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Abstract 

Background: Tumor mutation burden (TMB) has emerged as an important predictive factor for drug 
resistance in cancers; however, the specific mechanism underlying TMB function in melanoma remains 
elusive. 
Methods: Data on somatic mutations, RNA sequencing (RNA-seq), miRNA sequencing (miRNA-seq), 
and clinical characteristics for 472 melanoma patients were extracted from the TCGA cohort. RNA-seq 
data of melanoma cell lines were obtained from the Cancer Cell Line Encyclopedia, and sensitivity of cell 
lines to therapeutic agents is available in the Cancer Therapeutics Response Portal. TMB was calculated 
based on somatic mutation data. Differentially expressed gene analysis, weighted gene co-expression 
network analysis, protein-protein interaction networks, Minimal Common Oncology Data Elements, and 
survival analysis were leveraged to determine TMB-related hub genes. Competing endogenous RNA 
(ceRNA) networks were constructed to explore the molecular mechanisms underlying hub gene 
function. The influence of key genes on drug sensitivity was analyzed to investigate their clinical 
significance. 
Results: Elevated TMB levels were significantly correlated with improved survival outcomes. In addition, 
six tumor-infiltrating immune cells, including naive B cells, regulatory T cells, memory resting CD4 T cells, 
memory B cells, activated mast cells, and resting NK cells, were significantly overexpressed in the 
low-TMB group relative to the high-TMB group. Furthermore, we identified FLNC, NEXN, and TNNT3 as 
TMB-related hub genes, and constructed their ceRNA networks, including five miRNAs (has-miR-590-3p, 
has-miR-374b-5p, has-miR-3127-5p, has-miR-1913, and has-miR-1291) and 31 lncRNAs (FAM66C, MIAT, 
NR2F2AS1, etc.). Finally, we observed that TMB-related genes were associated with distinct therapeutic 
responses to AKT/mTOR pathway inhibitors. 
Conclusions: We identified three TMB-associated key genes, established their ceRNA networks, and 
investigated their influence on therapeutic responses, which could provide insights into future precision 
medicine. 
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Introduction 
Cutaneous melanoma is the deadliest type of 

skin cancer [1], and its morbidity remains increasing 
annually, especially in the Caucasian population [2, 
3]. Immunotherapies, including CTLA-4 and 
PD1/PDL1 inhibitors, are the preferred treatments for 
advanced melanoma [4-6]. However, approximately 

half of melanoma patients treated with 
immunotherapies will develop primary or acquired 
resistance [7-10], which poses a major challenge for 
improving therapies. There are no highly accurate 
predictive biomarkers of therapy resistance, and there 
are limited effective treatment options available once 
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resistance develops [11]. Therefore, it is imperative to 
identify novel predictive biomarkers for melanoma 
treatment to guide clinical decision-making. 

Tumor mutation burden (TMB) is defined as the 
total number of variants in the whole length of exons, 
and it is regarded as a novel predictor of response to 
immunotherapy. TMB levels are correlated with 
advantageous immune-related prognosis in patients 
with breast cancer [12] and lung cancer [13], and TMB 
combined with CpGs can predict objective responses 
to PD-1/PD-L1 inhibition blockade [14]. Nevertheless, 
the detailed mechanism of TMB function in 
melanoma remains elusive. 

With advances in gene sequencing technology, a 
wealth of gene databases, such as the Cancer Genome 
Atlas (TCGA) [15] and Gene Expression Omnibus 
(GEO), are emerging. Meanwhile, a series of 
bioinformatics tools, including weighted gene 
co-expression network analysis (WGCNA) [16], 
CYBERSORT [17], gene set enrichment analysis 
(GSEA) [18], and least absolute shrinkage and 
selection operator (LASSO), are emerging that can 
help to process such big data. The combination of 
these databases and bioinformatics means has 
produced numerous scientific achievements. 

In this study, we aimed to explore the 
mechanism underlying TMB function in melanoma. 
To this end, we analyzed RNA-seq data and 
corresponding phenotypic data using bioinformatics 
methods to identify TMB-related hub genes, 
investigate their competing endogenous RNA 
networks, and investigate the effect of TMB on the 
immune microenvironment and drug sensitivity. This 
study provides new insights into the molecular 
mechanism of melanoma development and provides 
a reference for clinical decision-making in melanoma 
treatment. 

Materials and Methods 
Data Acquisition and Genome-Wide Mutation 
Profiling 

Data on somatic mutations, RNA-seq, miRNA- 
seq, and clinical characteristics for 472 patients with 
melanoma were obtained from the TCGA cohort 
using the GDC tool. 

 R package “maftools” [19], which could count 
frequencies of various variant classifications and 
distributions of different types of variant genes, was 
utilized to analyze somatic mutation data. 

Comprehensive investigation into effect of 
TMB on clinical features 

TMB was calculated using the following 
formula: TMB = (total amount of truncating mutation 

× 1.5 + total amount of non-truncating mutation × 
1.0)/ whole length of exons [20]. The truncating 
mutations include nonsense, frame-shift deletion, 
frame-shift insertion, and splice-site mutations, while 
non-truncating mutations refer to missense, in-frame 
deletion, in-frame insertion, and nonstop mutations. 
Truncating mutations were allocated a greater weight 
because of their stronger deleterious influence on 
gene expression than that of non-truncating 
mutations. 

We performed differentially expressed genes 
(DEG) analysis based on RNA-seq data using R 
package “edgeR” [21], which implements a series of 
statistical methods including empirical Bayes 
estimation, exact tests, generalized linear models, and 
quasi-likelihood tests. DEG analysis was performed 
between the low- and high-TMB groups, with a cutoff 
value of the median TMB value. Selection criteria for 
DEGs were as follows: |logFC| > 1 and P < 0.05. 

Functional annotation of DEGs was conducted 
using DAVID bioinformatics resources [22], which 
provides a comprehensive set of functional annotation 
tools for researchers to comprehend the biological 
meaning behind specific gene sets. 

Relationships between TMB and clinical 
features, including clinical stage, pathological type, 
and survival, were analyzed to determine the clinical 
significance of TMB. 

Effect of TMB on tumor immune 
microenvironment 

Since TMB is associated with immunity, we 
sought to investigate the relationship between TMB 
and tumor-infiltrating immune cells (TIICs), which 
could be estimated using CYBERSORT. CIBERSORT 
is an in silico algorithm that enables precise 
estimation of immune cell fractions using RNA-seq 
profiles for bulk samples [17]. The accuracy of 
CIBERSORT has been demonstrated by 
immunohistochemistry and flow cytometry. The 
operating parameters used in the present study were 
as follows: B-mode, disable quantile normalization, 
and permutation for significance analysis 100. We 
filtered out the samples with P> 0.05 to increase the 
accuracy of the estimated results. 

Exploration of the TMB-related Hub Genes 
and underlying molecular mechanism 

Weighted Gene Co-expression Network 
Analysis (WGCNA), a systematic algorithm [16] for 
weighted correlation network analysis, serves for 
identifying modules of highly correlated genes and 
relating modules to TMB. RNA-seq data for 56499 
genes from 472 melanoma patients were normalized 
into TPM format. After removing 35312 genes with 
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extremely low expression values, 21187 genes were 
used to construct a weighted correlation network and 
identify modules. TMB values for patients were used 
as external clinical traits and related to modules. 

The protein-protein interaction (PPI) networks 
were constructed based on genes in the most 
TMB-relevant module, using the STRING database 
(version 11.0) of known and predicted protein-protein 
interactions [23], which now covers 24584628 proteins 
from 5090 organisms. The users only need to submit a 
list of gene symbols and species, and the website 
provides interaction relationships among submitted 
proteins. These interactions include direct (physical) 
and indirect (functional) associations. 

The PPI network was then exported to a local 
folder in the TSV file format, and further analyzed 
using Minimal Common Oncology Data Elements 
(MCODE) [24], a Cytoscape plug-in (version 3.8.0) 
[25], which identified clusters (highly interconnected 
regions) in a network. The setting parameters were as 
follows: Degree Cutoff 2, Node Score Cutoff 0.2, 
K-Core 2, and Max Depth 100. 

To further clarify the molecular mechanism 
underlying TMB-related hub genes, we constructed a 
competing endogenous RNA (ceRNA) network. The 
ceRNA theory suggests that any RNA transcript that 
harbors MREs can sequester miRNAs from other 
targets sharing the same MREs, thereby regulating 
their expression [26, 27]. Importantly, the ability of 
two transcripts to cross-regulate each other can be 
bioinformatically predicted based on the MREs that 
they have in common [26]. First, we retrieved five 
miRNA-related databases (miRWalk, miRanda, 
miRDB, RNA22, and Targetscan) to obtain hub 
gene-associated miRNAs. The miRNAs that were 
presented in at least four databases were isolated and 
further assessed using the log-rank test. Then, pairing 
relationships between miRNAs and lncRNAs were 
obtained by retrieving the lncBase v2.0 database and 
subsequently performing the log-rank test. At this 
point, the ceRNA network was completed. 

Correlation between Hub Genes and Drug 
Sensitivity 

Since TMB was reported as a novel predictor of 
response to immunotherapy, we investigated 
associations between TMB-related hub genes and 
sensitivity of melanoma cells to therapeutic drugs. 
Data on melanoma cell lines were obtained from two 
large-scale cancer profiling studies: the Cancer Cell 
Line Encyclopedia (CCLE) [28-29], which profiles 
gene expression in cancer cells, and the Cancer 
Therapeutics Response Portal (CTRP) [30], which 
characterizes the response of cancer cell lines to a 
collection of drugs. We categorized melanoma cell 

lines into low- and high-expression groups based on 
median RNA expression values, and compared 
sensitivity to therapeutic drugs in the high- versus 
low- group. The IC50 of each drug was used as a 
measure of drug response. 

Statistics 
All statistical analyses were completed using R 

software (Version 4.0.1). The normal distribution of 
continuous variables was evaluated using the 
Shapiro-Wilk test, and the homogeneity of variance 
was evaluated using Bartlett's test. According to the 
data homogeneity of variance and normal 
distribution, either the independent sample t test or 
Wilcoxon signed rank test was chosen. The log-rank 
test was used to evaluate survival significance. 
Spearman’s correlation coefficient was used to assess 
the correlation between two continuous variables. The 
correlation intensity was divided into five grades 
based on the absolute value of the partial correlation 
coefficient: 0.00-0.19 corresponded to very weak, 
0.20-0.39 to weak, 0.40-0.59 to moderate, 0.60-0.79 to 
strong, and 0.80–1.0 to very strong [31]. P < 0.05 was 
considered statistically significant. 

Results 
Genome-wide mutation profiling in melanoma 

Considering somatic mutations as the molecular 
basis of TMB, we first characterized genome-wide 
variations by analyzing somatic mutation data of 
melanoma. An overview of the analytical strategy is 
shown in Figure 1. We observed that missense 
mutations, nonsense mutations, and splice sites were 
the top three frequent variation types (Figure 2A), and 
single-nucleotide polymorphism (SNP) constituted 
the vast majority of variant types (Figure 2B). C > T 
was the most common type of single nucleotide 
variation (SNV) class (Figure 2C). Moreover, we 
displayed the number of mutated bases in each of the 
patients, with a median value of 254 (Figure 2D). The 
top 10 mutated genes in melanoma were TTN (72%), 
MUC16 (67%), DNAH5 (49%), PCLO (44%), LRP1B 
(38%), ANK3 (32%), DNAH7 (32%), ADGRV1 (35%), 
RP1 (33%), and BRAF (51%) (Figure 2F). The waterfall 
plot showed distribution of all variant classifications 
in all patients (Figure 2G). 

Comprehensive investigation of the role of 
TMB in clinical traits 

To uncover the clinical implications of mutations 
in melanoma, we first calculated the TMB value in all 
patients, obtaining a median value of 7.0 and a mean 
value of 13.1 (Figure 3A, Table S1). Through different 
expression analyses, we observed 443 DEGs (370 
upregulated and 73 downregulated) in the high-TMB 
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group versus the low-TMB group (Figure 3B, Table 
S2). The top 10 upregulated genes were FGFR3, 
TCHH, CNFN, TGM1, SULT2B1, ENTPD3, SLC22A1, 
TBX1, VIPR1,and TREX2, while the top ten 
downregulated genes were ZG16B, TG, ADAMTS8, 
PIGR, KLHL41, DES, CA6, MRGPRX4, RRAD, and 
SCX (P< 0.05, |logFC| >1, Table S1). The heatmap of 
DEGs showed distinct expression levels between 
high- and low-TMB groups (Figure 3C). Functional 
enrichment analysis demonstrated that TMB-related 
pathways include epidermal development, 
keratinization, and keratinocyte differentiation 
(Figure 3D, Table S3). Meanwhile, the top three KEGG 
pathways were steroid hormone biosynthesis, focal 
adhesion, and basal cell carcinoma (Figure 3E, Table 
S1). TMB was significantly correlated with sample 
pathological types (P < 0.05, Figure 3G), but not with 
the tumor stage (P > 0.05, Figure 3F). Consistent with 
previous findings, high-TMB was significantly 
associated with improved survival (P < 0.0001, Figure 
3H). 

Investigation of the TMB-related TIICs 
Considering that TMB is associated with 

immunity, we investigated the abundance of 
tumor-infiltrating immune cells (TIICs) in melanoma 
using CYBERSORT, and found that M2 macrophages, 
CD8 T cells, and M0 macrophages were the top three 
TIICs with the highest abundance (Figure 4A, Table 
S4). Moreover, seven types of TIICs were significantly 
related to survival, including eosinophils, regulatory 
T (Treg) cells, T follicular helper cells, CD8 T cells, M1 
macrophages, naive CD4 T cells, and activated mast 
cells (Figure 4B-H). Furthermore, we sought to clarify 

the association of TMB with TIICs by categorizing 
samples into low- and high-TMB groups and 
performed differential expression analysis of TIICs. 
The findings revealed six types of immune cells that 
were significantly upregulated in the low-TMB group 
compared to the high-TMB group, including naive B 
cells, memory resting CD4 T cells, Treg cells, memory 
B cells, activated mast cells, and resting NK cells 
(Figure 4I-J). 

Identification and Validation of TMB-related 
Hub Genes and ceRNAs 

To further explore the potential molecular 
mechanism underlying TMB, we next identified 
TMB-related hub genes by performing WGCNA 
based on RNA-seq data and TMB data. We first 
acquired 21187 genes by filtering out 35312 extremely 
low-expressed genes from 56499 genes, and then 
constructed a weighted correlation network. To build 
a scale-free network, we determined β = 14 as the 
soft-threshold power (Figure 5A). A hierarchical 
clustering tree was established using dynamic hybrid 
cutting. Each leaf on the tree represented a single 
gene, and genes with close correlation formed a 
branch of the tree, representing a gene module (Figure 
5B). Among the 23 modules, the Tan module was the 
most related to TMB (cor =0.21, P = 5.74e-10, Figure 
5C). Fifty-nine genes in the Tan module were further 
analyzed using the PPI network and MCODE (Figure 
5D), and the genes in the biggest cluster were assessed 
using the log-rank test. Eventually, three genes 
(FLNC, NEXN, and TNNT3) were identified as 
TMB-related hub genes (Figure 5E-G). 

 

 
Figure 1. The workflow of this study. 
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Figure 2. Comprehensive profiling of somatic mutation data. (A) Variant classification of melanoma is displayed, and missense mutation is the most frequent mutation. (B) SNP 
constitutes the vast majority in variant types. (C) C > T is the most common type of SNV class. (D) The amount of mutated bases in each patient is shown, with a median value 
of 254. (E) Variant classification summary. (F) The top 10 mutated genes are shown. (G) Waterfall plot shows distribution of all variant classifications in all patients. Different 
colors with specific annotations at the bottom represent different variant classifications. SNV: single nucleotide variation. 

 
Figure 3. Comprehensive profiling of TMB in melanoma. (A) Distribution of TMB values in patients. (B) High-TMB group shows 443 DEGs compared to low-TMB group. (C) 
Heatmap of DEGs displays distinct expression levels between high- and low-TMB groups. (D) Gene oncology (GO) analyses of DEGs. (E) KEGG pathways of DEGs. (F) TMB has 
no relationship with tumor stage (P> 0.05). (G) TMB value is significantly higher in metastatic melanoma than in primary melanoma (P < 0.05). (H) High-TMB is significantly 
associated with advantageous survival outcomes. TMB: tumor mutation burden; DEGs: differentially expressed genes. 
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Figure 4. Investigation of the TMB-related TIICs. (A) Distribution of 22 types of TllCs in melanoma. Asterisk (*) represents the specific type of immune cells which is significantly 
correlated with survival. (B-H) Kaplan-Meier curves of relevant TIICs. (I) Volcano plot of differentially expressed TIICs between low- and high-TMB groups. (J) Box plots 
demonstrate differential expression levels of TIICs between low- and high-TMB groups. Asterisk (*) indicated a statistical significance. TIICs: tumor infiltrating immune cells. 

 
To further clarify the molecular mechanism 

underlying TMB-related hub genes, we constructed a 
competing endogenous RNA (ceRNA) network. Five 
miRNA-mRNA pairs (NEXN and has-miR-590-3p, 
NEXN and has-miR-374b-5p, FLNC and 
has-miR-3127-5p, FLNC and has-miR-1913, TNNT3 
and has-miR-1291), and 36 pairs of miRNA-lncRNA 
were determined to be competing endogenous RNAs. 

At this point, the ceRNA network was completed, 
consisting of 3 mRNAs, 5 miRNAs, and 31 lncRNAs 
(Figure 5I, Table S5). 

TMB-related gene expression was reflective of 
drug responses 

We identified 16 types of therapeutic agents that 
were significantly correlated with hub gene 
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expression levels (Figure 6A, Table S6). Consistent 
with previous results, which demonstrated that 
elevated NEXN expression level was reflective of 
improved survival outcomes while reduced FLNC or 
TNNT3 levels were associated with beneficial survival 
(Figure 6B-D), we observed that NEXNHI cells were 
more sensitive to AKT/mTOR pathway inhibitors 
(Figure 6C), whereas FLCNLO or TNNT3LOmelanoma 
cell lines were more sensitive to MEK/ERK pathway 
inhibitors or AKT/mTOR pathway inhibitors, 
respectively (Figure 6B, D). Interestingly, NEXNHI 
cells were more sensitive to AKT/mTOR pathway 
inhibitors, whereas TNNT3LO cells were significantly 
correlated with AKT/mTOR pathway inhibitors. 

Discussion 
Resistance to immunotherapy in melanoma 

poses an urgent challenge, while TMB has emerged as 
a prospective predictor of whether cancer patients 
respond to immunotherapy or not [32]. The present 
study demonstrates that melanoma is indeed of high 
heterogenicity, and high levels of TMB are 
significantly related to improved survival in 

melanoma. In addition, TMB-related TIICs, genes, 
and ceRNAs were determined to unravel the potential 
mechanism underlying the role of TMB in melanoma. 
Moreover, we observed that TMB-related genes were 
associated with distinct therapeutic responses. Our 
findings reveal that TMB plays an important role in 
melanoma and provides insights into future precision 
medicine. 

Melanoma is a carcinoma with high mutational 
burden and heterogenicity. TTN, MUC16, DNAH5, 
PCLO, LRP1B, ANK3, DNAH7, ADGRV1, RP1, and 
BRAF were the top 10 mutated genes in melanoma. 
Considering its high heterogenicity, it makes sense 
that molecular targeted therapies are not broadly 
effective in melanoma [33-34]. Previous studies have 
observed that missense mutations are the most 
frequent type of bladder urothelial carcinoma [35]. 
Consistent with this, we also have revealed that 
missense mutations are most frequently observed, 
and C>T occurs more frequently than other 
single-nucleotide variants in melanoma. 

We also determined FLNC, NEXN, and TNNT3 
as TMB-related hub genes and exposed the 

 

 
Figure 5. Identification of TMB-related hub genes and ceRNAs. (A) Determination of soft threshold used for WGCNA. (B) All genes are clustered into 23 modules, and different 
colors mean different modules. (C) Scatter plot displays the genes in Tan Module (59 genes). (D) Fifty-nine genes in Tan Module are further analyzed using PPI network. (E-G) 
Three genes (FLNC, TNNT3, NEXN) are eventually identified as hub TMB-related genes using WGCNA, PPI and log-rank test.(H) Five online databases (miRWalk, miRanda, 
miRDB, RNA22, and Targetscan) are utilized to search for hub gene-related miRNAs, and mRNA-miRNA pairs which occur in at least four databases are selected as candidate 
mRNA-miRNA pairs. (I) Hub genes-associated ceRNAs are displayed. 
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underlying molecular mechanism. FLNC has been 
reported to correlate with cardiomyopathy [36, 37], 
but its role in melanoma is unknown. NEXN can 
control actin polymerization in smooth muscle [38], 
and its implication on melanoma has not been 
reported. In addition, TNNT3 is a risk factor for breast 
cancer [39], while its role in melanoma is unclear. Our 
findings add strength to the evidence that FLNC, 
NEXN, and TNNT3 could be potential therapeutic 
targets. The role of has-miR-590-3p in cancer remains 
controversial, with its beneficial effect in glioblastoma 
multiforme [40] and an unfavorable impact on 
epithelial ovarian cancer [41]. Herein, we observe that 
has-miR-590-3p could promote the progression of 
melanoma by inhibiting NEXN. has-miR-374b-5p can 
suppress bladder [42], ovarian [43], and pancreatic 
cancers [44], while it can promote gastric cancer cell 
invasion and metastasis [45]. We also showed 
thathas-miR-374b-5p is a potentially cancerous 
molecule because of blocking the expression of 
NEXN. Currently, there is no literature addressing the 
role of miR-374b-5p in melanoma. Similarly, 
has-miR-3127-5p, has-miR-1913, and has-miR-1291 
have critical effects on various cancers, but their 
implications in melanoma have not been reported so 
far. Collectively, these hub genes and ceRNAs could 
be utilized as potential therapeutic targets in 

melanoma immunotherapies. 
Moreover, we reveal that the levels of naive B 

cells, Treg cells, memory resting CD4 T cells, memory 
B cells, activated mast cells, and resting NK cells are 
significantly higher in the low-TMB group than in the 
high-TMB group. Intriguingly, we observed that high 
levels of Treg cells were linked to improved survival 
in melanoma, which seems to contradict the previous 
finding that Treg cells could mitigate antitumor 
immune responses [46]. Treg cells have been 
associated with both favorable and poor prognoses in 
various human cancers [47-49]. Moreover, Treg 
subpopulations are heterogeneous, and different Treg 
subpopulations may have opposing effects on tumor 
progression [50-53]. Meanwhile, Treg cells in the 
melanoma tumor microenvironment are driven by 
CD8+ T cells [54], which indicates that patients with 
elevated Treg cells could bear augmented CD8+ T cells 
simultaneously, thus having an improved survival. 
Memory B cells are considered to be major targets for 
effective immunotherapy in relapsing multiple 
sclerosis [55], buttheir role in immunotherapy for 
melanoma is elusive. Presently, the roles of naive B 
cells, memory resting CD4 T cells, and memory B cells 
in the development of melanoma are not well 
understood. Our findings would provide guidance for 
designing future studies to further clarify this issue. 

 

 
Figure 6. TMB-related gene expression is reflective of drug responses. (A) Heatmap shows differential drug sensitivity of the indicated drugs in different groups. (B) TNNT3HI 
cells are more sensitive to AKT/mTOR pathway inhibitors. (C) NEXNHI cells are more sensitive to AKT/mTOR pathway inhibitors. (D) FLCNLO melanoma cell lines are more 
sensitive to MEK/ERK pathway inhibitors. 
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This study has important implications for both 
the prognosis and treatment of melanoma. The 
findings herein reveal that melanoma is a tumor of 
high heterogenicity, which supports the idea that 
immunotherapies should be utilized as the first-line 
therapy for advanced melanoma. Second, we 
observed that naive B cells, Treg cells, memory resting 
CD4 T cells, memory B cells, activated mast cells, and 
resting NK cells were upregulated in low-TMB 
populations, which could shed light into the immune 
mechanism underlying the development of 
melanoma. Furthermore, three TMB-associated genes 
and their ceRNAs were identified, which could be 
utilized as candidate predictive biomarkers and 
therapeutic targets. In addition, we revealed that 
TMB-related genes were associated with distinct 
therapeutic responses to AKT/mTOR pathway 
inhibitors. 

This study also has limitations and requires 
further research. First, the ceRNA networks were 
constructed based on a comprehensive analysis of 
data from online databases, such as the relationship 
between TNNT3 and has-miR-1291, which requires 
further in vitro and in vivo experiments to verify these 
findings. Secondly, although TMB-related genes 
reflect distinct therapeutic responses to AKT/mTOR 
pathway inhibitors, the specific molecular mechanism 
is elusive, and remains to be explored in later 
experiments. 

In conclusion, to comprehensively investigate 
the role of TMB in melanoma, by analyzing data on 
RNA-seq, somatic mutations, and clinical 
characteristics for skin melanoma using a series of 
bioinformatics approaches, we reveal that TMB has a 
substantial effect on melanoma. TMB as well as 
TMB-related hub genes and their corresponding 
ceRNAs, could serve as candidate predictive 
biomarkers and therapeutic targets. Our study 
provides the opportunity to develop more effective 
immunotherapy strategies aimed at treating 
melanoma. 
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