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Abstract 

Dual-phenotype hepatocellular carcinoma (DPHCC) expresses both hepatocyte and cholangiocyte markers, 
and is characterized by high recurrence and low survival rates. The underlying molecular mechanisms of 
DPHCC pathogenesis are unclear. 
We performed whole exome sequencing and RNA sequencing of three subtypes of HCC (10 DPHCC, 10 
CK19-positive HCC, and 14 CK19-negative HCC), followed by integrated bioinformatics analysis, including 
somatic mutation analysis, mutation signal analysis, differential gene expression analysis, and pathway 
enrichment analysis. Cox proportional hazard regression analyses were applied for exploring survival related 
characteristics. 
We found that mutated genes in DPHCC patients were associated with carcinogenesis and immunity, and the 
up-regulated genes were mainly enriched in transcription-related and cancer-related pathways, and the 
down-regulated genes were mainly enriched in immune-related pathways. CXCL9 was selected as the hub 
gene, which is associated with immune cells and survival prognosis. Our results showed that low CXCL9 
expression was significantly associated with poor prognosis, and its expression was significantly reduced in 
DPHCC samples. 
In conclusion, we explored the molecular mechanisms governing DPHCC development and progression and 
identified CXCL9, which influences the immune microenvironment and prognosis of DPHCC and might be 
new clinically significant biomarkers for predicting prognosis. 

Key words: CXCL9; dual-phenotype hepatocellular carcinoma; whole exome sequencing; RNA sequencing; 
prognosis 

Introduction 
Liver cancer is one of the most common 

malignant tumors in the world [1]. It originates in the 
liver, and frequently occurs in chronic liver diseases 
and cirrhosis [2]. Hepatocellular carcinoma (HCC) 
and intrahepatic cholangiocarcinoma (ICC) are the 
most common pathological types of primary liver 
cancer, accounting for approximately 70% and 15% of 
liver cancer patients, respectively [3]. Combined 

hepatocellular cholangiocarcinoma (CHC) [4] is a rare 
subtype that accounts for 1.0-14.2% of primary liver 
cancer [5, 6]. Different from CHC, dual-phenotype 
hepatocellular carcinoma (DPHCC) is a new subtype 
of HCC [7]. Previously, we found that DPHCC had a 
higher rate of postoperative recurrence and a lower 
survival rate than non-DPHCC [8]. 
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CHC is characterized by the presence of both 
classical HCC and ICC components within a single 
nodule, often showing transitional or intermediate 
regions between the two [7]. DPHCC shows typical 
morphological features of HCC and more than 15% of 
its tumor cells strongly express both hepatocyte and 
cholangiocyte markers. The pathological diagnosis of 
DPHCC is: (1) Immunohistochemically, more than 
15% of the tumor cells, at least one hepatocyte marker 
(such as Hep Par 1) shows strong positive expression, 
and mainly diffuse distribution; (2) More than 15% of 
tumor cells, at least one cholangiocyte marker (such as 
CK19), and at least one hepatocyte marker (such as 
Hep par 1) are co-expressed. If the tumor tissue 
contains any component of HCC and intrahepatic 
cholangiocarcinoma, no matter whether there is a 
transition zone between these components or the 
tissue shows that tumor cells do not express markers 
of both hepatocytes and cholangiocarcinoma, these 
patients cannot be diagnosed as DPHCC [7, 8]. While 
the incidence rate of DPHCC is much lower than that 
of CHC [9], DPHCC is more aggressive and exhibits a 
worse postoperative prognosis. 

One of the typical characteristics of DPHCC is 
the positive expression of CK19, which is a marker of 
cancer stem cells (CSCs), and plays an important role 
in the formation, development, and maintenance of 
tumors [10-12]. As CK19 promotes angiogenesis and 
tumor cell invasiveness, CK19 positive HCC 
(CK19+HCC) is more malignant and has a worse 
prognosis than CK19 negative HCC (CK19-HCC) 
[13-17]. While DPHCC exhibits CK19+HCC, it is 
different from CK19+HCC, which is defined as the 
presence of moderate or strong expression of CK19 in 
membranous and/or cytoplasmic in 5% or more of 
tumor cells [18]. 

Compared to traditional HCC, DPHCC has a 
higher rate of vascular invasion, recurrence, and a 
worse prognosis, and exploring the molecular 
mechanisms underlying DPHCC will benefit the 
development of treatment strategies. 

Sequencing technology enables the discovery of 
genetic alterations that contribute to the diagnosis and 
treatment of human cancers, as well as the provision 
of new targeted therapies [19]. In addition to the 
effects of gene products, the persistent accumulation 
of somatic genomic alterations is also related to 
tumorigenesis [20-23]. However, if most of the genetic 
alterations occur in passenger genes, they have little 
effect on the occurrence of cancer, and a small number 
of cancer driver genes involved in key signaling 
pathways of hepatocarcinogenesis have mutations, 
resulting in carcinogenesis [24]. Whole exome 
sequencing (WES) has been used to identify the 
mutant cancer-driving genes in HCC [24-28], and 

TP53 and CTNNB1 are the two most commonly 
mutated genes in HCC [29, 30]. Activation of the 
PI3K/Akt/mTOR pathway can enhance the growth, 
survival, and metabolism of cancer cells [31], and 
about 5-10% of HCC cases show activation [32]. 

Although genomic studies on traditional HCC 
have been thorough, genomic studies on DPHCC are 
rarely reported. The aim of the present study was to 
use WES and RNA sequencing to elucidate the 
genomic profile of DPHCC. 

Materials and Methods 
The study protocol was approved by the 

Research Ethics Review Board of Guangxi Medical 
University Cancer Hospital (LW2020046). Before 
resection, all patients provided written informed 
consent for their data to be used for scientific research. 

Sample source 
Thirty-four tumor samples were obtained from 

patients with HCC who underwent radical 
hepatectomies at Guangxi Medical University Cancer 
Hospital. Tissue samples from patients meeting the 
following criteria were used for analysis: (1) 
Pathologically diagnosed patients with HCC; (2) 
Patients with Child-Pugh grades A and B; (3) There 
was no residual tumor or portal vein tumor thrombus 
on imaging after radical resection, and alpha- 
fetoprotein level decreased to normal within 2 
months. Patients who had any other malignancy or 
whose tumor tissue samples had not been paraffin 
embedded were excluded. Thirty-four patients met 
the criteria. 

Immunofluorescence double-staining 
HCC tissues were fixed with 10% neutral 

formalin at room temperature for 24 h. After 
dehydration, transparency, and paraffin embedding, 
serial paraffin sections (4 µm thick) were generated, 
followed by deparaffinization and rehydration. 
Sections were incubated with anti-Hep Par-1 and 
CK19 antibodies simultaneously. Then, sections were 
stained with goat anti-rabbit secondary antibody 
labeled with tetramethylrhodamine-5(6)-isothio-
cyanate (TRITC; 111-026-045, Jackson Immuno-
Research, USA) and goat anti-mouse secondary 
antibody labeled with fluorescein isothiocyanate 
(FITC; 111-026-045, Jackson ImmunoResearch, USA) 
under dark conditions at 37 °C for 1 h. Cells were then 
counterstained with 4',6-diamidino-2-phenylindole 
(DAPI; C0065, Solarbio, China) for 2 min to localize 
the nuclei. Finally, sections were viewed under a 
fluorescence microscope. 
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DNA extraction and library construction 
HiPure Tissue DNA Mini kit (Magen, 

Guangzhou, China) was used to extract DNA from 
liver tissue. 10 mg of liver tissue was taken from the 
patient to obtain tissue DNA. Ultrasound 
fragmentation of DNA was performed to build a 
DNA library. After PCR amplification, sequencing 
was performed. 

Whole exome sequencing 
Genomic DNA was extracted from fresh frozen 

tumors, and high-throughput, high-depth sequencing 
was performed on an Illumina sequencing platform 
(Illumina, USA), according to the manufacturer’s 
instructions. Fastq files were obtained after 
sequencing, bases were identified, and quality 
control, such as removing junction sequences and low 
quality and short length reads, was performed. Using 
the MEM algorithm of BWA (v0.7.17, default 
parameter) [33], the standard sequence was aligned 
with the filtered data, and the reference sequence was 
hg19 (http://hgdownload.soe.ucsc.edu/goldenPath/ 
hg19/bigZips/) to obtain the preliminary alignment 
results in Bam format. Picard software 
(https://broadinstitute.github.io/picard/) was used 
to calculate the proportion of redundant sequences 
caused by PCR amplification during exon capture 
experiments for each sample. GATK standard 
processing [34] was used to correct the base quality 
and errors caused by insertion and deletion in Bam 
format. SNV/ In Del were found using the 
GATK-MuTect2 detection method [35]. The filtering 
method for all SNV/In Del loci was to set parameters 
for direct filtering and retain loci that meet the 
following conditions: public databases (gnomAD 
database, 1000 Genomes database, and ExAC 
database) with frequencies below 0.01. The vcf files 
were obtained after filtering, all SNV/In Del loci were 
compared and analyzed with the latest published 
population database by ANNOVAR [36], the 
mutation frequencies of these SNV/In Del loci in the 
population database were evaluated, and the SNV/In 
Del loci were classified and screened. We obtained 
average 30.678 GB of total clean data yield per sample, 
with an average total clean data read of 245060264.7, 
while the mean insert sizes were in the range of 
115.35~ 164.967 base pairs. On average 99.08% of 
reads were mapped, 98.24% were properly paired, 
and we had less than 0.15% of average singletons. The 
average capture efficiency rate per sample on target 
region was 78.36%, the average capture efficiency rate 
on or near + - 150 target region was 79.36%, and the 
average capture efficiency rate on or near + - 500 
target region was 80.41%. The average coverage of 
official target region per sample was at least 20X > 

95.75%, the average coverage was at least 10X > 
98.83%, and the average coverage was at least 2X > 
99.86%. Fisher's exact test was used to determine 
whether the frequency of each locus in the 
DPHCC/CK19+HCC group was significantly 
different to that in the CK19-HCC group (according to 
P < 0.05) (CK19-HCC group was the control group). 

Mutation signature analysis 
Mutation signature analysis deconvolutes cancer 

somatic mutation counts, separated by mutation 
contexts or biologically meaningful subgroups, into a 
set of characteristic signatures and infers the pattern 
of each of the discovered signatures across samples. 
We investigated the mutational spectrum of 96 
subtypes of three-base context of mutations, 
considering six substitution patterns (C > A, C > G, C 
> T, T > A, T > C, and T > G) for all WES mutation 
data. MutationalPatterns [37] used the Non-negative 
Matrix Factorization (NMF) algorithm to extract 
signatures. The other two R packages: 
“deconstructSigs” [38] and “SomaticSignatures” [39] 
were used to further validate the extracted signatures. 

The “deconstructSigs” uses an iterative approach 
to calculate the combination of Catalogue of Somatic 
Mutations in Cancer (COSMIC) [40] signatures that 
best approximate a tumor’s mutational spectrum. 
Therefore, “deconstructSigs” can analyze individual 
samples and the results are more comparable to 
previous studies. We use the “mut.to.sigs.input” 
function was used to construct the appropriate input 
data structure. “whichSignatures” were then used to 
determine which of the COSMIC signatures were 
present in the tumor samples and their contribution to 
the total mutation spectrum [38]. This function uses 
an iterative algorithm to find the combination and 
relative weights of signatures that best match each 
mutation spectrum. 

Unlike “deconstructSigs”, “SomaticSignatures” 
takes a cohort of tumor’s mutational spectra and uses 
either principal component analysis or NMF to 
identify signatures that are present within the cohort, 
and their contribution to each tumor’s mutational 
spectrum. We used the “mutationContext” function in 
the “SomaticSignatures” package to extract the 
3-nucleotide mutational context of each Single 
Nucleotide Variant (SNV). This function compares the 
loci of each SNV with the corresponding reference 
genome to identify nucleotides immediately 3′ and 5′ 
of the SNV. The “motifMatrix” function calculates the 
frequency of each of the 96 alteration types. To 
determine how many signatures we expected to 
identify, we ran the “assessNumberSignatures”. The 
“identifySignatures” method was used to decompose 
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the mutational spectra of individuals in DPHCC into 
novel signatures, using the NMF option. 

The mutation data of 154 Asian hepatocellular 
carcinomas were downloaded from The Cancer 
Genome Atlas (TCGA) and their mutation signatures 
were extracted with the “SomaticSignatures” R 
package for comparison with those of DPHCC 
patients. 

Copy number analysis 
We identified copy number variants (CNVs) 

with default parameters of CNVkit [41] based on 
exome-sequencing data to analyze the copy number 
state of each tumor. We compared DPHCC tissues 
with CK19-HCC tissues with CNVkit. Based on 
previous studies, we used a log2 ratio cut-off of 
+/−0.25 to define copy number gain/loss [42]. The 
cnvkit.py scatter/heatmap in CNVkit was used to 
plot DPHCC copy number calls across the genome 
with default setting. 

RNA extraction and cDNA library 
construction 

HiPure Universal RNA Mini Kit (Magen, 
Guangzhou, China) was used to extract RNA from 
liver tissue. After obtaining the RNA from the liver 
tissues of patients and ensuring the quality of the 
extracted RNA was qualified, the cDNA library was 
constructed. We identified the polyA tail with Oligo 
dT (magnetic beads with a T sequence) to enrich the 
mRNA, then amplified it with random primer. Add 
an “A” base to its 3’ end, attach adapter, and 
sequence. 

RNA sequencing 
RNA was extracted from frozen tumors and 

sequenced on the Illumina platform. As raw reads 
often contain jointed and low-quality sequences, the 
original data need to be filtered. FastQC software was 
used to evaluate the quality of raw sequencing data 
for each sample, and Trimmomatic was used to 
remove raw reads containing joints, duplications, and 
lower sequencing quality, to obtain high-quality 
sequence data (clean reads). Hisat2 software [43] was 
used to align the sequencing data of each sample after 
quality control to the human reference genome. The 
transcripts were assembled and the expression levels 
were predicted using Stringtie software [44]. DESeq2 
[45] was used for differential analysis. The P-value is 
the probability of rejecting or failing to reject the null 
hypothesis (H0) [46]. H0 is the hypothesis that there is 
no difference between two groups for a specific 
variable. The P value measures the strength of 
evidence against H0 [47]. The smaller the P value, the 
stronger the evidence against H0. Fisher suggested 5% 
(α=0.05) level could be used for concluding that fairly 

strong evidence exists against H0. Based on the 
definition of statistically significant differences and 
the method of referring to a large number of relevant 
literatures [48-53], we also defined the differential 
genes as | Fold Change | > 1.5, P-value < 0.05. 

Gene ontology (GO) and KEGG functional 
enrichment analysis of DEGs 

DAVID (https://david.ncifcrf.gov/) and 
KOBAS 3.0 were used for online analysis, which 
included data annotation, visualization, integration, 
extraction of important biological information [54, 55]. 
GO enrichment analysis [56] is a major tool in 
bioinformatics for enrichment analysis of gene sets, 
which can identify the potential biological processes 
of target genes. GO mainly includes three levels, 
namely biological process, cellular components, and 
molecular functions. KEGG [57] is a comprehensive 
knowledge base for both functional interpretation of 
genomic information. Significant enrichment was 
defined as having a P-value < 0.05. 

Protein-protein interaction (PPI) network 
analysis 

We constructed the PPI network information of 
DEGs of DPHCC using a search tool (STRING; 
http://stringdb.org, Version 11.0) [58] to retrieve 
interacting genes. Cytoscape software (3.7.2) [59] was 
used to construct PPI networks and to analyze 
functional interactions between proteins. After 
referring to the literature of similar studies [48, 60, 61], 
we also set all parameters by default. The Cytoscape 
software plug-in tool cytoHubba [62] was used to 
clarify the biological significance of gene modules 
(sub-networks) in HCC. P < 0.05 was considered 
statistically significant. 

Survival and correlation analysis between gene 
expression and immune infiltration level 

OncoLnc [63] (http://www.oncolnc.org/) is an 
online tool used for interactively exploring the 
survival data of 8647 patients from 21 cancer studies 
in the Cancer Genome Atlas (TCGA), as well as 
mRNA and miRNA RNA-Seq expression data from 
TCGA. This tool allows the generation of Kaplan- 
Meier maps stratified by gene expression levels. 
Log-rank P values in survival analysis were recorded. 
The OncoLnc tool was used for validation of gene 
overall survival analysis. Patients were divided into 
two groups for comparison, based on the lowest and 
highest quartiles of gene expression, as recommended 
by web tools. The landmark analysis [64] was used to 
correct for the bias inherent in the analysis of time-to- 
event outcomes between groups determined during 
study follow-up. Tumor Immune Estimation Resource 
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(TIMER) [65] (https://cistrome.shinyapps.io/timer/) 
is a comprehensive resource for systematical analysis 
of immune infiltrates across diverse cancer types, and 
the abundance of six immunes infiltrate (B cells, CD4+ 
T cells, CD8+ T cells, neutrophils, macrophages, and 
dendritic cells) were estimated with the TIMER 
algorithm. Based on previously applied 
deconvolution methods [66], TIMER reanalyzed gene 
expression data, including 10,897 samples from 32 
cancer types from the Cancer Genome Atlas (TCGA), 
to estimate six tumor-infiltrating immune cells (TIICs) 
subgroups (B cells, CD4 T cells, CD8 T cells, 
macrophages, neutrophils, and dendritic cells). 
TIMER selected informative genes that were 
negatively correlated with tumor purity (percentage 
of malignant cells in tumor tissue) for each cancer 
type [67] and applied constrained least squares fitting 
to the selected gene expression to predict the 
abundance subset of six TIICs [65]. The webservers 
and analysis tools of TIMER were used for the 
correlation analysis between gene expression and 
immune infiltration levels. 

Statistical analysis 
SPSS 23.0 and GraphPad Prism 5 were used for 

statistical analysis, and a P-value < 0.05 was defined 
as statistically significant. Fisher’s chi-square test 
(2-sided) was used to evaluate the significance of the 
differences between groups. The overall survival rate 
was calculated using R statistical software packages, 
such as “survival”, “survminer”, and “ggplot2”, and 
the difference between survival curve groups was 
tested by log-rank sum. Univariate and multivariate 
analysis of Cox proportional risk regression model 
was used to identify independent predictors of overall 
survival after hepatectomy in patients with HCC. The 

predictive value score, including sensitivity and 
specificity of risk, was assessed by receiver operating 
characteristic curve analysis. 

Results 
Immunofluorescence double-staining 

Three subtypes of hepatocellular carcinoma, 
namely DPHCC, CK19+HCC, and CK19-HCC, 
showed reddish cholangiocyte marker CK19 and 
green hepatocyte marker Hep par1 by immuno-
fluorescence double staining. DPHCC simultaneously 
expressed the cholangiocyte marker CK19 (red) and 
the hepatocyte marker Hep par1 (green), and both 
markers co-expressed more than 15% of tumor cells 
(green and red overlap more than 15%). CK19+HCC 
expressed the cholangiocyte marker CK19 in tumor 
cells (>5% in red), while CK19-HCC only expressed 
the hepatocyte marker Hep par1 (green) (Figure 1). 

Clinical characteristics 
A total of 34 clinical characteristics of 

hepatocellular carcinoma patients, including 10 
DPHCC, 10 CK19+HCC and 14 CK19-HCC patients 
are summarized. Corresponding patient demographic 
and clinical characteristics such as age, gender, liver 
cirrhosis, tumor size, tumors number, Edmondson 
grade, BCLC stage, microvascular invasion (MVI), 
distant metastasis, and AFP level is shown in Table 1. 

Somatic mutations in HCCs 
WES was performed in 34 patients with HCC. In 

34 patients with hepatocellular carcinoma, we 
detected missense mutations at 33,136 sites, nonsense 
mutations at 1470 sites, frameshift del mutations at 
1083 sites, splicing mutations at 1019 sites, 
non-frameshift del mutations at 905 sites, unknow 

mutations at 544 sites, 
frameshift ins mutations at 
479 sites, and non-frameshift 
ins mutations at 382 sites 
(Figure 2A). In 10 DPHCC, 
10 CK19+HCC, and 14 CK19- 
HCC, missense was the most 
common type of site 
mutation, followed by 
nonsense (Figure 2B). 
Among the eight mutation 
types, the number of 
mutation sites in frameshift 
del was significantly higher 
in DPHCC and CK19-HCC 
than in CK19+HCC (Figure 
2C). 

 

 
Figure 1. Immunofluorescence double-staining of hepatic tumor tissues from patients with DPHCC, CK19+HCC and 
CK19-HCC for the cholangiocytic marker CK19 (red) and hepatocyte marker Hep Par-1 (green). The cells with overlapping 
red and green colors are dual-phenotype cells. 
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Table 1. Clinicopathological data of hepatocellular carcinoma 
patients 

Parameters n (%) 
Age  
>55 yr 6 (17.65) 
≤55 yr 28 (82.35) 
Gender  
Male 29 (85.29) 
Female 5 (14.71) 
DPHCC  
positive 10 (29.41) 
negative 24 (70.59) 
CK19  
positive 20 (58.82) 
negative 14 (41.18) 
Liver cirrhosis  
Yes 11 (32.35) 
No 23 (67.65) 
Tumor size  
≤5.0 cm 16 (47.06) 
>5.0 cm 18 (52.94) 
Tumors number  
<2 20 (58.82) 
≥2 14 (41.18) 
Edmondson grade  
I~II 24 (70.59) 
III~IV 10 (29.41) 
BCLC stage  
A~B 25 (73.53) 
C 9 (26.47) 
Microvascular invasion (MVI)  
Yes 20 (58.82) 
No 14 (41.18) 
Distant metastasis  
Yes 3 (8.82) 
No 31 (91.18) 
AFP level  
>400 ng/mL 17 (50.00) 
≤400 ng/mL 17 (50.00) 
Abbreviations: DPHCC, Dual-phenotype hepatocellular carcinoma; CK19, 
Cytokeratin 19; AFP, Alpha-fetoprotein. 

 
 
We identified seven genes with different 

mutation frequency between 10 DPHCC, 10 
CK19+HCC, and 14 CK19-HCC, as well as commonly 
known hepatocellular carcinoma driver genes (TP53, 
TRET, CTNNB1) and related molecules involved in 
the PI3K-Akt signaling pathway. In 34 patients with 
hepatocellular carcinoma, the mutation rate of TP53 
was as high as 52.94%, and that of CTNNB1 and TERT 
was 17.65% and 11.76%, respectively (Figure 2D). The 
other seven differentially mutated genes, including 
ABL1 (DPHCC20%, CK19+HCC60% and CK19- 
HCC14.29%), INPP5D (DPHCC40%, CK19+HCC20% 
and CK19-HCC0%), E4F1 (DPHCC40%, CK19+ 
HCC20% and CK19-HCC0%), S1PR4 (DPHCC10%, 
CK19+HCC40% and CK19-HCC0%), PEAK1 
(DPHCC40%, CK19+HCC0% and CK19-HCC0%), 
GOLM1 (DPHCC40%, CK19+HCC0% and CK19- 
HCC0%), and TADA3 (DPHCC40%, CK19+HCC0% 
and CK19-HCC0%) (Figure 2E). Interestingly, we 
found that almost all of these differentially mutated 
genes were highly mutated in DPHCC or CK19+HCC, 

whereas the mutation rate in CK19-HCC was mostly 
0. More surprisingly, most of these highly mutated 
genes in DPHCC and CK19+HCC are related to the 
development of cancer, immunity, and even the 
progression of liver disease. Among them, ABL1 is a 
protooncogene that encodes a protein tyrosine kinase 
involved in a variety of cellular processes [68, 69]. 
E4F1 may act as an ubiquitin ligase to mediate the 
ubiquitination of chromatin-associated TP53 [70, 71]. 
The protein encoded by the PEAK1 may play a role in 
the regulation of cell proliferation and cancer 
metastasis [72-74]. TADA3 is involved in stabilizing 
and activating p53 tumor suppressor protein [75, 76]. 
Mutations in INPP5D are associated with defects in 
the immune system and cancer. S1PR4 may be 
involved in immune cell migration processes [77]. 
GOLM1, moreover, has been reported to be associated 
with the development of liver diseases. With the 
aggravation of liver injury, GOLM1 expression level 
showed a significant up-regulation [78]. 

To further explore whether the expression of 
these differentially mutated genes in DPHCC was 
abnormal, we examined their expression. 
Unfortunately, the expression of these mutated genes 
was not significantly abnormal in our 34 samples. 
Subsequently, we downloaded 374 liver cancer 
samples from the TCGA database. 374 cases of HCC 
were divided into high expression group (top 15% of 
expression) and low expression group (85% lower 
expression) according to the expression level of gene 
KRT19 (target gene of CK19). To our surprise, GOLM1 
was significantly overexpressed in the CK19 high 
expression group. It has been reported that high 
expression of GOLM1 is associated with worsening of 
liver cancer and poor prognosis [79, 80]. 

We further analyzed the correlation between 
gene mutations and tumor progression. TERT 
promoter mutations occur in the early stage of 
hepatocellular carcinoma, while TP53 changes occur 
in the late stage of invasive tumors [26]. Analysis of 
the relationship between mutations in TP53 and TERT 
genes and cancer stage in 34 patients with 
hepatocellular carcinoma revealed that TP53 
mutations were significantly up-regulated in the 
advanced stage of hepatocellular carcinoma (P=0.019), 
while TERT gene mutations were not significantly 
altered in the early stage of hepatocellular carcinoma 
(P=0.6) (Figure 3A). 

In addition to mutations in cancer-driving genes, 
activation of signaling pathways may also lead to 
cancer. The occurrence of HCC is associated with the 
activation of many signaling pathways, such as AKT 
signaling pathway, Wnt signaling pathway, and 
PI3K/AKT signaling pathway, etc. We found that 
compared with CK19-HCC, PI3K-Akt signal pathway 
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(hsa04151) is more likely to be altered in DPHCC (80% 
for DPHCC, 21.4% for CK19-HCC, P = 0.011) (Figure 
3B). 

Next, we conducted a correlation analysis 
between HCC differentially mutated genes and 
clinical characteristics. We found that TADA3 and 
PEAK1 mutations were significantly associated with 
advanced tumor stage (P = 0.048 and P = 0.048), 
INPP5D mutations were significantly associated with 
microvascular invasion (MVI) (P = 0.031), and 
GOLM1 mutations were significantly associated with 
advanced tumor stage and Distant metastasis (P = 
0.003 and P = 0.031, respectively) (Figure 3C). 

Mutational patterns in DPHCC 
To explore the specific etiological factors that 

may contribute to the mutagenesis of DPHCC, we 
performed mutational spectrum analysis of DPHCC 
to categorize their mutational signature and to 
identify functional mutagenic processes in DPHCC. In 
DPHCC, the C > T transversion was the most frequent 
of six substitution patterns (C > A, C > G, C >T, T > A, 
T > C, and T > G) (Figure 3D), which is similar to the 
results of previous studies on HCC [81]. Compared 
with the traditional HCC with a far more 
heterogeneous composition of individual mutational 
COSMIC signatures studied by previous researchers 
[81], the COSMIC signature of DPHCC shows that 
mutation signature 1 is the major signature affecting 
DPHCC patients (Figure 3E). 

 

 
Figure 2. Variants identified in 34 hepatocellular carcinomas (HCC) using whole exome sequencing. (A) Total number of variants found in 34 HCC sample. (B) Number of each 
type of variant identified in each sample. (C) Number of Frameshift Del in DPHCC, CK19+HCC, and CK19-HCC. (D) Mutational landscape and the clinical information of 34 
hepatocellular carcinomas. The lower side of Figure 2D shows the details of tumor mutation status and the clinical information of each patients. The middle panel of Figure 2D 
shows the genetic alterations type. The right barplot shows the mutational frequency of each gene. The left barplot emphasizes the significant degree of mutation status of each 
gene, and the p values (p1 and p2 represent P values for DPHCC versus CK19-HCC and CK19+HCC versus CK19-HCC, respectively). (E) Mutation rates of seven differentially 
mutated genes in DPHCC, CK19+HCC and CK19-HCC. 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

3000 

 
Figure 3. (A) Associations of BCLC stage with TP53 and TERT gene mutations. (B) Association of PI3K-Akt signaling pathway mutation with DPHCC and CK19-HCC. (C) 
Association of TADA3, PEAK1, INPP5D and GOLM1 gene mutations with clinical parameters. (D) The frequency of six substitution patterns in DPHCC. (E) Mutational 
signatures in DPHCC identified using the R package “MutationalPatterns” (using NMF to identify three signatures). NMF: Nonnegative Matrix Factorization. (F) Mutational 
signatures in DPHCC identified using the R package “deconstructSigs”. (G) Correlation between mutational signatures of DPHCC identified using the R package 
"SomaticSignatures" and mutational signatures of COSMIC. (H) Mutational signatures in 154 Asian patients with hepatocellular carcinoma. (I) Correlation between mutational 
signatures of 154 Asian patients with hepatocellular carcinoma and mutational signatures of COSMIC. (J) The heatmap of somatic CNVs for 10 DPHCC samples. 
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The results of two R packages: “deconstructSigs” 
and “SomaticSignatures” were similar to those of 
“MutationalPatterns”. The results of the 
“deconstructSigs” package analysis showed that C > T 
was the most common SNV. The highest contribution 
was signature 1, accounting for 73.7%. Signatures 6 
and 7 accounted for 20.1% and 6.2%, respectively 
(Figure 3F). 

Similar to the results of the first two packages, 
we used the “SomaticSignatures” package to 
decompose the mutations of DPHCC into three 
mutational signatures (S1, S2 and S3). S1, S2 and S3 all 
had higher C > T mutation frequencies, which 
corresponded to Catalog of Somatic Mutations in 
Cancer (COSMIC; https://cancer.sanger.ac.uk/ 
cosmic/signatures/) Signature 1 (Figure 3G). 

We decomposed the mutations of 154 Asian 
patients with hepatocellular carcinoma downloaded 
from TCGA into 11 mutational signatures (Figure 3H). 
Except for S1, S5 and S7, none of the other signatures 
corresponded to mutation signatures in the COSMIC 
database (Figure 3I). Comparing with the COSMIC 
signatures, we found that S1 was associated with 
aristolochic acid exposure, S5 with aflatoxin exposure, 
and S7 with DNA mismatch repair deficiency 
(dMMR). 

Signature 1 is one of the mutation signatures 
associated with the endogenous mutation process. 
Because stem cells of different cancer types divide at 
different rates, signature 1 acts like a clock and the 
rates of acquisition of signature 1 mutations differ 
markedly over time. Signature 1 may therefore be a 
cell division/mitosis clock [82-84]. Signature 6 is 
associated with defective DNA mismatch repair and 
is found in microsatellite unstable tumors. In 
addition, signature 6 is associated with large numbers 
of small insertions and deletions (ID) 1 and 2 
mutations, which are characterised respectively by 
small (usually 1 bp) insertions and deletions of T at 
mononucleotide T repeats. 

Copy number variants profiles 
We identified a total of 381 CNVs from the 10 

DPHCC samples with a mean of 38, of which 205 were 
CN-gains and 176 were CN-losses (Figure 3J). The 
results showed that the heterogeneity of copy number 
variation was relatively large in DPHCC. Among the 
10 DPHCCs, chromosome 11 was relatively stable, 
and the chromosome 1q and 8q mostly showed 
CN-gains (Figure 3J, Figure S1). In the chromosome 
1q, Tumor Potentiating Region (TPR) and Odorant 
Response Abnormal 4 (ODR4) have a higher 
frequency of CN-gain. 

Identification of DEGs 
To further investigate whether there are other 

abnormally expressed genes that affect the poor 
prognosis of DPHCC, we performed differential 
expression analysis. In HCC, CK19-HCC patients are 
the group with relatively good prognosis, which is 
defined as the control group. However, the prognosis 
of DPHCC and CK19+HCC was a relatively poor [8] 
and were treated as independent experimental 
groups. Based on P-value < 0.05 and | Fold Change 
(FC)| > 1.5, a total of 1410 DEGs were identified, 
including 624 up-regulated genes and 786 
down-regulated genes in the DPHCC (Figure 4A). 
There were 3464 genes that were dysregulated in 
CK19+HCC, of which 1807 were up-regulated genes 
and 1657 were down-regulated (Figure 4B). As shown 
in Figure 4A and B, compared with CK19-HCC, 
KRT19 expression showed a significant up-regulation 
in DPHCC and CK19+HCC. Other stem cell markers, 
such as KRT7, EPCAM and AFP, also showed a trend 
to be up-regulated, but there was no statistical 
difference. 

Gene set enrichment analysis 
To further understand the role of the 

differentially expressed genes in DPHCC and CK19+ 
HCC, we used DAVID and KOBAS to analyze the 
enrichment of GO and KEGG pathways, respectively. 
The enrichment analysis of up-regulated genes and 
down-regulated genes was carried out separately. 

There are many interesting enrichment 
pathways for GO enrichment. The differentially 
up-regulated genes of DPHCC are mainly enriched in 
transcription related pathways, such as rRNA 
processing (GO: 0006364), ribosomal small subunit 
biogenesis (GO: 0042274), translation (GO: 0006412), 
etc. (Figure 4C). However, the down-regulated genes 
are mainly enriched in immune and transcription 
related pathways, such as type I interferon signaling 
pathway (GO: 0060337), innate immune response 
(GO: 0045087), negative regulation of nucleic acid- 
templated transcription (GO: 1903507), etc. (Figure 
4D). Similarly, differentially up-regulated genes in 
CK19+HCC are also mainly enriched in pathways 
related to transcription and translation, such as 
transcription factor activity, sequence-specific DNA 
binding (GO: 0003700), regulation of transcription, 
DNA-templated (GO: 0006355), transcription, 
DNA-templated (GO: 0006351), etc. (Figure 4E). And 
the differentially down-regulated genes were mainly 
enriched in oxidation-reduction process (GO: 
0055114) and electron carrier activity (GO: 0009055) 
(Figure 4F). 

For the enrichment of KEGG, we found many 
important pathways related to cancer. The 
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differentially up-regulated genes of DPHCC are 
mainly enriched in cancer-related pathways, such as 
PI3K-Akt signaling pathway (hsa04151) and Wnt 
signaling pathway (hsa04310) (Figure 4G). 
Interestingly, there are reports that molecular 
mutations or copy number variations involved in the 
PI3K-Akt signaling pathway may be associated with 
higher PI3K-Akt signaling [85]. Similarly, our results 
also showed that the PI3K-Akt signaling pathway had 
a significantly higher mutation frequency in DPHCC 
(Figure 3B), and the differentially up-regulated genes 
in DPHCC were enriched in the PI3K-Akt signaling 
pathway (Figure 4G). Differentially down-regulated 
genes were mainly enriched in immune-related 
pathways, such as Complement and coagulation 
cascades (hsa04610), Th1, and Th2 cell differentiation 
(hsa04658), Natural killer cell mediated cytotoxicity 
(hsa04650) and IL-17 signaling pathway (hsa04657) 
(Figure 4H). Surprisingly, CK19+HCC differentially 
up-regulated genes were also mainly enriched in 
cancer-related pathways, such as NF-kappa B 
signaling pathway (hsa04064), PI3K-Akt signaling 
pathway (hsa04151), Wnt signaling pathway 
(hsa04310), etc. (Figure 4I). The differentially down- 
regulated genes were mainly enriched in peroxisome 
(hsa04146), autophagy – animal (hsa04140), and 
lysosome (hsa04142) (Figure 4J). 

PPI network analysis 
We performed PPI network analysis of 

differentially expressed genes in DPHCC to identify 
key genes and related gene modules involved in 
interactions as well as affecting DPHCC. The results 
of STRING analysis showed that the PPI network of 
DEGs was constructed, consisting of 1158 nodes and 
3715 edges, with an average node degree of 6.42 and 
the PPI enrichment p-value < 1.31 × 10-9. The degree of 
a node (protein) in a network (interactome) is the 
number of links (interactions) to other nodes, or 
simply the number of contacts [86]. Based on the 
results of STRING analysis, the cytoHubba plugin in 
Cytoscape reported 207 hub genes of DPHCC with the 
criterion of degree 11 connected nodes. Hub genes are 
highly connected genes in the network, which are 
expected to play an important role in understanding 
the biological mechanism of response under stress/ 
conditions [87]. Subsequently, the top 22 hub genes 
with the criterion of degree ≥30 connected nodes were 
again submitted to STRING to verify the interaction 
among them. The PPI network consisted of 21 nodes 
and 75 edges, with a mean node degree of 6.82, and 
showed a closer protein interaction among the hub 
genes (Figure 5A). Then, hub gene CXCL9 [88], which 
is related to the chemotaxis of activated T cells and 
has a higher degree value (degree=8), was selected as 

a candidate gene for further analysis. 

Survival analysis of CXCL9 and its correlation 
with immune infiltration level 

We performed a survival analysis on CXCL9 and 
validated it with OncoLnc online tool. Our results 
showed that low expression of CXCL9 had a worse 
prognosis (Figure 5B) and OncoLnc online tool 
analysis of HCC survival data in TCGA also showed 
that low expression of CXCL9 had a worse prognosis. 
We corrected the bias inherent in the analysis of 
time-to-event outcomes between groups identified 
during study follow-up with landmark analyses. 
After correction, the results remained consistent with 
ours, and the survival rate of patients with low 
CXCL9 expression decreased significantly over five 
years (P=0.0472) (Figure 5C). Subsequently, we 
analyzed the correlation between the expression of 
CXCL9 and the level of immune infiltration. 
Scatterplots first show gene expression levels for 
tumor purity. The tumor microenvironment is a 
complex non-tumor cell environment composed 
mainly of immune cells around the tumor cells. Genes 
highly expressed in cells in the microenvironment are 
expected to have negative associations with tumor 
purity, while the opposite is expected for genes highly 
expressed in the tumor cells [65]. As shown in Figure 
5D, CXCL9 expression was negatively correlated with 
tumor purity (P=4.26 × 10-9), but positively correlated 
with B cell level (P=1.94 × 10-26), CD8+T cell level 
(P=5.31 × 10-21), CD4+T cell level (P=1.28 × 10-6), 
neutrophil level (P=1.89 × 10-8), macrophage level 
(P=3.85 × 10-8), and dendritic cell level (P=6.74 × 10-22).  

Identification of prognostic risk factors and 
prognostic value assessment 

Cox proportional hazard model was established 
to predict prognostic risk factors. As Figure 6A 
reveals, univariate analysis showed the overall 
survival was significantly correlated with DPHCC 
(P=0.043), CK19 (P= 0.011), CXCL9 expression (0.012), 
INPP5D mutation (P= 0.005). Multivariate analysis 
showed that CK19 (P= 0.043) and CXCL9 expression 
(P= 0.015) were independent risk factors in predicting 
the prognosis of hepatocellular carcinoma patients 
(Figure 6B). We further validated CXCL9 expression 
with online web tools OncoLnc and TIMER for COX 
regression. Both results showed that CXCL9 
expressions were independent risk factors in 
predicting the prognosis of liver cancer patients 
(Figure S2A, B). Furthermore, the prognostic value, 
including sensitivity and specificity of CXCL9, was 
performed by ROC analysis. In the receiver operating 
characteristic (ROC) curve, the area under the curve 
(AUC) is 0.681, demonstrating that CXCL9 assessment 
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is accurate (sensitivity: 0.666, specificity: 0.769) (Figure 6C). 
 

 
Figure 4. Differential gene and pathway enrichment analysis. (A and B) are the differential genes volcano plot of DPHCC and CK19+HCC, respectively. (C and D) GO 
pathway analysis of differentially up-regulated and down-regulated genes between DPHCC and CK19-HCC, respectively. (E and F) GO pathway analysis of differentially 
up-regulated and down-regulated genes between CK19+HCC and CK19-HCC, respectively. (G and H) KEGG pathway analysis of differentially up-regulated and 
down-regulated genes between DPHCC and CK19-HCC, respectively. (I and J) KEGG pathway analysis of differentially up-regulated and down-regulated genes between 
CK19+HCC and CK19-HCC, respectively. 
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Figure 5. Survival analysis of CXCL9 and its correlation with immune cell level and tumor immune infiltrating cells in HCC. (A) The interactions and protein-protein networks 
of the top 21 hub genes. (B) Analysis of overall survival of CXCL9 in 34 HCC patients. (C) Analysis of CXCL9 overall survival in HCC patients from TCGA database. (D) 
Correlation of gene expression with tumor purity and immune invasion. 

 

Discussion 
The World Health Organization classifies 

primary liver cancer into either HCC, ICC, or CHC 
[89], and there are few reports on DPHCC. DPHCC is 
more aggressive and malignant than HCC because it 
expresses both markers of HCC and 
cholangiocarcinoma [7]. The prognosis of DPHCC 
patients is also significantly worse than that of HCC 
patients [90]. 

Compared to genome wide association studies, 
WES compares genomes with base-pair accuracy and 
reveals rare genetic variations [91]. Here, WES and 
RNA sequencing were used to elucidate the molecular 
mechanisms underlying DPHCC pathogenesis. 

DPHCC has a unique gene mutation profile, and 
several genes with differential mutations in DPHCC, 
CK19+HCC, and CK19-HCC were identified, 
including ABL1, E4F1, PEAK1, TADA3, INPP5D, 
S1PR4, and GOLM1. 

ABL1 is a protooncogene that encodes a protein 
tyrosine kinase involved in a variety of cellular 
processes [68, 69]. E4F1 is a transcription factor in the 
Gli-Kruppel family that was identified as a cellular 
target of the adenoviral oncoprotein E1A [92]. It is a 
multifunctional protein with transcriptional and 
atypical ubiquitin E3 ligase activities that plays a role 
in cell survival and proliferation [70, 71]. PEAK1 is 
involved in the regulation of cell migration, 
proliferation, and cancer metastasis [72-74, 93], and 
TADA3 is involved in stabilizing and activating p53 
and plays a role in the cellular response to DNA 
damage [75, 76]. Mutations in INPP5D are associated 
with defects in the immune system and cancer [94]. 

S1PR4 may be involved in specific cell migration 
processes [77]. GOLM1 is associated with the 
development of liver disease and serves as a marker 
of liver injury [78], and has been suggested as a 
potential serum marker for the diagnosis of HCC [95]. 

While GOLM1 is up-regulated in the CK19 high 
expression group in TCGA database, it showed no 
abnormal expression in our samples. This may be due 
to an insufficient sample size. In addition, our HCC 
sample subtypes are not identical to the 374 HCC 
sample subtypes from TCGA, and our sample 
subtypes are even rarer. All our 34 samples were 
hepatocellular carcinoma samples, which were 
subdivided into three subtypes: CK19-HCC, CK19+ 
HCC and DPHCC according to the markers expressed 
by hepatocellular tumors by immunohistochemistry. 
However, even if the expression of gene KRT19 
(target gene of CK19) can be measured by RNA-seq in 
374 liver cancer samples from TCGA database to 
classify liver cancer into CK19-HCC and CK19+HCC, 
DPHCC cannot be subdivided further. Because 
according to the case diagnosis criteria, DPHCC not 
only expresses one of the markers of hepatocellular 
carcinoma and one of the markers of 
cholangiocarcinoma, but also the two markers are 
co-expressed and the proportion of tumor cells with 
co-expression is more than 15%. The TCGA database 
of liver cancer samples can evaluate the expression of 
markers based on gene expression, but cannot 
evaluate whether they co-express the two markers 
and the proportion of tumor cells with co-expression. 

Most of the mutated genes showed no abnormal 
expression, which may be due to the limited sample 
size, and the relationship between gene mutation and 
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expression could not be accurately reflected in a small 
cohort. More data and larger cohorts are needed to 
accurately explore which gene mutations cause 
abnormal expression and ultimately worsen tumor 
progression. 

There are a large number of high-frequency 
mutations in key genes in DPHCC, and whether their 
abnormal expression leads to a worse prognosis 
remains to be elucidated. 

In our study, the mutation rate of TERT was only 
11.76%, which is inconsistent with the established 
high mutation rate in liver cancer. The low rate of 
TERT mutation may be due to poor coverage of the 

TERT promoter region by WES [96]. In another of our 
research projects, TERT promoter mutations were 
targeted in 136 patients with HCC, and the mutation 
rate was as high as 66.9% (91/136). 

We found a significant increase in the frequency 
of mutations in the PI3K-Akt signaling pathway in 
DPHCC samples. Similar studies have reported that 
63% of the cases had at least one somatic mutation or 
copy number variation involving the PI3K-Akt 
signaling pathway in tumor samples, and 
biomolecular mutation or copy number variation in 
this pathway may be associated with increased 
PI3K-Akt signaling [85]. 

 

 
Figure 6. Prognostic value assessment of CXCL9. (A and B) are Forest map of univariate and multivariate Cox regression analysis, respectively. The line shows 95% CI, and the 
position of the square on the line represents the odds ratio. (C) Receiver operating characteristic curve of CXCL9. ROC was performed for CXCL9 for the prognostic value in 
HCC. 
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After the WES of 34 HCC patients, we found that 
DPHCC patients exhibited a higher frequency of gene 
and pathway mutations than CK19-HCC patients, 
indicating that abnormal PI3K-Akt signaling may be 
an inherent characteristic of DPHCC. 

Upon analysis of the mutational signatures in 
DPHCC through signature enrichment analysis, we 
found that the Signature 1 pattern was increased in 
DPHCC. Signature 6 pattern also accounts for a small 
proportion in DPHCC. Moreover, we analyzed with 
three different R packages, and the results were 
roughly the same, indicating that the results of the 
analysis were reliable. Compared with the mutation 
signatures of hepatocellular carcinoma patients 
studied previously [81] and the mutation signatures 
of 154 Asian hepatocellular carcinoma patients in 
TCGA database, the mutation signatures composition 
of DPHCC patients is relatively simple. 

CNVkit is a command-line toolkit and Python 
library available for Ubuntu or Debian Linux and Mac 
OS X. However, an important issue is that to use this 
tool the user must first install several Python and R 
packages, and CNV calling requires the use of 
multiple command lines in a specific order, meaning 
that users must have moderate programming skills. In 
this study, we conducted WES to explore the 
relationship between CNVs in two subtypes of 
hepatocellular carcinoma, CK19-HCC and DPHCC. 
The results showed that the heterogeneity of copy 
number variation was relatively large in DPHCC. 
Compared with CK19-HCC, chromosome 11 of 
DPHCC is relatively stable, and the chromosome 1q 
and 8q mostly showed CN-gains. The frequent trend 
of CN-gain of TPR and ODR4 in chromosome 1q may 
indicate that CN-gain of TPR and ODR4 plays a role 
in the progression of DPHCC, while chromosome 11 
has little effect on the transformation of this 
hepatocellular carcinoma subtype. However, due to 
the limited sample size, copy number variations 
leading to subtype changes in hepatocellular 
carcinoma still need to be validated in larger cohorts. 

RNA sequencing followed by differential 
expression analysis and enrichment analysis were 
applied to investigate the abnormity of DPHCC in 
gene expression level. 

We found 1410 dysregulated genes in DPHCC 
samples, of which 624 were up-regulated and 786 
were down-regulated. In CK19+HCC samples, 3464 
genes were dysregulated, with 1807 up-regulated and 
1657 down-regulated. CXCL9 expression was 
significantly down-regulated in DPHCC, but not in 
CK19+HCC. In our cohort, the expression of several 
stem cell markers examined tended to be 
up-regulated in both DPHCC and CK19+HCC, but 
none of them were significantly statistically different, 

except for KRT19. 
GO enrichment results showed that the 

up-regulated genes of DPHCC and CK19+HCC 
samples were abundantly enriched in pathways 
related to ribosome generation, transcription up- 
regulation, and activation of transcription factors. The 
acceleration of ribosome biogenesis and transcription 
is particularly important for rapid cell proliferation 
[97, 98], which may accelerate tumor cell growth. The 
down-regulated genes in DPHCC samples were 
abundantly enriched in immune-related pathways. 
The body’s immune response to tumors depends on 
the balance between the antigenicity of tumors and 
the microenvironment of tumor tissues [99], and the 
down-regulation of immune-related pathways is 
conducive to the establishment of an immuno-
suppressive environment. In this immunosuppressive 
environment, tumors often show poor prognosis 
[100]. 

In KEGG pathway enrichment, we also found 
that the up-regulated genes of DPHCC and 
CK19+HCC samples were enriched in many 
cancer-related pathways, such as PI3K-Akt signaling 
pathway, Wnt signaling pathway, and the NF-kappa 
B signaling pathway. The pathways enriched in the 
down-regulated DPHCC genes were mainly 
immune-related. The PI3K-Akt signaling pathway 
plays an important role in regulating the normal 
growth, metabolism, and survival of cells. Inhibition 
of PI3K-Akt signaling can inhibit cell proliferation, 
attenuate the proliferation ability of hepatoma cells, 
and reduce the invasiveness of tumors [101-103]. 
Conversely, activation of the PI3K-Akt signaling 
pathway can promote the growth, metastasis, and 
progression of HCC [104-107]. It has been reported 
that molecular mutations or copy number variations 
involved in the PI3K-Akt signaling pathway may be 
associated with higher PI3K-Akt signaling [85]. Here, 
the WES results revealed that the mutation rate of the 
PI3K-Akt pathway in DPHCC tissues is significantly 
higher than that in CK19-HCC tissues. This may 
contribute to DPHCC having a worse prognosis than 
CK19-HCC. The Wnt pathway is a key component of 
embryonic development and tissue homeostasis, 
which is associated with cell survival, proliferation, 
migration, and invasion [108]. Activation of Wnt 
signaling promotes the occurrence and development 
of liver cancer, as well as self-renewal of liver CSCs 
and tumor invasion and migration [109-113]. 
Up-regulated Wnt signaling predicts a worse 
prognosis in HCC patients. 

The GO and KEGG analyses revealed that both 
DPHCC and CK19+HCC are more aggressive and 
have a worse prognosis than CK19-HCC. Moreover, 
the immune environment of DPHCC may be 
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suppressed and the prognosis may be worse than 
CK19+HCC. 

To resolve the interactions between DEGs in 
DPHCC, a close interacting PPI network was found, 
which included 21 genes, namely TP53, IFNG, STAT1, 
MAPK14, MYD88, APOE, CD40, CXCL9, ISG15, 
CCND1, NGF, DLG4, CCR7, CRP, EZH2, GNB2L1, 
TRIM21, GNB4, CFTR, SOX2, and GRIA2. Given the 
higher degree of CXCL9 and its association with 
immunity, CXCL9 was selected for further validation 
in TCGA cohort and our patient samples. Results 
showed that the expression of CXCL9 was negatively 
correlated to tumor purity, and positively correlated 
to the levels of immune cells, including B cells, CD8+T 
cells, CD4+T cells, macrophages, neutrophils, and 
dendritic cell. Similarly, TCGA database analysis 
showed that low CXCL9 levels were associated with 
poor overall survival. 

To exclude the impact of other interfering factors 
on survival prognosis, we conducted a univariate and 
multivariate analysis of Cox proportional risk 
regression on risk factors that may affect survival. 

While multivariate analysis of Cox proportional 
risk regression showed that genes and pathways with 
high-frequency mutations in DPHCC could not be 
independent risk factors, the results demonstrated 
that DPHCC is a new HCC subtype with extremely 
unstable gene mutation status, and is accompanied by 
an immunosuppressive environment. As a high- 
frequency of mutated genes and pathways cannot be 
independent risk factors, it may be that DPHCC 
pathogenesis is not determined by a single gene 
mutation, but by mutations in multiple genes and 
pathways, together with suppression of the immune 
system. 

The results of Cox proportional risk regression 
further confirmed that low expression of CXCL9 was 
not conducive to patient survival. CXCL9 is an 
independent risk factor in predicting the prognosis of 
HCC patients. 

Chemokines are a class of polypeptides that 
contain 4 conserved cysteine residues and have 
chemotactic functions [114]. Chemokines play 
important roles in embryonic development, 
angiogenesis, hematopoiesis, atherosclerosis, cancer 
and other pathophysiological processes. CXC 
chemokine-mediated regulation of angiogenesis has 
been shown to play a key role in solid tumors. 
ELR-containing CXC chemokines can promote 
angiogenesis and thus promote tumor growth, 
whereas CXCL9, which is mainly induced by IFN - γ 
and synthesized in lymphocytes, monocytes, and 
fibroblasts, as a non-ELR-containing CXC 
chemokines, can inhibit angiogenesis and thus play a 
cancer suppressive role. 

CXCL9 is produced by macrophages, endothelial 
cells, hepatocytes, and tumors [115]. As a CXCR3 
ligand, CXCL9 acts mainly as a chemoattractant to 
activate immune cells, including T cells and natural 
killer cells [116]. CXCL9 stimulates lymphocytes to 
enter tumors and enhances anti-tumor immune 
monitoring. Gorbachev et al. showed that in mouse 
skin fibrosarcoma, CXCL9-deficient tumor cells 
interfered with the aggregation of immunocompetent 
cells, making CXCL9-deficient tumor cells more 
tumorigenic [117]. Additionally, a high expression of 
CXCL9 has been associated with a good survival rate 
after surgery in ovarian and colorectal cancers [118]. 
There are also studies that combine IL-2 and CXCL9 
to slow angiogenesis and tumor progression [119]. 

Endogenous CXCL9 affects tumor progression 
and postoperative survival in intrahepatic 
cholangiocarcinoma patients by regulating 
tumor-infiltrating NK cells, which was also validated 
in mouse models [120]. High expression of CLCX9 is 
associated with high infiltration of NK cells, while NK 
cells, as immune-related cells in the liver, can not only 
prevent cancer cells from invading the liver, but also 
kill cancer cells through a variety of cytotoxic 
pathways. CXCL9 released by tumor cells can 
regulate the enrichment of NK cell subset that 
expresses tumor necrosis factor-related apoptosis-in- 
ducing ligand (TRAIL+NK cell) to tumor tissues. 
Therefore, tumor cells with low expression of CXCL9 
make insufficient enrichment of TRAIL+NK cell, 
which leads to tumor cell growth [121]. In addition, 
the expression of CXCL9 was also associated with the 
infiltration of T cells. Highly infiltrating T cells can 
control tumor growth through IFN-gamma- 
dependent pathway, whereas high infiltration of T 
cells is associated with high expression of CXCL9 
[122]. Tumors expressing CXCL9 deficiency fail to 
recruit cytotoxic CD8 T cells, resulting in accelerated 
tumor growth. High expression of CXCL9 accelerated 
the generation of CCL5 in tumor microenvironment, 
and tumors with elevated expression of CXCL9 and 
CCL5 showed higher immunoreactivity and immune 
checkpoint inhibition response [123]. Many reports 
have confirmed that tumor-derived CXCL9 is a tumor 
suppressor [116], and is associated with a good 
prognosis and a good response to chemotherapy 
[124-126]. Here, CXCL9 was significantly down- 
regulated in DPHCC tissues and not CK19+HCC 
tissues, and the immune microenvironment was 
suppressed, which may contribute to DPHCC having 
a worse prognosis than CK19+HCC. 

The present study is limited by the small number 
of cases, and there is a need for a larger cohort for 
validation. Regardless, both our data and TCGA data 
showed that reduced CXCL9 expression was 
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associated with a worse prognosis. We speculate that 
the presence of a severe immunosuppressive 
environment in DPHCC may be associated with the 
activation of PI3K-Akt signaling pathway mutations 
and the significant down-regulation of CXCL9 
expression in DPHCC tissues. 

In conclusion, despite the limitation of 
insufficient sample size, we explored the molecular 
mechanisms underlying DPHCC pathogenesis. These 
results provide useful insight into the disease 
mechanisms, with potentially important clinical 
implications. 
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