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Abstract 

Chemotherapy is still the most fundamental treatment for advanced cancers so far. Previous studies have 
indicated that immune cell infiltration (ICI) index could serve as a biomarker to predict chemotherapy 
benefit in breast cancer and colorectal cancer. However, due to different responses of tumor infiltrating 
immune cells (TIICs) to chemotherapy, the prediction efficiency of ICI index is not fully confirmed by 
now. In our study, we first extended this conclusion in 7 cancers that high ICI index could certainly 
indicate chemotherapy benefit (P<0.05). But we also found the fraction of different TIICs and the 
interaction of TIICs were varies greatly from cancer to cancer. Therefore, we executed correlation and 
causal network analysis to identify chemotherapy associated immune feature genes, and fortunately 
identified six co-owned immune feature genes (CD48, GPR65, C3AR1, CD2, CD3E and ARHGAP9) in 10 
cancers (BLCA, BRCA, COAD, LUAD, LUSC, OV, PAAD, SKCM, STAD and UCEC). Base on this, we 
developed a chemotherapy benefit prediction model within six co-owned immune feature genes through 
random forest classifying (AUC =0.83) in cancers mentioned above, and validated its efficiency in external 
datasets. In short, our work offers a novel model with a shrinking panel which has the potential to guide 
optimal chemotherapy in cancer. 
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Introduction 
With progressing of medical technology, the 

clinical treatment for cancer has developed into a 
combination of surgery, chemotherapy, radiotherapy, 
targeted therapy, and immune therapy [1]. 
Chemotherapy is still the most fundamental treatment 
for advanced cancers, especially in the situations of no 
surgery chance or no sensitive mutation for targeted 
therapy [2]. It is suggested that the implement of 
chemotherapy could significantly delay disease 
progression in a variety of cancers, such as lung 
cancer, liver cancer and colorectal cancer [3-5]. 
However, studies also indicate that even for these 
chemotherapy sensitive cancers, the response of 
chemotherapy in patients present greater 
heterogeneity [6]. Therefore, identify effective 
biomarkers which can indicate chemotherapy benefit 

and give patients optimized treatment has been one of 
the long-lived issues in clinical cancer care. 

The infiltrations of immune cell and their 
interactions with cancer cells have formed a unique 
tumor immune microenvironment (TIME) [7]. In 
TIME, the functions of tumor infiltrating immune cells 
(TIICs) in cancer evolution are totally different, due to 
its cell type, density and distribution [8, 9]. It has been 
confirmed that TIICs are widely involved in each step 
of cancer progression [10], including immune escape, 
metastasis, drug responses and the prognosis of 
cancer patients [11, 12]. The close correlation between 
immune cell infiltration and chemotherapy outcome 
has been reported in cancers, including breast cancer 
and colorectal cancer [13, 14], which suggested that 
immune cell infiltration (ICI) index could serve as a 
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biomarker to predict chemotherapy benefit. In 
addition, studies have reported that in non-small-cell 
lung cancer, chemotherapy can promote anti-cancer 
immunity by recruiting T and B cells into TIME and 
change the phenotype of cytotoxic CD8+ T cells and 
CD8+/CD4+ memory T cells [15]. In triple-negative 
breast cancer (TNBC) and HER2-positive breast 
cancer, high levels of ICI in patients indicate a higher 
complete response rate after neoadjuvant 
chemotherapy [16, 17]. In bladder cancer, patients 
with more infiltration of these five immune cells 
(Mast cell, Macrophage, Treg, NK cell and CTLs) has 
been confirmed could earn better prognosis after 
chemotherapy [18]. However, limited by several 
studies on the correlation between ICI and 
chemotherapy outcome and different responses of 
TIICs to chemotherapy, the prediction efficiency of 
ICI index is not fully confirmed so far. 

In this study, we tried to isolate chemotherapy 
associated immune feature genes in multiple cancers 
to construct a new chemotherapy benefit prediction 
model. Firstly, by download the transcriptome data of 
cancers from TCGA database, we performed 
ESTIMATE analyzing and demonstrated that ICI 
index could indicate chemotherapy benefit in 
multiple cancers, but the composition and interaction 
of TIICs were diverse among different caners. Next, 
we employed correlation and causal gene expression 
network analysis to identify chemotherapy associated 
immune feature genes and fortunately got six 
co-owned immune feature genes. Finally, we 
developed a chemotherapy benefit prediction model 
through random forest classifying and validated its 
efficiency in external datasets. In short, our work 
offers a novel model with a shrinking panel which has 
the potential to guide optimal chemotherapy in 
multiple cancers. 

Materials and Method 
Data and sample collection 

Transcriptome data and clinical information data 
of 33 cancers were downloaded from the TCGA 
(https://portal.gdc.cancer.gov/) databases. The 
cancer paraffin-embedded specimens of 52 NSCLC 
patients were obtained from the Department of 
Pathology, West China Hospital, Sichuan University, 
these patients had received neoadjuvant 
chemotherapy before surgery between January 2016 
and August 2020. According to Response Evaluation 
Criteria in Solid Tumors (RECIST), 7 patients were 
defined as complete response (CR), 23 patients were 
defined as partial response (PR) and 22 patients were 
defined as progressive disease (PD) [19]. 

Cancer purity estimation 
The ESTIMATE algorithm is used to calculate the 

immune-stromal component ratio in each cancer 
sample, and displays with three scores: ImmuneScore, 
StromalScore and ESTIMATEScore [20]. In this study, 
we use ESTIMATE to measure the immune 
infiltration levels in mutliple cancers. According to 
the ImmuneScore, all cancer patients can be divided 
into two groups. 

Survival analysis 
The R packages “survival” and “survminer” 

were used for survival analysis. The survival curves 
were estimated by using the Kaplan-Meier method, 
and the log-rank test was used to analyze differences 
in survival time. 

Evaluation of specific immune cell infiltration 
CIBERSORT was used to evaluate the fraction of 

specific cell types based on transcriptome data of 
different cancers [21]. Monte Carlo sampling was 
used to derive the P value in CIBERSORT for the 
deconvolution of each sample. Cancer samples which 
P value <0.05 were selected for further analysis. 

Immunohistochemistry 
Sections were dewaxed and hydrated, then 

treated with 10 mM citrate buffer (pH 6.0) for 5 min 
for antigen repair. After being treated with 3% 
hydrogen peroxide for 10 min to inactivate 
endogenous enzymes, sections were blocked in 5% 
BSA for 20 min and then incubated with primary 
antibody: CCR2 (Abgent Cat# abs128841, Absin) and 
UCHL1 (Abgent Cat# 66230-1-lg, Proteintech). 
Sections were incubated with primary antibody at 4°C 
overnight. After washing in PBS, sections were 
incubated with secondary antibodies at room 
temperature for 30 min. After washing in PBS, 
sections were treated with streptavidin–biotin 
complex at room temperature for 20 min. After 
washing in PBS, the sections were visualized with (3, 
30-diaminobenzidine, DAB) DAB. Nucleus was 
stained with hematoxylin. After dehydration, 
transparentization and fixation were performed and 
observed with a light microscope. 

Immunohistochemical evaluation 
The grading of positive immunohistochemical 

reactions is based on the combination of staining 
intensity and the percentage of positive cells. Five 
images were randomly obtained for each specimen 
after ×400 magnification. We try to avoid marginal 
areas to prevent marginal effects from affecting 
evaluation. Count all cells and the number of positive 
cells with a micro-measuring grid, and calculate the 
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average proportion of positive cells. First, score 
according to the intensity of dyeing: 0 if colorless, 1 if 
light yellow, 2 if light brown, and 3 if dark brown. 
Then calculate the percentage of positive cells in each 
specimen and score it (0 = 0%, 1 = 0% ~ 10%, 2 = 10% ~ 
50%, 3 = 50% ~ 75%, 4 = >75 %). Finally, multiply the 
ratio score by the dyeing intensity score to get the 
final semi-quantitative score, which is divided into 4 
levels: −(0,1,2), +(3,4), ++(6,8), +++ (9,12). Tumors 
with a final score of more than 3 are considered 
positive by immunohistochemistry. In terms of 
protein expression, −~+ means low expression, and 
++~+++ means high expression. 

Correlation and causal network analysis 
In this study, “edgeR” R package [22] was used 

to gain differential immune feature genes between ICI 
high and low chemotherapy group in multiple 
cancers, the analysis criteria was performed according 
to the P <0.05 and | log2 fold change (FC) | >2. The R 
package ‘STRINGdb’ was used to calculate the 
correlation between these differential immune feature 
genes [23]. By setting the combined score >0.9, 
gene-pair with correlation relationship were obtained 
(Table S3). Among them, top 60 chemotherapy 
associated immune feature genes were determined for 
following causal network analysis (Table S4). 

The Bayesian causal network with a directed 
acyclic graph could exhibit the dependent and 
independent relationships between selected variables, 
and conditional probability distribution was 
employed to describe the dependence of variables. 
We used the “bnlearn” R package to construct the 
Bayesian causal network among determined 
chemotherapy associated immune feature genes 
mentioned above [24]. Next, we drew the Bayesian 
causal network of gene pairs within weight >0.5 
(Table S5) by Cytoscape (3.7.2) [25]. Finally, we 
selected the top 20 in-degree and top 20 out-degree 
genes as the hub nodes of each cancer (Table 1) and 
identified six co-owned immune feature genes in 
these cancers. 

Model construction and validation 
Based on expression of the six co-owned 

immune feature genes as characteristic, we 
constructed a random forest classifier model, 70% of 
the total patients were selected as train set and the rest 
patients were selected as test set. We drew the 
learning curve of n_estimators and adjusted the 
parameters (max_depth, max_features, 
min_samples_leaf, min_samples_split) through grid 
search to get the best combination of each parameter. 
The feature importance of this model was viewed by 

feature_importances [26]. GSE25055 dataset (breast 
cancer, n=310) and GSE14814 dataset (non-small cell 
lung cancer, n=131) were used in external validation. 
The ROC curve showed the predictive performance of 
the model in the test and validation sets. 

 

Table 1. Hub genes of in-degree and out-degree of 10 cancers 

BLCA CD48, GPR65, P2RY10, CD74, C1QB, CCR4, ITK, SPI1, TYROBP, 
C3AR1, CD2, CD3D, CD3E, FCER1G, GZMA, LCP2, PIK3CG, 
SH2D1A, CASR, CXCL12, CXCR3, ARTP, DOK2, P2, DOCK, OK 
CCR8, CD8A, CXCL1, CXCL9, ICAM3, C3, CCL5, CCR2, CD3G, 
FPR1, FPR2, HLA-DRB1 

BRCA DOCK2, ITK, PTPRC, CD3G, PIK3CG, CXCR3, CCL21, C3AR1, 
CCR8, ICAM3, SST, LCP2, CCR4, CD3D, CXCR5, CXCL10, CXCL9, 
GZMA, ARHGAP9, CD3E, SPI1, G CCL, DOK2, P2, RY13 C1QA, 
CCR1, CCR5, C1QB, CD48, FPR2, CD2, CXCL11, FCER1G, 
HLA-DRB1, TYROBP 

COAD DOCK2, PIK3CG, PTPRC, CCR2, C1QA, CD48, C3AR1, LCP2, 
RGS18, GPR65, SLA, CCR1, CD3D, CNR1, P2RY10, CCL5, CCR7, 
CD2, CXCR1, FCER1G, FPR1, CXACR5, SHROBP, SHROBP, CCR8, 
ITK, CXCL10, DOK2, TRAT1, C1QB, CCL21, CD3E, CXCL9, GZMA, 
ARHGAP9 

LUAD SPI1, C3AR1, CD48, ICAM3, PTPRC, C1QB, FPR2, TYROBP, DOCK2, 
GPR65, SLA, C1QA, CD2, CD3E, C1QC, CD74, DRD2, SH2D1A, 
TAGAP, ARHGAP9, GZCRMA, ITXK, CXCR5, ITXCL10, PIK3CG 
LCP2, P2RY13, DOK2, CXCL9, IL12RB1, CXCR3, FPR1, ADCY8, 
CCL21, CCL5, CD8A 

LUSC DOCK2, CD74, CD3E, CD48, CXCR3, PTPRC, RGS18, P2RY10, CCR5, 
GPR65, LCP2, PIK3CG, SPI1, CCR2, CD2, CD3D, CXCL11, DOK2, 
FPR2, GZMA, C5AR1, CCR8, IL12RB1, C1, CXCL9, FCER1G, C1QC, 
CCR1, SH2D1A, CCR4, ITK, P2RY13, TYROBP, ARHGAP9 

OV LCP2, CCR1, CCR5, CD3E, CXCR3, RGS1, C3AR1, CD48, CXCL11, 
ARHGAP9, CCL5, CD2, FCER1G, PTPRC, IL12RB1, SH2D1A, FPR1, 
TYROBP, C1QA, C1QC, FPR3, GPR65, P2RY13, ITK, SPI1, CCR4, 
CXCL9, DOCK2, TAGAP, CD3G, CD74, CCL13, CCL19 

PAAD LCP2, CCR1, CCR5, CD3E, CXCR3, RGS1, C3AR1, CD48, CXCL11, 
ARHGAP9, CCL5, CD2, FCER1G, PTPRC, IL12RB1, SH2D1A, FPR1, 
TYROBP, C1QA, C1QC, FPR3, GPR65, P2RY13, ITK, SPI1, CCR4, 
CXCL9, DOCK2, TAGAP, CD3G, CD74, CCL13, CCL19 

SKCM CCR7, CD3G, TRAT1, C3AR1, CCL5, LCK, LPAR5, CD3E, CD2, 
CXCL9, GZMA, P2RY10, PTPRC, BDKRB1, C1QA, C3, CCR1, CCR5, 
FCER1G, SPI1, ARHGCRAP9, DPR2, C1Q ICAM3, SH2D1A, CCL21, 
GPR65, TYROBP, P2RY13, CD48, CD8A, HLA-DRB1 

STAD CD48, CD3D, P2RY10, CCR7, CCR5, CD2, FPR2, RGS18, SST, 
TYROBP, CCR4, CXCL9, CXCR2, P2RY13, C3AR1, CASR, CXCL10, 
SPI1, CCR1, CD8A, PIK3CG, IL12 G1, CD3G, CXCR5, FCER1G, 
LCP2, C1QA, CD3E, CCL21, CCR2, DOCK2, DOK2, GPR65, PTPRC, 
SH2D1A, ARHGAP9 

UCEC SH2D1A, IL12RB1, CD2, TRAT1, CCL19, CXCR3, CXCR5, C1QA, 
CCR7, GPR65, C1QB, CCL5, CCR5, CD3D, CD3E, KNG1, LCP2, 
RGS18, CCL21, CCR2, CXCL9, FCER1, DOCK2, RGS1, CD48, SLA, 
SPI1, TAGAP, C3AR1, CD8A, ICAM3, ARHGAP9, CCL13 

 

Functional analysis 
We calculated the semantic similarity between 

chemotherapy associated six co-owned immune 
feature genes in molecular function and cellular 
component based on the “GOSemSim” R package, 
and then calculated the geometric mean to obtain the 
similarity score of each gene. The most significantly 
enriched Gene Ontology (GO) terms and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) for 
feature genes were identified using DAVID 
(https://david.ncifcrf.gov/). 
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Figure 1. Data screening and analysis process. 

 

Results 
ICI index indicates chemotherapy benefit in 
multiple cancers 

Figure 1 showed the flow chart of data screening 
and analysis process. We first exclude the influence of 
radiotherapy on the prognosis of cancer patients 
(Table S1). Then among the remaining patients of 
pan-cancer, in order to ensure enough chemotherapy 
patients for study, we selected cancers which has 
chemotherapy patients >100 and chemotherapy 
patients >30% of total patients, including bladder 
urothelial carcinoma (BLCA), breast invasive 
carcinoma (BRCA), colon adenocarcinoma (COAD), 
lung adenocarcinoma (LUAD), lung squamous cell 
carcinoma (LUSC), ovarian cancer (OV), pancreatic 
adenocarcinoma (PAAD), skin cutaneous melanoma 

(SKCM), stomach adenocarcinoma (STAD) and 
endometrial carcinoma (UCEC) (Figure 2A-C). And 
the detailed clinic parameters of enrolled patients of 
10 cancers were shown in Table S1. In our study, we 
divided patients into four groups according to the ICI 
index (high or low) and with or without 
chemotherapy (chemo+/-) (Table S2). We found that 
in 7 cancers of BLCA (P =0.0275), BRCA (P =0.0204), 
COAD (P <0.001), LUSC (P =0.0146), OV (P =0.0496), 
SKCM (P =0.0215) and UCEC (P =0.0382), high ICI 
index indicated good chemotherapy benefit (Figure 
3A-G). And in 4 cancers of BRCA (P =0.01), COAD (P 
<0.001), SKCM (P =0.0368) and UCEC (P =0.00184), 
ICI index was also positively related with the 
prognosis of non-chemotherapy patients (Figure 
3B-D, F). These results suggested that ICI index could 
indicate the outcome of cancer patients, especially in 
chemotherapy patients. 
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Figure 2. Chemotherapy information of cancer patients in TCGA. (A) Number of chemotherapy and non-chemotherapy patients in different cancers. (B) Percentage 
of chemotherapy and non-chemotherapy patients in the total patients in different cancers. (C) We screened cancers with a proportion of chemotherapy patients >30% and 
number of chemotherapy patients >100 for subsequent analysis. 

 

The components and interaction of TIICs are 
diverse among different cancers 

Immune infiltrations are determined by the type 
and fraction of TIICs in TIME, and play an important 
role in inhibiting or promoting cancer growth [27]. 
Figure 4A showed the components of TIICs in 
multiple cancers. We could see that the fraction of 
CD8+ T cells and macrophages M0 was high in 
chemotherapy patients with high ICI index, while the 
fraction of CD4+ memory resting T cells and 
macrophages M2 was low in chemotherapy patients 
with low ICI index. And based on the 
immunohistochemistry, we also found that compared 
with PR group, CR group has more infiltrations of 
macrophages M0 (marker gene: CCR2) and CD8+ T 
cells (marker gene: UCHL1) (Figure 4B; PCCR2 =0.035, 
PUCHL1 =0.006), which was consistent with the result of 
heat map. At the same time, we analyzed the 
interaction among TIICs in chemotherapy and 
non-chemotherapy patients. We found that in 
chemotherapy patients of COAD, SKCM, BLCA, 
LUSC, UCEC, LUAD and STAD, both CD8+ T cells 
and CD4+ memory resting T cells showed a strong 
negative correlation (Figure 4C, D; Figure S1A, C, D, F 

and G). And, in COAD, SKCM, BLCA, BRCA, UCEC, 
OV, LUAD and PAAD, compared with 
non-chemotherapy patients, the interaction between 
TIICs in chemotherapy patients was more abundant 
(Figure 4C, D; Figure S1A, B, D-F and H). 

Identifies six co-owned chemotherapy 
associated immune feature genes through 
correlation and causal network analysis 

Due to the prediction efficiency of ICI index is 
not fully confirmed so far, we analyzed which genes 
were related with chemotherapy benefit based on the 
transcriptome data (Figure 5A). In order to make the 
ICI group more credible, according to the value of ICI 
index, we selected the front 2/3 chemotherapy 
patients of high ICI group and the latter 2/3 
chemotherapy patients of low ICI group to analyze 
differential immune feature genes (Figure 5B- K). 
Then, we calculated the correlation among these 
genes, and retained genes with combined score >0.9 
(Figure 5L). Next, we selected top 60 immune feature 
genes based on the degree to execute the Bayesian 
causal network analysis, and drew these networks 
with weight >0.5 (Figure S2A-J). Finally, we extracted 
the top 20 in-degree and top 20 out-degree genes as 
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the hub nodes of each cancer (Table 1) and identified 
six co-owned immune feature genes (CD48, GPR65, 
C3AR1, CD2, CD3E and ARHGAP9) in these cancers 

(Figure 5M). These genes were closely interacted in 
overall chemotherapy patients (Figure 5N). 

 

 
Figure 3. ICI index indicates chemotherapy benefit in multiple cancers. Each row represents a type of cancer. Each column represents a different grouping. A 
Kaplan-Meier Plotter was used to show the survival prediction ability of ICI index in multiple cancers (BLCA, BRCA, COAD, SKCM, LUSC, UCEC, OV, LUAD, STAD and 
PAAD). chemo+: chemotherapy patients; chemo-: non-chemotherapy patients. 
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Figure 4. The composition and interaction of TIICs are diversity among different cancers. (A) Heat map showed the composition of TIICs in chemotherapy patients 
among cancer. (B) The expressions of Macrophage M0 (marker gene: CCR2) and CD8+ T cells (marker gene: UCHL1) in the preoperative puncture samples of NSCLC 
chemotherapy and the corresponding histogram of immunostaining score. CR: complete response; PR: partial response; PD: progressive disease. (C, D) The interaction between 
TIICs in chemotherapy and non-chemotherapy patients of COAD and SKCM. 
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Figure 5. Identifies six co-owned chemotherapy associated immune feature genes through correlation and causal network analysis. (A) The flow chart 
showed how we determined chemotherapy associated immune feature genes by correlation and causal network analysis. (B-K) The volcano showed differential immune feature 
genes of 10 cancers. Blue indicates down-regulated genes, and red indicates up-regulated genes. (L) The histogram showed the number of genes screened by the combined score 
>0.9 after correlation network analysis of differential immune feature genes. (M) Upset displayed top 20 out-degree and top 20 in-degree genes obtained after causal network 
analysis. (N) The network relationship of chemotherapy associated immune feature genes in all chemotherapy patients. 

 

Construct a prediction model of 
chemotherapy benefit 

Based on the expression of six co-owned 
immune feature genes in chemotherapy patients, a 

regression model was first constructed with 
multivariate cox (Figure S3A), and these patients were 
divided into three groups (high, medium, and low) 
according to the value of risk score (Figure 6A). Then, 
we selected the high and low groups to construct the 
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random forest classifier model. By drawing the 
learning curve of n_estimators (Figure 6B) and 
performing grid search, we finally got the 
combination of each parameter of this model as 
RandomForestClassifier(n_estimators=11, max_depth 
=19, max_features=2, min_samples_leaf=1, 
min_samples_split=2). The weight of six immune 
feature genes was: 0.14771103, 0.19725147, 0.2050475, 
0.15374589, 0.13619434 and 0.1600497, and the AUC 
was 0.83 (Figure 6C). Then, we extracted 30% of the 

total patients to verify the stability of this model and 
the AUC of 10 cancers all above 0.67 (Figure S3B-K). 
In addition, compared AUC of ICI index, we found 
that this model has higher AUC values in predicting 
the chemotherapy benefit (Table S6). Finally, we used 
two GEO datasets to validate the accuracy of this 
model, and we found that the AUC of GSE25055 and 
GSE14814 were 0.82 and 0.59, respectively (Figure 6D; 
Figure S3L). In general, this model has good efficacy 
in predicting the benefit of chemotherapy. 

 

 
Figure 6. Construction of a chemotherapy benefit prediction model and potential function analysis of immune feature genes. (A) Based on six immune feature 
genes to construct a multivariate cox model, chemotherapy patients were divided into three groups according to the risk score. (B) The learning curve of n_estimators from 0 
to 200. (C) ROC curve of this model in the test set. (D) ROC curve of this model in validation sets of GSE25055. (E) Boxplots show the functional similarity of six immune feature 
genes. The line in the box represents the average value of functional similarity. Proteins with high average functional similarity (cut-off >0.6) are considered interacting proteins. 
The dashed line indicates the cut-off value. (F, G) Display of biological functions and signal pathways enriched by immune feature genes. 
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Potential functions of six co-owned immune 
feature genes 

From the boxplot, we could see that there were 
five genes (CD48, GPR65, C3AR1, CD2 and CD3E) 
above the cutoff value, indicating that these genes 
performed similar biological functions (Figure 6E). 
Next, we analyzed the biological functions of these 
immune feature genes. We found that these genes 
were mainly enriched in the “leukocyte chemotaxis”, 
“myeloid leukocyte migration”, “lymphocyte 
differentiation”, “T cell differentiation” and “T cell 
activation” (Figure 6F). And KEGG pathway analysis 
found that these genes were mainly enriched in 
“cytokine-cytokine receptor interaction”, “Th17 cell 
differentiation”, “chemokine signaling pathway” and 
“T cell receptor signaling pathway” (Figure 6G). 

Discussion 
Compared with other cancer treatments, 

chemotherapy has the advantages of non-invasive 
and good compliance in patients [28], but also brings 
great harm to the patient’s body [29, 30]. It is still 
inconclusive in clinical for which population of cancer 
patients could benefit from chemotherapy certainly. 
How to divide patients into benefit subset or 
non-benefit subset remains the wildly discussed issue 
in clinical treatment of cancer nowadays [31]. 
Whether patients could benefit from chemotherapy or 
not, partly depend on the unique cancer immune 
microenvironment of themselves [32, 33], ICI index 
which arisen from ESTIMATE analyzing of cancer 
transcriptome data could serve as a biomarker for 
chemotherapy benefit prediction [13, 14]. As 
considering the variety of immune infiltration cells 
and their differential responses to chemotherapy, the 
efficiency of ICI index in prediction of chemotherapy 
benefit remains to be discussed in depth. In our work, 
we extended the conclusion in BLCA, BRCA, COAD, 
SKCM, LUSC, UCEC and OV, that high ICI index 
could instruct chemotherapy benefit in 932 patients 
based on TCGA datasets (P <0.05). And we found that 
the components of TIICs in the high/low ICI index 
group of chemotherapy patients and their interaction 
in with/without chemotherapy patients were diverse 
among different cancers. It offered the evidence that 
ICI index was not exactly right for the benefit 
prediction of chemotherapy in cancer patients, since 
ICI index only reflected the whole immune cell 
infiltration state. 

Recently, studies also suggested that specific 
TIIC not total TIICs could indicate the therapeutic 
benefit of chemotherapy [34]. In our study, we found 
that the interaction among TIICs was more frequent in 
patients within chemotherapy as contrasted to 

patients without chemotherapy (Figure 4C, D; Figure 
S1A-H). While tight interaction between CD8+ T cells 
and CD4+ memory resting T cells after chemotherapy 
often indicated the extending survival in patients 
(Figure 4A). These findings bring us the new vision, 
that is, it may be possible to establish a new benefit 
prediction method for cancer chemotherapy through 
isolating chemotherapy associated immune features. 

Network analysis is different from conventional 
difference analysis, which could help us to detect key 
node factors related to event occurrence from omics 
data. In this study, by performing correlation and 
causal network analysis on the cancer transcriptome 
data, we isolated 40 chemotherapy associated 
immune feature genes of each cancer (BLCA, BRCA, 
COAD, SKCM, LUSC, UCEC and OV), and identified 
six co-owned immune feature genes: CD48, GPR65, 
C3AR1, CD2, CD3E and ARHGAP9. These genes 
were mainly enriched in the processing of “leukocyte 
chemotaxis”, “myeloid leukocyte migration”, 
“lymphocyte differentiation”, “T cell differentiation” 
and “T cell activation”. This is corresponding to the 
existed opinion that lymphocyte activation after 
chemotherapy indicates good drug response and 
survival benefit in patients [35]. 

In construction of the chemotherapy benefit 
prediction model within the selected six co-owned 
immune feature genes, we employed random forest 
classifying method to correct the weight of each 
feature genes. Total 973 cancer patients were included 
in model training, and 293 cancer patients were 
included in model testing, the AUC is 0.83, which 
exhibited better performance than ICI index in the 
prediction of chemotherapy benefit in cancer patients 
(Table S6). The performance efficiency of our model 
was finally validated with two external datasets 
GSE25055 (breast cancer, n=310) and GSE14814 
(non-small cell lung cancer, n=131). All of this 
guarantee our model can be used for effective 
prediction of chemotherapy benefit in multiple 
cancers. 

Conclusions 
In this study, we confirmed that high ICI index 

was related with chemotherapy benefit in multiple 
cancers and exhibited that TIICs were diverse among 
different cancers as responding to chemotherapy. By 
executing correlation and causal network analysis on 
cancer transcriptome data, we isolated several 
chemotherapies associated immune feature genes 
which included six co-owned immune feature genes. 
A chemotherapy benefit prediction model was 
constructed within these six co-owned immune 
feature genes and its efficiency was validated in 
external datasets. In short, this work offers a novel 
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model with a shrinking panel which has the potential 
to guide optimal chemotherapy in cancer. 
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