteria were as follows: (i) patients aged ≥18 
at the time of first surgery; (ii) patients were treated 
by surgical resection with or without postoperative 
chemoradiotherapy; (iii) patients who had infiltrative 
glioma of histologic grade II, III, or IV. Grade I tumor 
(pilocytic astrocytoma) are clinically and 
pathologically distant and therefore was not included; 
(iv) patients were followed up ≥36 months; and v) 
patients had information of molecular alterations, 
including IDH mutation and 1p/19q codeletion, and 
TERT promoter mutation. Those patients with 
recurrent gliomas or underwent biopsy only were 
excluded. The following data were obtained for each 
patient: age at initial diagnosis, sex, KPS on 
admission, tumor location, histologic type, WHO 
grade, extent of surgical resection of tumor, 
radiotherapy, chemotherapy, molecular alterations, 
and survival outcomes. All of the cases were 
evaluated by a neuro-radiologist and a 
neuro-oncologist. Disagreements between the two 
observers were resolved by consensus and, if 
necessary, discussion with a third observer. The 
extent of resection was determined by analysis of pre- 
and post-operatively acquired cranial MRI scans [7]. 
Ideally, the post-surgical MRI was performed up to 72 
hours after surgery. Identification of IDH1 mutation 
was performed by pyrosequencing of an 88-bp-long 
fragment of the IDH1 gene with the mutation hotspot 
at codon 132 [15, 16]. For IDH2 mutations, 
pyrosequencing was performed on an 83-bp-long 
fragment of the IDH2 gene with the mutation hotspot 
at codon 172 [15, 16]. IDH1 and IDH2 are very similar 
to each other and hereafter collectively referred as 
IDH. 1p/19q codeletion was analyzed by fluorescence 
in situ hybridisation according to standard protocols 
[17]. Detection of TERT promoter was performed by 
direct sequencing as previously reported [18]. Based 
on the status of IDH mutation, 1p/19q codeletion, and 
TERT promoter mutation, gliomas can be classified 
into five molecular groups [9]: triple-positive 
(mutations in both TERT and IDH plus 1p/19q 
codeletion), mutations in both TERT and IDH, 
mutation in IDH only, triple-negative, and mutation 
in TERT only. The primary outcomes were 3-year PFS 
and OS. PFS was defined as the interval between date 
of initial diagnosis (date of first surgery) and either 
disease progression or death, censored at the last 
follow-up visit. OS was defined as the interval from 
the date of surgery until date of death, censored at the 
last follow-up visit. Figure 1 illustrates the workflow 
of this study. 
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Figure 1. The workflow of this study. To evaluate the performance of each experiment of feature selection method i and machine learning method j, predicted value and 

validation outcome of 1000 times resample were combined into �̅�𝑖
𝑗  and  �̅� .  𝑔( 𝑝� 𝑖

𝑗,𝑣�)  denotes that evaluate equation of predictive performance. 

 

Feature selection methods 
Potential predictors including age at initial 

diagnosis, sex, KPS on admission, tumor location, 
histologic type, WHO grade, extent of surgical 
resection of tumor, radiotherapy, chemotherapy, 
IDH1 mutation, IDH2 mutation, IDH mutation, 1p 
deletion, 19q deletion, 1p19q codeletion, TERT 
promoter mutation, and molecular groups. The 
multi-causes discovering with structure learning 
(McDSL) algorithm, the least absolute shrinkage and 
selection operator regression (LASSO), and Cox 
proportional hazards regression model were applied 
to select the factors. 

Multi-causes discovering with structure 
learning algorithm 

In this study, the multi-causes discovering with 
McDSL algorithm [19, 20] was used as a causal 
assumption inferring method to discover the risk 
factors combination of PFS and OS of gliomas patient. 

The dataset has n factors X = {x1, …, xn} and one 
outcome y  (label). The McDSL discovers the risk 
factors combination through two phases: 1) search 
and transform each factors combination S = {xi,…, xj} 
into a factor xs, 2) infer the causal relationship 
between xs and label y with additive noise model 
(ANM). 

Firstly, calculating the correlation R of each 
factor xi and label y with their joint distribution, as 
shown in the following equation. 

𝑅(𝑥𝑖 ,𝑦) = ��
𝑚𝑃(𝑥𝑖 = 𝑣𝑥𝑖 ,𝑦 = 𝑣𝑦𝑗)
𝑃(𝑥𝑖 = 𝑣𝑥𝑖)𝑃(𝑦 = 𝑣𝑦𝑗)

log𝑒 𝑃(𝑥𝑖 = 𝑣𝑥𝑖 ,𝑦 = 𝑣𝑦𝑗)

𝑘𝑦

𝑗=1

𝑘𝑥

𝑖=1

 

Among which, R(xi,y) is the correlation of xi and 
y, m is the sample size of data, vxi is the i-th value of xi, 
kx is the number of values of xi, vyj is the j-th value of 
y, ky is the number of values of y, P(xi = vxi, y = vyj) is 
the joint distribution. 

Secondly, selecting the combination S with 
described correlation R, and transforming it into 
factor xs with the value combination of factors. The 
scale |S| was increased from 1 to n. 

Finally, ANM was employed to infer the causal 
relationship between each xs and label y. ANM was 
presented to deal with the causal relationship of 
binary factors, and it performed well in handling 
binary discrete synthetic data (accuracy >93%) [21] 
and inferring the relationship between transformed 
factor and label (accuracy >90% in the most of 
combination scales) [20]. In the process of causal 
relationship assumption inferring of ANM, an 
additive noise was considered as existed, which could 
been undiscovered or unrecorded factor, missing 
data, and human error, etc. The formulae are shown 
as follows: 

𝑦 = 𝑓(𝑥𝑠) + 𝑁, and 𝑁 ⊥ 𝑥𝑠 
Of which, f is the mapping from xs to y, N is 

noise, N⊥xs means N and xs are independent. To 
infer the influence of xs on y, the value of y was 
interfered with conditional probability P(y|xs), the 
interfered label was denoted as 𝑦� , and 𝑁�was the 
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residuals between y and 𝑦�. The Pearson’s chi-squared 
test was employed to calculate P-value of the 
dependence of xs and 𝑁� with regression. If and only if 
xs and 𝑁�  were independent, reverse was not valid, 
then inferred “xs is causing y” and was denoted as 
x⟶y. 

To discover the most correlative risk factors 
combination of recurrence and death, the features of 
survival status and survival time were transformed 
into a 3-class label. In this label, class 1 means survival 
status had not occurred after 36 months, ‘2’ means 
survival status had occurred within 36 months, ‘3’ 
means survival status had occurred after 36 months. 
McDSL algorithm was employed to select the risk 
factors combination in each training dataset, and the 
significance level was set at p <0.05. The factors 
combination which was inferred in all training data 
sets, had the maximal area under the curve (AUC) 
and was presented to build classifiers. 

The least absolute shrinkage and selection 
operator algorithm 

The regularized multivariate logistic regression 
with the LASSO penalty for discovering risk factors of 
3-class label. The LASSO regularization involves a 
parameter λ to control the number of selected features 
where a larger λ retains more features. To obtain an 
optimal feature number and avoid over-fitting, we 
used 5-fold cross validation in the training cohort to 
choose the optimal λ. The λ value that maximizes the 
AUC in the training cohort was selected as the 
optimal regularization parameter, and the feature 
number was therefore determined automatically by 
the λ. 

Cox proportional hazards regression model 
A univariate Cox analysis was firstly used to 

select the significant prognostic factors affecting 
3-class label with backwards regression, respectively. 
Those factors with p <0.10 were entered into the 
multivariate Cox analysis. Finally, only factors with p 
<0.05 were deemed independent risk factors of 3-class 
label. 

Machine learning model training and validation 
Glioma data were randomly divided into the 

training cohort (n = 354) and validation cohort (n = 
151) with 5-fold cross-validation. The selected 
predictors were entered into eight machine-learning 
classifiers: XGBoost, Adaboost, k-Nearest Neighbor 
(KNN), Logistic Regression (LR), Naive Bayes (NB), 
Random Forest (RF), Support Vector Machine (SVM), 
and Back Propagation Neural Network (BPNN). Area 
under the curve (AUC) was used as the compared 
performance. The average performance of all models 

was obtained by bootstrapping for 1000 times. The 
detailed descriptions of the machine learning models 
are present in Document S1. 

Statistical analysis 
All statistical analyses were performed by 

Matlab 2017b for McDSL and LASSO, and by R 
version 3.6.0 (http://www.Rproject.org) for eight 
machine learning algorithms. The R packages were 
used as follows: “xgboost” for XGBoost, 
“fitcensemble” for Adaboost, “fitcknn” for KNN, 
“glmfit” for LR, “fitcnb” for NB, “TreeBagger” for RF 
and “fitcsvm” for SVM and “nnet” for BPNN. Six 
performance measures of AUC, F-score, sensitivity, 
specificity, positive predictive value (PPV), and 
negative predictive value (NPV) were calculated for 
each model. The Youden index was used to identify 
the optimized threshold of predicted score that 
balanced sensitivity and specificity. 

Results 
Clinical characteristics of patients 

Table 1 shows the comparison of patients and 
tumor characteristics in the training cohort and 
validation cohort. Among the 505 glioma cases, 175 
(34.7%) were grade IV, 101 (20.0%) were grade III, and 
229 (45.3%) were grade II. The mean age of patients 
was 48.4 ± 13.4 years, 286 (56.6%) patients were male. 
The 3-year PFS rate was 43.4% and 3-year OS rate was 
47.9%. Of the eight possible combinations based on 
the presence or absence of the three tumor genetic 
markers, five could be used to classify most of the 471 
(93.3%) gliomas: triple-positive (80, 17.0%), mutations 
in both TERT and IDH (14, 3.0%), mutation in IDH 
only (91, 19.3%), triple-negative (143, 30.4%), and 
mutation in TERT only (143, 30.4%). 

Performance of the machine learning models 
McDSL identified four causal factors during the 

bootstrapping for 1000 times, including tumor 
location, WHO grade, histologic type, and molecular 
genetic group. However, LASSO and Cox analysis 
identified unstable number of factors of 2-17 and 1-8, 
respectively. Figure S1 illustrates the scale of selected 
features and number of each scale for McDSL, LASSO, 
and Cox. Figure S2 shows the variable ranking 
according to their importance. For McDSL, WHO 
grade ranked the first, followed by molecular genetic 
group and histologic type or tumor location; for 
LASSO, WHO grade ranked the first, followed by 
IDH mutation, and molecular group or 1p/19q 
codeletion; for Cox analysis, the WHO grade ranked 
the first, followed by radiotherapy and histologic 
type. 
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Table 1. Comparison of patient and tumor characteristics 
between the training cohort and validation cohort 

Characteristics Training cohort  
(n = 354) 

Validation cohort 
(n = 151) 

P 
value 

Age at initial diagnosis (years)   0.449 
≤40 100 (28) 37 (25)  
>40 254 (72) 114 (75)  
Sex   0.238 
Male 207 (58) 79 (52)  
Female 147 (42) 72 (48)  
KPS on admission   0.809 
<80 114 (32) 51 (34)  
≥80 240 (68) 100 (66)  
Tumor location   0.090 
Frontal lobe 139 (39) 57 (38)  
Temporal lobe 66 (19) 30 (20)  
Parietal lobe 13 (4) 12 (8)  
Occipital lobe 9 (3) 2 (1)  
Insular lobe 9 (3) 9 (6)  
Multicenter 118 (32) 41 (27)  
WHO grade   0.314 
II 153 (43) 76 (50)  
III 75 (21) 26 (17)  
IV  126 (36) 49 (33)  
Histologic type   0.009 
Astrocytoma 81 (22) 54 (36)  
Oligoastrocytoma/ 
Oligodendroglioma 

147 (42) 48 (32)  

Glioblastoma 126 (36) 49 (32)  
Extent of surgical resection   1.000 
Gross total resection 273 (77) 117 (77)  
Subtotal resection 81 (23) 34 (23)  
Radiotherapy   0.032 
Yes 260 (73) 125 (83)  
No 94 (27) 26 (17)  
Chemotherapy    0.579 
Temozolomide 103 (29) 48 (32)  
Nimustine/Fotemustine 100 (28) 36 (24)  
None 151 (43) 67 (44)  
IDH1 mutation   0.690 
Yes 130 (37) 59 (39)  
No 224 (63) 92 (61)  
IDH2 mutation   0.888 
Yes 7 (2) 4 (3)  
No 347 (98) 147 (97)  
IDH mutations   0.500 
Yes 137 (39) 64 (42)  
No 217 (61) 87 (58)  
TERT mutation   0.019 
Yes 185 (52) 61 (40)  
No 169 (48) 90 (60)  
1p deletion   0.514 
Yes 87 (25) 42 (28)  
No 267 (75) 109 (72)  
19q deletion   1.000 
Yes 102 (29) 43 (28)  
No 252 (71) 108 (72)  
1p/19q codeletion   0.924 
Yes 79 (22) 35 (23)  
No 275 (78) 116 (77)  
Molecular group   0.315 
Triple-positive 56 (16) 24 (16)  
Mutations in both TERT and IDH 11 (3) 3 (2)  
Mutation in IDH only 61 (17) 30 (20)  
Mutation in TERT only 110 (32) 33 (22)  
Triple-negative 93 (26) 50 (33)  
Others 23 (6) 11 (7)  
Median PFS (months) 23.5 24.8 0.852 
Median OS (months) 31.1 28.4 0.726 

Note: Numbers in parenthesis are percentage; SD, standard deviation; KPS, 
Karnofsky Performance Status; WHO, World Health Organization; IDH, isocitrate 
dehydrogenase; TERT, telomerase reverse transcriptase; PFS, progression free 
survival; OS, overall survival. 

 

Tables 2-5 summarize six prediction 
performance measures of classifiers based on McDSL, 
LASSO, Cox in predicting 3-year PFS and OS 
probability in the training and validation cohorts. 
AUCs of different models based on same feature 
selection method were different (Figure 2). In the 
validation cohort, AUCs of all models based on Cox 
analysis, LASSO, and McDSL in predicting 3-year PFS 
probability ranged from 0.792 to 0.849, 0.760 to 0.869, 
and 0.775 to 0.872, respectively; AUCs of all models 
based on Cox analysis, LASSO, and McDSL in 
predicting 3-year OS probability ranged from 0.808 to 
0.870, 0.804 to 0.901, and 0.800 to 0.894, respectively. 
The LR outperformed other machine learning 
algorithms in predicting 3-year PFS probability based 
on McDSL (AUC, 0.872, 95% CI: 0.828-0.916). LR had a 
sensitivity of 76.2% (95% CI: 68.7%-83.7%), specificity 
of 87.1% (95% CI: 78.9%-95.3%), NPV of 71.0% (95% 
CI: 64.5%-77.5%), PPV of 90.0% (95% CI: 
84.4%-95.5%), F-score of 0.824 (95% CI: 0.775-0.874). 
LR also outperformed other algorithms in predicting 
3-year OS probability based on LASSO (AUC, 0.901, 
95% CI: 0.861-0.940), which had a sensitivity of 81.0% 
(95% CI: 72.5%-89.5%) , specificity of 83.7% (95% CI: 
72.3%-95.1%), NPV of 77.1% (95% CI: 70.0%-84.3%), 
PPV of 87.1% (95% CI: 79.7%-94.5%), F-score of 0.838 
(95% CI: 0.792-0.884). 

AUCs of most models based on McDSL, LASSO, 
and Cox in predicting 3-year PFS and OS probability 
were not significantly different (Figures 3-4). Overall, 
models based on McDSL and LASSO performed 
better than models based on Cox analysis. 
Specifically, AUCs of the LR based on the Cox 
analysis, LASSO, and McDSL in predicting 3-year PFS 
probability were 0.849 (95% CI: 0.800-0.898), 0.869 
(95% CI: 0.823-0.915), and 0.872 (95% CI: 0.828-0.916), 
respectively; AUCs of the LR based on the three 
selection methods in predicting 3-year OS probability 
were 0.870 (95% CI: 0.823-0.918), 0.901 (95% CI: 
0.861-0.940), and 0.892 (95% CI: 0.851-0.933), 
respectively. 

Discussion 
Our purpose was to identify the predictors of 

3-year PFS and OS probabilities in patients with 
gliomas based on clinical data and molecular genetic 
markers using three selection methods, and then 
develop eight machine learning models to predict 
3-year PFS and OS probability. The results show most 
machine learning models achieved high performance 
in predicting 3-year PFS and OS probability, of which, 
LR model had the optimal predictive performance. 
Although the performance of machine learning 
models was not significantly affected by the variable 
selection methods, McDSL algorithm was more stable 
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and interpretable than Cox analysis and LASSO in the 
feature selection process and therefore can be used as 

a new method to select risk factors in the future. 

 

Table 2. The performance of eight machine learning classifiers based on McDSL, LASSO, and Cox analysis in predicting 3-year PFS 
probability in the training cohort 

 AUC  F-score  PPV  NPV  Specificity  Sensitivity  
McDSL-based classifiers       
XGBoost 0.855 (0.774-0.937) 0.810 (0.701-0.919) 84.6 (70.8-98.3) 70.8 (54.9-86.8) 78.0 (58.8-97.2) 78.4 (62.6-94.3) 
AdaBoost 0.837 (0.748-0.926) 0.811 (0.730-0.892) 83.0 (70.2-95.8) 70.9 (54.3-87.5) 74.8 (54.4-95.2) 79.8 (67.6-92.0) 
RF 0.868 (0.789-0.947) 0.822 (0.737-0.906) 86.5 (74.9-98.2) 71.7 (56.3-87.1) 81.3 (64.7-97.9) 78.7 (65.8-91.7) 
LR 0.871 (0.793-0.949) 0.820 (0.737-0.903) 86.8 (75.7-97.9) 71.2 (56.2-86.2) 81.6 (65.7-97.5) 78.2 (65.5-90.9) 
KNN 0.773 (0.674-0.871) 0.805 (0.716-0.893) 83.4 (71.2-95.5) 69.9 (53.8-86.0) 76.3 (59.0-93.5) 78.2 (65.3-91.1) 
SVM 0.843 (0.751-0.936) 0.820 (0.736-0.905) 87.0 (75.5-98.6) 71.3 (56.3-86.3) 81.9 (64.8-99.1) 78.1 (65.0-91.2) 
NB 0.813 (0.728-0.897) 0.824 (0.739-0.908) 89.2 (78.2-100) 71.2 (56.3-86.0) 85.5 (69.4-100) 77.0 (63.6-90.4) 
BPNN 0.779 (0.682-0.876) 0.811 (0.729-0.894) 84.0 (71.4-96.7) 70.9 (55.9-86.0) 76.8 (57.1-96.6) 79.0 (66.1-91.9) 
LASSO-based classifiers       
XGBoost 0.861 (0.779-0.943) 0.819 (0.732-0.905) 84.7 (72.9-96.6) 71.9 (56.0-87.8) 78.0 (60.2-95.8) 79.7 (66.4-93.0) 
AdaBoost 0.841 (0.753-0.929) 0.813 (0.727-0.899) 82.8 (70.0-95.6) 71.7 (55.4-88.0) 74.3 (54.4-94.3) 80.5 (67.4-93.6) 
RF 0.862 (0.780-0.944) 0.820 (0.736-0.904) 83.2 (71.5-95.0) 72.7 (56.9-88.4) 75.0 (57.6-92.5) 81.3 (69.1-93.4) 
LR 0.875 (0.796-0.954) 0.822 (0.736-0.909) 85.7 (73.8-97.7) 72.1 (56.3-87.9) 79.8 (62.9-96.7) 79.5 (66.6-92.5) 
KNN 0.768 (0.670-0.866) 0.806 (0.719-0.893) 82.5 (70.1-94.8) 70.5 (54.6-86.4) 74.2 (55.9-92.5) 79.4 (66.7-92.1) 
SVM 0.847 (0.754-0.941) 0.816 (0.730-0.902) 84.0 (71.7-96.3) 71.7 (55.5-87.9) 76.8 (58.5-95.0) 79.9 (66.9-92.9) 
NB 0.760 (0.637-0.883) 0.817 (0.734-0.901) 80.5 (66.3-94.7) 74.2 (56.4-92.0) 68.1 (39.2-97.1) 83.9 (70.4-97.3) 
BPNN 0.766 (0.660-0.871) 0.803 (0.714-0.893) 82.6 (68.8-96.4) 70.2 (53.6-86.8) 74.2 (51.8-96.5) 79.0 (64.7-93.3) 
Cox-based classifiers       
XGBoost 0.848 (0.764-0.932) 0.821 (0.737-0.904) 86.5 (75.4-97.5) 71.4 (56.7-86.1) 81.2 (65.2-97.1) 78.5 (66.1-90.9) 
AdaBoost 0.835 (0.745-0.925) 0.818 (0.730-0.906) 85.6 (73.7-97.6) 71.4 (56.4-86.4) 79.6 (61.4-97.9) 78.8 (65.7-91.9) 
RF 0.851 (0.764-0.938) 0.821 (0.735-0.906) 85.7 (73.6-97.8) 71.8 (56.7-87.0) 79.8 (61.3-98.2) 79.3 (66.7-91.8) 
LR 0.855 (0.772-0.939) 0.824 (0.741-0.908) 87.1 (76.6-97.5) 71.7 (57.2-86.2) 82.2 (67.7-96.7) 78.6 (66.9-90.3) 
KNN 0.794 (0.703-0.886) 0.818 (0.733-0.902) 86.0 (74.9-97.1) 71.0 (56.0-86.1) 80.5 (64.8-96.3) 78.3 (66.1-90.5) 
SVM 0.822 (0.716-0.927) 0.820 (0.735-0.905) 86.3 (75.3-97.4) 71.4 (56.6-86.1) 81.0 (65.3-96.8) 78.5 (66.2-90.7) 
NB 0.793 (0.695-0.890) 0.809 (0.717-0.901) 87.0 (75.3-98.7) 69.6 (54.3-84.9) 82.4 (64.4-100) 76.1 (62.2-90.0) 
BPNN 0.794 (0.702-0.887) 0.818 (0.732-0.904) 86.0 (74.8-97.2) 71.1 (56.1-86.2) 80.5 (64.3-96.6) 78.4 (65.8-91.0) 

Note: McDSL: multi-causes discovering with structure learning; AUC: area under the curve; PPV: positive predictive value; NPV: negative predictive value; KNN: k-Nearest 
Neighbor; LR: Logistic Regression; NB: Naive Bayes; RF: Random Forest; SVM: Support Vector Machine; BPNN: Back Propagation Neural Network. 

 

Table 3. The performance of eight machine learning classifiers based on McDSL, LASSO, and Cox analysis in predicting 3-year OS 
probability in the training cohort 

 AUC  F-score  PPV  NPV  specificity  sensitivity  
McDSL-based classifiers       
XGBoost 0.883 (0.810-0.957) 0.825 (0.725-0.925) 85.3 (72.3-98.3) 76.5 (61.8-91.2) 81.3 (64.3-98.3) 80.6 (65.3-95.8) 
AdaBoost 0.868 (0.784-0.951) 0.823 (0.736-0.910) 84.4 (71.6-97.2) 76.1 (60.9-91.4) 80.0 (62.2-97.7) 80.9 (68.0-93.7) 
RF 0.895 (0.823-0.966) 0.834 (0.750-0.918) 87.6 (75.9-99.4) 76.6 (62.6-90.6) 84.9 (69.5-100) 80.0 (66.8-93.2) 
LR 0.893 (0.821-0.965) 0.837 (0.756-0.918) 87.6 (76.6-98.7) 77.0 (63.8-90.2) 84.8 (70.8-98.9) 80.5 (68.1-93.0) 
KNN 0.801 (0.707-0.895) 0.815 (0.722-0.908) 84.6 (72.1-97.2) 74.7 (60.2-89.2) 81.1 (65.6-96.6) 79.0 (66.0-92.1) 
SVM 0.870 (0.785-0.954) 0.834 (0.750-0.917) 87.5 (76.0-98.9) 76.6 (63.2-90.0) 84.7 (70.2-99.2) 80.1 (67.3-92.9) 
NB 0.830 (0.749-0.910) 0.838 (0.752-0.924) 88.2 (76.6-99.7) 77.3 (63.0-91.7) 85.4 (70.0-100) 80.5 (66.0-95.0) 
BPNN 0.804 (0.715-0.894) 0.820 (0.736-0.904) 84.9 (72.1-97.8) 75.6 (62.2-89.0) 81.0 (63.5-98.6) 79.8 (67.0-92.7) 
LASSO-based classifiers       
XGBoost 0.897 (0.827-0.967) 0.837 (0.752-0.923) 85.9 (73.9-97.9) 78.1 (63.4-92.7) 82.1 (66.2-97.9) 82.2 (68.9-95.6) 
AdaBoost 0.880 (0.803-0.957) 0.835 (0.748-0.921) 84.9 (72.4-97.5) 78.2 (63.2-93.1) 80.4 (63.2-97.7) 82.6 (69.2-96.1) 
RF 0.903 (0.834-0.971) 0.842 (0.760-0.925) 84.8 (72.9-96.6) 79.5 (65.3-93.7) 80.0 (64.1-95.9) 84.2 (72.3-96.1) 
LR 0.907 (0.843-0.972) 0.841 (0.760-0.921) 86.4 (74.4-98.3) 78.3 (64.4-92.2) 82.7 (67.2-98.3) 82.4 (70.0-94.8) 
KNN 0.818 (0.729-0.908) 0.835 (0.748-0.921) 85.6 (73.3-97.8) 77.7 (63.1-92.2) 81.7 (65.8-97.6) 82.0 (69.2-94.8) 
SVM 0.878 (0.783-0.973) 0.840 (0.755-0.925) 85.5 (73.4-97.5) 78.7 (63.5-93.9) 81.3 (65.3-97.4) 83.1 (69.8-96.3) 
NB 0.809 (0.701-0.917) 0.836 (0.750-0.922) 83.6 (69.7-97.5) 79.4 (64.5-94.3) 77.4 (53.6-100) 84.4 (71.4-97.3) 
BPNN 0.811 (0.718-0.905) 0.829 (0.742-0.917) 84.9 (71.8-98.0) 77.2 (62.2-92.2) 80.6 (62.3-98.8) 81.7 (68.1-95.2) 
Cox-based classifiers       
XGBoost 0.870 (0.789-0.952) 0.827 (0.738-0.916) 85.9 (74.1-97.7) 76.2 (62.1-90.4) 82.5 (67.6-97.4) 80.2 (67.0-93.5) 
AdaBoost 0.861 (0.778-0.944) 0.820 (0.727-0.914) 85.6 (72.8-98.3) 75.5 (60.4-90.7) 82.0 (65.1-99.0) 79.5 (64.5-94.5) 
RF 0.872 (0.790-0.954) 0.828 (0.742-0.914) 85.6 (73.9-97.3) 76.5 (62.2-90.7) 82.1 (67.2-96.9) 80.7 (68.1-93.3) 
LR 0.876 (0.795-0.957) 0.833 (0.749-0.917) 86.2 (74.9-97.5) 76.9 (63.4-90.4) 82.9 (68.7-97.1) 81.0 (69.0-93.0) 
KNN 0.812 (0.725-0.898) 0.824 (0.738-0.911) 85.9 (74.5-97.2) 75.7 (61.7-89.7) 82.6 (68.2-97.0) 79.7 (66.9-92.6) 
SVM 0.842 (0.738-0.945) 0.827 (0.741-0.913) 85.5 (74.3-96.8) 76.2 (62.3-90.2) 81.9 (67.4-96.5) 80.4 (67.9-93.0) 
NB 0.810 (0.718-0.902) 0.820 (0.727-0.913) 86.3 (74.3-98.3) 75.0 (60.8-89.2) 83.4 (67.7-99.0) 78.7 (65.1-92.2) 
BPNN 0.809 (0.720-0.898) 0.823 (0.734-0.912) 85.5 (73.8-97.2) 75.8 (61.5-90.0) 82.0 (67.0-97.0) 79.9 (66.8-93.0) 

Note: McDSL: multi-causes discovering with structure learning; AUC: area under the curve; PPV: positive predictive value; NPV: negative predictive value; KNN: k-Nearest 
Neighbor; LR: Logistic Regression; NB: Naive Bayes; RF: Random Forest; SVM: Support Vector Machine; BPNN: Back Propagation Neural Network. 
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Figure 2. Comparison of ROC curves of eight machine learning classifiers in predicting 3-year PFS and OS probability based on Cox, LASSO, and McDSL, respectively. (a) 
McDSL-based 3-year PFS prediction; (b) McDSL-based 3-year OS prediction; (c) LASSO-based 3-year PFS prediction; (d) LASSO-based 3-year OS prediction; (e) Cox-based 
3-year PFS prediction; and (f) Cox-based 3-year OS prediction. 

Table 4. The performance of eight machine learning classifiers based on McDSL, LASSO, and Cox analysis in predicting 3-year PFS 
probability in the validation cohort 

 AUC  F-score  PPV  NPV  Specificity  Sensitivity  
McDSL-based classifiers       
XGBoost 0.861 (0.814-0.909) 0.816 (0.768-0.864) 85.0 (77.3-92.6) 71.4 (63.9-78.9) 78.6 (64.7-92.6) 78.8 (69.7-87.8) 
AdaBoost 0.840 (0.787-0.894) 0.812 (0.762-0.861) 82.8 (74.8-90.8) 71.5 (63.2-79.7) 74.5 (59.0-90.0) 79.9 (70.7-89.1) 
RF 0.869 (0.824-0.915) 0.821 (0.772-0.870) 86.2 (78.1-94.4) 71.7 (64.6-78.9) 80.7 (66.2-95.2) 78.7 (70.4-86.9) 
LR 0.872 (0.828-0.916) 0.824 (0.775-0.874) 90.0 (84.4-95.5) 71.0 (64.5-77.5) 87.1 (78.9-95.3) 76.2 (68.7-83.7) 
KNN 0.775 (0.717-0.833) 0.808 (0.758-0.859) 83.6 (77.2-89.9) 70.5 (62.7-78.4) 76.5 (64.9-88.1) 78.5 (69.8-87.1) 
SVM 0.841 (0.785-0.898) 0.822 (0.773-0.870) 87.0 (79.4-94.7) 71.5 (64.5-78.5) 82.1 (68.6-95.7) 78.1 (69.8-86.3) 
NB 0.809 (0.742-0.876) 0.823 (0.775-0.872) 88.8 (79.4-98.2) 71.3 (64.7-77.9) 84.8 (68.4-100) 77.0 (68.2-85.9) 
BPNN 0.784 (0.721-0.846) 0.814 (0.764-0.865) 84.5 (76.9-92.1) 71.3 (63.3-79.3) 77.9 (64.1-91.6) 78.9 (69.9-87.9) 
LASSO-based classifiers       
XGBoost 0.859 (0.812-0.907) 0.818 (0.770-0.866) 84.7 (77.4-92.0) 71.9 (63.9-79.9) 78.0 (64.7-91.4) 79.4 (70.2-88.7) 
AdaBoost 0.839 (0.786-0.893) 0.813 (0.763-0.863) 82.6 (74.7-90.5) 71.7 (63.3-80.1) 74.1 (58.8-89.4) 80.3 (71.2-89.4) 
RF 0.858 (0.810-0.907) 0.820 (0.774-0.866) 83.0 (76.7-89.3) 72.8 (65.0-80.6) 74.7 (62.8-86.7) 81.2 (73.2-89.3) 
LR 0.869 (0.823-0.915) 0.818 (0.769-0.868) 88.0 (80.3-95.7) 70.8 (63.6-78.0) 83.9 (71.1-96.6) 76.7 (67.7-85.8) 
KNN 0.768 (0.706-0.830) 0.807 (0.759-0.855) 82.5 (75.4-89.6) 70.6 (63.0-78.3) 74.4 (61.1-87.7) 79.2 (71.0-87.5) 
SVM 0.843 (0.786-0.900) 0.817 (0.769-0.864) 84.3 (77.0-91.6) 71.7 (64.1-79.4) 77.3 (63.7-90.9) 79.5 (70.6-88.4) 
NB 0.760 (0.678-0.843) 0.814 (0.768-0.860) 80.6 (71.9-89.3) 73.0 (64.1-82.0) 69.4 (48.7-90.2) 82.6 (73.5-91.7) 
BPNN 0.767 (0.694-0.841) 0.805 (0.753-0.856) 82.9 (73.4-92.4) 70.3 (62.0-78.5) 74.9 (56.4-93.4) 78.6 (68.4-88.8) 
Cox-based classifiers       
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 AUC  F-score  PPV  NPV  Specificity  Sensitivity  
XGBoost 0.846 (0.795-0.896) 0.821 (0.770-0.872) 86.3 (79.6-93.0) 71.7 (64.2-79.1) 81.0 (69.5-92.5) 78.5 (70.3-86.7) 
AdaBoost 0.832 (0.776-0.888) 0.818 (0.763-0.873) 85.3 (77.2-93.3) 71.6 (63.8-79.4) 79.1 (64.2-93.9) 78.9 (70.0-87.8) 
RF 0.846 (0.796-0.896) 0.821 (0.771-0.871) 85.5 (78.2-92.9) 71.9 (64.4-79.5) 79.5 (65.5-93.5) 79.1 (70.7-87.6) 
LR 0.849 (0.800-0.898) 0.804 (0.723-0.885) 88.6 (81.6-95.6) 69.2 (59.4-79.0) 85.2 (73.9-96.6) 74.1 (59.8-88.5) 
KNN 0.794 (0.734-0.854) 0.819 (0.767-0.871) 85.9 (79.4-92.4) 71.4 (64.0-78.8) 80.4 (69.4-91.4) 78.4 (70.5-86.2) 
SVM 0.817 (0.746-0.889) 0.820 (0.769-0.871) 86.2 (79.9-92.6) 71.5 (64.2-78.8) 81.0 (70.3-91.7) 78.3 (70.2-86.4) 
NB 0.792 (0.724-0.860) 0.810 (0.750-0.870) 86.8 (79.2-94.5) 69.9 (61.7-78.1) 82.3 (68.1-96.4) 76.1 (66.0-86.2) 
BPNN 0.793 (0.730-0.856) 0.818 (0.764-0.871) 85.8 (78.9-92.6) 71.3 (63.7-78.9) 80.3 (68.7-91.8) 78.3 (70.2-86.4) 

Note: McDSL: multi-causes discovering with structure learning; AUC: area under the curve; PPV: positive predictive value; NPV: negative predictive value; KNN: k-Nearest 
Neighbor; LR: Logistic Regression; NB: Naive Bayes; RF: Random Forest; SVM: Support Vector Machine; BPNN: Back Propagation Neural Network. 

 

 
Figure 3. Comparison of ROC curves of each machine learning classifier based on three variable selection methods in predicting 3-year PFS probability. 
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Figure 4. Comparison of ROC curves of each machine learning classifier based on three variable selection methods in predicting 3-year OS probability. 

Table 5. The performance of eight machine learning classifiers based on McDSL, LASSO, and Cox analysis in predicting 3-year OS 
probability in the validation cohort 

 AUC  F-score  PPV  NPV  Specificity  Sensitivity  
McDSL-based classifiers       
XGBoost 0.887 (0.844-0.930) 0.829 (0.782-0.877) 85.7 (77.3-94.2) 76.4 (69.3-83.5) 81.8 (68.4-95.2) 80.7 (71.9-89.4) 
AdaBoost 0.868 (0.820-0.917) 0.823 (0.774-0.872) 84.3 (75.9-92.8) 75.9 (68.5-83.3) 79.7 (65.8-93.7) 80.6 (71.8-89.5) 
RF 0.894 (0.854-0.935) 0.834 (0.786-0.882) 87.7 (78.6-96.8) 76.2 (69.4-83.0) 84.7 (70.3-99.0) 79.8 (71.3-88.3) 
LR 0.892 (0.851-0.933) 0.841 (0.795-0.887) 89.2 (83.0-95.4) 76.5 (70.4-82.6) 87.0 (78.1-96.0) 79.7 (72.6-86.8) 
KNN 0.800 (0.745-0.855) 0.815 (0.764-0.866) 85.2 (77.9-92.4) 74.2 (67.2-81.3) 81.6 (70.5-92.7) 78.4 (69.8-86.9) 
SVM 0.866 (0.815-0.917) 0.834 (0.786-0.882) 87.6 (79.6-95.6) 76.2 (69.7-82.7) 84.7 (72.1-97.2) 79.9 (71.9-87.8) 
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 AUC  F-score  PPV  NPV  Specificity  Sensitivity  
NB 0.825 (0.767-0.884) 0.838 (0.790-0.886) 87.8 (78.2-97.4) 77.1 (68.9-85.2) 84.6 (68.6-100) 80.5 (70.1-91.0) 
BPNN 0.806 (0.746-0.867) 0.823 (0.772-0.874) 85.4 (77.1-93.7) 75.3 (68.2-82.5) 81.6 (68.6-94.7) 79.6 (71.0-88.2) 
LASSO-based classifiers       
XGBoost 0.894 (0.851-0.936) 0.836 (0.786-0.885) 85.6 (78.2-93.1) 77.6 (69.4-85.8) 81.4 (69.4-93.5) 81.9 (72.4-91.4) 
AdaBoost 0.875 (0.824-0.926) 0.833 (0.780-0.885) 84.6 (76.0-93.3) 77.7 (69.0-86.3) 79.7 (65.3-94.1) 82.4 (72.5-92.2) 
RF 0.896 (0.856-0.936) 0.840 (0.794-0.886) 84.3 (77.6-91.0) 79.0 (71.4-86.6) 79.0 (67.8-90.3) 83.9 (75.8-91.9) 
LR 0.901 (0.861-0.940) 0.838 (0.792-0.884) 87.1 (79.7-94.5) 77.1 (70.0-84.3) 837 (72.3-95.1) 81.0 (72.5-89.5) 
KNN 0.813 (0.756-0.870) 0.833 (0.783-0.882) 85.3 (77.9-92.7) 77.1 (69.5-84.6) 81.1 (69.5-92.7) 81.5 (73.0-90.0) 
SVM 0.871 (0.805-0.936) 0.838 (0.787-0.889) 85.4 (78.2-92.5) 78.1 (69.8-86.4) 80.9 (69.2-92.7) 82.6 (73.3-91.9) 
NB 0.804 (0.726-0.881) 0.832 (0.781-0.883) 83.4 (73.7-93.1) 78.4 (69.9-86.9) 77.2 (58.3-96.2) 83.5 (74.4-92.7) 
BPNN 0.808 (0.741-0.876) 0.829 (0.775-0.883) 85.0 (75.7-94.2) - 80.4 (64.7-96.0) 81.3 (71.4-91.2) 
Cox-based classifiers       
XGBoost 0.867 (0.819-0.915) 0.828 (0.776-0.881) 85.6 (78.8-92.3) 76.3 (68.6-84.0) 81.8 (71.4-92.1) 80.5 (71.5-89.5) 
AdaBoost 0.856 (0.805-0.907) 0.821 (0.758-0.884) 85.5 (77.7-93.3) 75.4 (66.3-84.4) 81.7 (69.5-93.9) 79.4 (68.0-90.8) 
RF 0.866 (0.816-0.916) 0.829 (0.780-0.878) 85.4 (79.0-91.9) 76.4 (69.1-83.7) 81.6 (71.6-91.6) 80.7 (72.2-89.2) 
LR 0.870 (0.823-0.918) 0.809 (0.730-0.887) 88.6 (80.2-96.9) 73.0 (62.9-83.1) 86.6 (74.2-98.9) 75.1 (59.7-90.4) 
KNN 0.810 (0.757-0.862) 0.826 (0.774-0.877) 85.7 (79.3-92.0) 75.7 (68.4-83.0) 82.1 (72.6-91.6) 79.9 (71.3-88.4) 
SVM 0.835 (0.760-0.910) 0.827 (0.777-0.877) 85.4 (78.9-91.9) 76.0 (68.9-83.1) 81.6 (71.7-91.5) 80.4 (72.2-88.5) 
NB 0.808 (0.747-0.870) 0.821 (0.762-0.880) 86.1 (78.9-93.4) 74.9 (66.8-83.0) 83.0 (71.6-94.3) 78.7 (69.0-88.4) 
BPNN 0.808 (0.752-0.864) 0.825 (0.771-0.879) 85.4 (78.6-92.1) 75.7 (68.2-83.3) 81.6 (71.4-91.8) 80.0 (71.3-88.7) 

Note: McDSL: multi-causes discovering with structure learning; AUC: area under the curve; PPV: positive predictive value; NPV: negative predictive value; KNN: k-Nearest 
Neighbor; LR: Logistic Regression; NB: Naive Bayes; RF: Random Forest; SVM: Support Vector Machine; BPNN: Back Propagation Neural Network. 

 
 
After an initial glioma diagnosis, standard 

treatment including maximal surgical resection with 
or without temozolomide-based chemotherapy and 
radiotherapy was done. Through this process, some 
important established prognostic factors were 
obtained, such as WHO grade, extent of surgical 
resection, and postoperative treatment [22]. In this 
study, we found tumor location, WHO grade, 
histologic type, and molecular genetic group were 
risk factors of 3-year PFS and OS probability in 
patients with gliomas. Survival of gliomas is highly 
variable, reflecting molecular heterogeneity of the 
disease. Among all of the known glioma-associated 
molecular alterations discovered to date, the status of 
an IDH mutation has the largest prognostic 
significance. IDH mutations were noted in the vast 
majority of grade II and III gliomas [23], which were 
associated with improved survival as compared to 
glioblastoma (GBM). Patients with an IDH mutation 
gliomas had a significantly longer OS as compared 
with those with an IDH wildtype gliomas, with a 
median OS of 1.7, 6.3 and 8.0 years for patients with 
IDH wildtype, patients with IDH mutation only 
(astrocytic gliomas) and patients with IDH mutation 
plus 1p/19q codeletion (oligodendroglial gliomas), 
respectively [13]. Additionally, in a recent study of 
grade III glioma patients treated with radiotherapy 
and either temozolomide or nitrosourea, IDH 
mutation status was found to be a significant 
prognostic factor for PFS (hazard ratio HR] = 0.59) 
and OS (HR = 0.42) [24]. The 1p/19q codeletion was 
observed in tumors of the oligodendroglial lineage. 
The association between 1p/19q codeletion and 
prolonged OS has been observed in many previous 
studies. The median OS of patients with 1p/19q 
codeleted tumors was 11.9 years, significantly longer 

than that of 8.1 years for patients with 1p/19q intact 
tumors [25]. Regardless of treatment protocol, 
patients with combined 1p/19q codeletion and IDH 
mutation had the longest PFS at 62 months as 
compared with 48 months for IDH mutant alone and 
20 months for IDH wildtype [26]. TERT promoter 
mutations were found in approximately 80% of IDH 
wildtype GBM, and in the majority of IDH mutant, 
1p/19q codeleted oligodendrogliomas [9, 27, 28]. In 
GBM, TERT promoter mutations presented worse 
prognosis as compared with that of patients with IDH 
wildtype GBM [29-31]. Grade II/III gliomas with 
TERT promoter mutations alone harbored worse 
prognosis as compared with tumors with all three 
alteration [9]. When three molecular alterations alone 
and their combinations (i.e., molecular group) entered 
the McDSL, only molecular group was selected as a 
cause of multiclass of survivals, suggesting the 
molecular group was better than single molecular 
genetic marker due to the molecular group provides 
comprehensive genetic alterations characterization of 
gliomas. 

Machine learning has been used to capture 
patterns within complex data that are beyond human 
perception and these patterns has been adopted to 
make data-driven prediction [32]. Overall results of 
machine learning models demonstrated good 
predictive performance for 3-year PFS and OS 
probability of glioma patients. In the glioma studies, 
machine learning algorithm has been applied 
directing toward discernment of MRI characteristics 
of tumors or a huge number of high dimensional 
radiomic features extracted from MRI [33]. Only one 
non-imaging-focused study has adopted machine 
learning for GBM outcome prediction [34-38]. 
However, the reliability and robustness of these 
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models were influenced by various factors, such as 
interpretation of MRI images, tumor segmentation, 
feature and extraction, and repeatability of 
multiparametric features. Hence, machine learning 
based radiomics were insufficient for reliable clinical 
usage at this stage. LASSO and Cox model are 
commonly used to select features, but the numbers of 
selected features are varied after the resampling or 
bootstrapping. As indicated by this study, LASSO and 
Cox model selected a wide-range of feature number 
during the bootstrapping for 1000 times, in contrast, 
McDSL only selected four factors. Because in models 
constructed by LASSO and Cox model, independent 
variables are not all independent risk factors of 
survival, they are just associated with survival. 
However, the variables identified by McDSL have 
causal relationship with survival and therefore are 
true risk factors. 

There were also some limitations should be 
acknowledged. Firstly, we did not consider the tumor 
size and intratumor features, such as necrosis size and 
texture features extracted from images. Previous 
studies showed no relationship between tumor size, 
necrosis size and patient survival [39-41]. It is 
challengeable for texture features used in predicting 
survival outcomes due to unsolved issued of 
reproducibility and interpretability before application 
in clinical setting. Secondly, we did not perform 
external validation with independent datasets for 
generalization. Further prospective study is needed to 
integrate the molecular genetic markers based 
machine learning models into clinical practice. 
Thirdly, we did not consider the effects of various 
treatment strategies on tumor progression after 
standard chemoradiotherapy in OS analyses. 
However, this pitfall may be mitigated by performing 
PFS analyses. 

In conclusion, our study results implied that 
machine learning models based on clinical profiles 
could obtain high performance in predicting 3-year 
PFS and OS probability of patients with gliomas. We 
demonstrated the importance of diverse sources of 
features in predicting survival outcomes of gliomas. 
The predictive model presented in this study is a 
preliminary step in a long-term plan of developing 
personalized treatment plans for glioma patients. 
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