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Abstract 

Purpose: This study aimed to develop and validate a recurrence prediction of glioma patients through a 
radiomics feature training and validation model. 
Patients and methods: In this study, the prediction model was developed in a training cohort that 
consisted of 88 patients from January 2014 to July 2017 with pathologically confirmed gliomas. Their 
pre-radiotherapy and recurrence brain magnetic resonance imaging (MRI) images were collected, and the 
radiomics features were extracted. Clinical factors including age, gender, WHO grade, Isocitrate 
dehydrogenases (IDH) mutation status and treatment after surgery were collected. The least absolute 
shrinkage and selection operator (LASSO) regression model was conducted for data dimension 
reduction, feature selection, and radiomics feature analysis. Internal validation was assessed. An 
independent validation cohort contained 41 consecutive patients from August 2017 to December 2018. 
Furthermore, multivariable logistic regression analysis was used to develop the predicting model by 
combining the radiomics signature and independent clinical factors. 
Results: In total, 129 patients were included, among which 40 patients had recurrence. The median 
follow-up time was 27.4 (range, 2.6-79.2) months. We compared the tumor regions radiomics difference 
between the recurrence and non-recurrence patients. The radiomics signature was associated with the 
event of recurrence (P < 0.001 for both training and validation cohorts, respectively). The training model 
showed good discrimination with a C-index of 0.7578 (95%CI: 0.6549-9.8608) through internal validation 
on T1 contrast-enhanced magnetic resonance imaging, and a consistent trend in calibration. In the 
validation cohort, the model also showed good discrimination (C-index, 0.6925, 95%CI: 0.5145-0.8705) 
and good calibration. In the other two sequences of MRI (T1WI, T2WI), the validation model also 
showed positive results. Meanwhile, radiomics feature and clinical factors were significantly prognostic 
for recurrence (P value <0.05, respectively). 
Conclusion: We identified the radiomics feature derived from brain MRI that presented potential in 
predicting recurrence in glioma patients. This could be beneficial to risk stratification for patients. Further 
investigation is necessary to include expanded sample size investigation and external multicenter 
validation. 
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Introduction 
Glioma is the most prevalent primary brain 

cancer in human beings, of which about 80% are 
malignant gliomas [1, 2]. Lower grade gliomas 
including World Health Organization (WHO) grade I 
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and II are less common and predominantly affects 
younger adults [3]. On the contrary, high-grade 
glioma (WHO grade III and IV), especially 
glioblastoma multiforme (GBM), is the most common 
and aggressive subtype of gliomas with an annual 
incidence rate of 3.2 per 100000 population [4]. The 
disease of malignant gliomas can directly affect 
patients’ quality of life and cognitive function with a 
poor prognosis [5].  

For WHO grade I tumors without adverse 
prognostic factors, we often take an observational 
approach after a completely resection surgery. On the 
other hand, those high-grade patients, accounting for 
the tumor invasiveness, a maximal safe resection 
followed by a combination of radiotherapy 
(Intensity-modulated radiation therapy (IMRT) in 
daily fraction of 2 Gy given 5 days per week for 6 
weeks, for a total of 60 Gy) and/or chemotherapy 
(concurrent temozolamide (TMZ) followed by 6-12 
cycles of TMZ) is the standard care treatment [6]. 
Never the less, the median survival is only 14.6 
months [6]. Majority of patients recur after a short 
time and about 90% recurrence are within the 
radiation filed [7]. The event of recurrence is the 
complex problem in the treatment process for 
gliomas. Therefore, early prediction of recurrence 
patients and recurrence locations can result in early 
aggressive treatments which can reduce the risk of 
recurrence and improve prognosis.  

There are two aims in this study. First, we will 
investigate whether radiomics features could predict 
the recurrence patient by pre-operation MRI images. 
Second, we try to will identify the recurrence region 
from patient tumor. 

Patiens and Methods 
Our study was conducted according to the flow 

chart in Figure 1. All of the radiomics feature were 
extracted from MRI T1weighted image (T1WI), T2 
weighted image (T2WI), T1 contrast-enhanced. Two 
radiomics model including patient model and region 
models was established by least absolute shrinkage 
and selection operator (LASSO). The model 
performance was evaluated by ROC and calibration 
curve. For the patient model, we also evaluate the 
relationship between the radiomics feature and 
clinical factors by using multi-factor analysis of 
variance. 

Patients 
129 patients with glioma confirmed by 

pathology from January 2014 to December 2018 in 
Fudan University Shanghai Cancer Center (FUSCC) 
were enrolled retrospectively in this study. The 

inclusion criteria included: 1) had a histopathologic 
diagnosis of glioma according to 2016 WHO 
classification, 2) had preoperative and follow-up 1.5T 
MR imaging including T1WI, T2WI, 
contrast-enhanced T1WI, 3) underwent the standard 
treatment, concurrent radiochemotherapy and 
adjuvant TMZ after maximal surgical resection. The 
exclusion criteria included: 1) poor MR imaging 
quality; 2) follow-up loss. All patients underwent 
surgery and postoperative intensity modulated 
radiotherapy (IMRT). Overall survival (OS) was 
defined as time in months between first treatment and 
death. The retrospective study strictly obeyed the 
principles of the Declaration of Helsinki. This 
retrospective study was approved by the Fudan 
University Shanghai Cancer Center Institutional 
Review Board and all methods were performed in 
accordance with the guidelines and regulations of this 
ethics board. All participants signed their informed 
consent after being fully informed of the purpose and 
content of this study. 

Treatment protocol 
For treatment planning, the MD Anderson 

Cancer Center target policy was used [8]. For grade 
III-IV glioma, the total dose of radiotherapy given was 
60 Gy; five fractions of 2Gy per week were given for 6 
weeks. The tumor shown on the preoperative MRI 
scan, not including comprehensively T2-weighted 
sequence hyperintense signal, was irradiated with a 
margin of 2 cm, and the target volume was reduced to 
a margin of 1.5 cm around the tumor after 50 Gy. 
Temozolomide was given orally at 75 mg/m2 on days 
1-42 of radiotherapy and at 150 mg/m² per day for 5 
days, repeated every 28 days (one cycle). Patients with 
grade II glioma received standard radiotherapy 
treatment, which consisted of IMRT 54 Gy (30 × 1.8 
Gy once daily, 5 days per week, 6 weeks). 

MR Image Acquisition, Region of Interest 
(ROI) Segmentation and Radiomic Feature 
Extraction Methodology  

All MRI scans were performed on a 1.5T MR 
scanner (Magnetom Skyra, Siemens Healthcare, 
Erlangen, Germany) with a 16-channel phase-array 
body coil. The MR protocol included an oblique axial 
high resolution T1-weighted TSE sequence, an 
oblique axial high resolution contrast-enhanced 
T1-weighted TSE sequence, an oblique axial high 
resolution T2-weighted TSE sequence, a sagittal 
T2-weighted turbo spin echo (TSE) sequence, and an 
oblique axial diffusion-weighted imaging (DWI) 
sequence.   
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Figure 1. Study flowchart.  

 
Recurrence/progressive tumor volume (RTV) 

was defined as post-treatment gadolinium 
enhancement on post-RT T1-weighted MRI and 
delineated by an experienced radiation oncologist 
(D.C.W.) on the MRI datasets. RTVs were delineated 
without the knowledge of the planning GTVs and 
BTVs to avoid bias. 

The target delineation of radiotherapy was 
delineated by one radiation oncologist and reviewed 
by another senior radiation oncologist on the MIM 
system and both radiation oncologists had more than 
ten years of clinical experience in glioma. After 
contouring, the DICOM images and contours were 
exported to MatLab (MathWorks, Natick, MA) for 
feature extraction and analysis. The contoured regions 
of the images were cropped from the whole patient 
axial high resolution contrast-enhanced T1WI, axial 
high resolution T1WI, and high-resolution T2WI scans 
by creating a binary mask based on the contouring. 

After tumor segmentation, 257 radiomic features were 
extracted from each MRI images. These features can 
be divided into the following groups: 1) gray level 
co-occurrence matrix (GLCM), 2) gray level 
run-length matrix (GLRLM), 3) wavelet GLCM, 4) 
wavelet GLRLM, 5) histogram, 6) geometry, and 7) 
fractal. All radiomic features for each patient were 
extracted from their axial high resolution 
contrast-enhanced T1WI, axial high resolution T1WI, 
and high-resolution T2WI images with a calculation 
algorithm executed in MatLab R2015a. 

Model develop and validation 
A univariate analysis was performed to analyze 

the impact of each radiomics features. For binary 
variables, a chi-square test was used. A Cox 
regression analysis was used to analyze the relation 
between the radiomics features and clinical factors. 
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Patients were divided into training cohort 
(January 2014 to July 2017) and validation cohort 
(August 2017 to December 2018) according to time for 
first visit. The prior portion comprised the training set 
(88), the latter portion composed the validation set 
(41). We use the patient model and region model for 
recurrence prediction. In the patient model, we use 
the whole tumor region for radiomics calculation. For 
the region model, we analysed the 40 recurrence 
patients’ recurrence and non-recurrence regions. The 
least absolute shrinkage and selection operator 
(LASSO) method, which is a supervised machine- 
learning method [9], and a regression analysis method 
that performs both variable selection and 
regularization to enhance the prediction accuracy and 
interpretability of the statistical model it produces 
were used to select the most useful predictive features 
from the dataset, and the predictive model was 
established using the LASSO method. Therefore, the 
lambda selection of the LASSO model was based on 
the larger patient cohort, and the selection method 
was 10-fold cross validation. The final LASSO model 
was based on the whole training dataset. The area 
under the curve (AUC) of the receiver operating 
characteristic (ROC) curve of the prediction model, 
sensitivity, and specificity were calculated to evaluate 
the predictability of the model with the validation 
dataset. All the statistical analyses were conducted 
with R software (version 3.3.1; http://www.Rproject 
.org), and statistical significance levels are indicated 
by two-sided p values with α set at 0.05. 

Results 
Patient characteristics and univariate analysis 

In total, 129 patients were included, among 
which 40 patients had recurred. The median 
follow-up time was 27.4 (range 2.6-79.2) months. For 
clinical factor, the gender and concurrent 
chemotherapy have no significant influence. There are 
significant differences in age (p=0.037), WHO grade 

(p=0.001), IDH status (p=0.03), radiotherapy- 
interruption (p=0.017) and adjuvant chemotherapy 
(p=0.009) between patients with recurrence and 
without recurrence. As shown in Figure 2, there is 
significant difference in the overall survival between 
patients with recurrence and without recurrence 
(p=0.001). Detailed patients’ characteristics and 
baseline information in the training and validation 
cohorts are provided in Table 1. 

 

Table 1. Patient characteristics and baseline information 

Characteristic Training Cohort P 
valu
e 

Validation Cohort 
Recurren
ce   

Non-recurren
ce 

Recurren
ce   

Non-recurren
ce 

Gender   0.50
1 

  

Male 17(70.8) 34(53.1%)  8(50%) 16(64%) 
Female 7(29.2) 30(46.9%)  8(50%) 9(36%) 
Age    0.03

7 
  

<=54 7(29.2%) 36(56.3%)  8(50%) 15(60.0%) 
>54 17(70.8%) 28(43.7%)  8(50%) 10(40.0%) 
WHO Grade   0.00

1 
  

I 0(0%) 0(0%)  0(0%) 5(20%) 
II 1(4.2%) 17(26.6%)  0(0%) 7(28%) 
III 6(25.0%) 22(34.4%)  3(18.8%) 13(52%) 
IV 17(70.8%) 25(34.1%)  13(81.3%) 0(0%) 
IDH status   0.03   
Wide type 10(41.7%) 15(23.4%)  14(87.5%) 10(40.0%) 
Mutation type 5(20.8%) 16(25.0%)  2(12.5%) 12(48.0%) 
Unknown 9(37.5) 33(51.6%)  0(0%) 3(12.0%) 
Radiotherapy-interrupt
ion 

  0.01
7 

  

Yes 3(12.5%) 1(1.6%)  2(12.5%) 1(4.0%) 
No 21(87.5%) 63(98.4%)  14(87.5%) 24(96.0%) 
Concurrent 
chemotherapy 

  0.09
2 

  

Yes 22(91.7%) 48(75.0%)  1(6.2%) 24(96.0%) 
No 2(8.3%) 16(25.0%)  15(93.8%) 1(4.0%) 
Adjuvant 
chemotherapy 

  0.00
9 

  

Yes 19(79.2%) 32(50.0%)  13(81.2%) 18(72.0%) 
No 5(20.8%) 32(50.0%)  3(13.8%) 7(28.0%) 

Abbreviations: P value was derived from the univariate logistic regression analyses 
between each of the variables and recurrence events. 

 

 
Figure 2. Kaplan–Meier survival curves for patients with recurrence or without recurrence (P = 0.001) 
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Prognostic value of radiomics signature 
We implemented univariate analyses to assess 

the prognostic value of radiomics and clinical factors 
associated with recurrence during surveillance. There 
was a significant difference in local recurrence in the 
radiomics signature (p<0.001) and age (p=0.043). The 
radiomics-based prognostic models were superior in 
recurrence prediction to the clinical factors (P <0.05).  

Performance of patient model 
257 radiomics feature of ROI (region of interest) 

for each radiomic signature were reduced to 44 
potential predictors on the basis of 88 patients in the 
training cohort. The feature selection was 
demonstrated in Figure 3. The receiver operating 
characteristic curve for training and validation 
cohorts was presented in Figure 4. The AUC values 
for each radiomics signature of three regular MR 
image sequence (T1WI, T2WI, contrast-enhanced 
T1WI) were showed in Table 2. 

 

 
Figure 3. Feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. Tuning parameter (λ)selection in LASSO used 
5-fold cross-validation via minimum criteria. The area under the receiver operating characteristic (AUC) was plotted versus log(λ) separately for T1WI(left), T2WI(median), 
contrast-enhanced T1WI(right) of patient model. T1WI, T1 weighted image; T2WI, T2 weighted image. 

 
Figure 4. ROC curves of radiomics signature in predicting recurrence among glioma patients for patient model. A and B represent separately for training and validation cohorts. 
From left to right, the images represent T1WI, T2WI, contrast-enhanced T1WI in turn. AUC was defined as area under curve. For an effective regression model (AUC >0.5), the 
closer AUC is to 1.0, the better the model. ROC, receiver operating characteristic curve; AUC, area under curve. T1WI, T1 weighted image; T2WI, T2 weighted image. 
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Figure 5. Calibration curve for T1WI(left), T2WI(median), contrast-enhanced T1WI(right) of patient model. T1WI, T1 weighted image; T2WI, T2 weighted image. Performance 
of region model 

 
 

Table 2. Prediction power analysis in patient model  

 Training cohort Validation cohort 
T1WI 0.8424 (0.7371-0.9478) 0.6475 (0.4744-0.8206)  
T2WI 0.6914 (0.5739-0.8089) 0.5925 (0.3976-0.7874) 
Contrast-enhanced T1WI 0.7578 (0.6549-0.8705) 0.6925 (0.5145-0.8705) 

 
The AUC of patient model on validation dataset 

was 0.6475 (0.4744-0.8206) for T1WI, 0.5925 
(0.3976-0.7874) for T2WI, 0.6925 (0.5145-0.8705) for 
contrast-enhanced T1WI radiomics feature. Good 
calibration was observed for the prediction 
probability for recurrence patients (Figure 5). 

The limitation of the sample size for recurrence 
patients lead to no positive results for 
contrast-enhanced T1WI radiomics feature. The 
receiver operating characteristic curve for training 
and validation cohorts was presented in Figure 6. The 
AUC values for each radiomics signature of three 
regular MR image sequence (T1WI, T2WI) were 
showed in Table 3.  

The AUC of region model on validation dataset 
was of 0.6061 (95% CI: 0.3982-0.8049) for T1WI, 0.7951 
(95% CI: 0.4323-0.8489) for T2WI (Fig.6). The 
calibration curve for the probability of local 
recurrence region prediction demonstrated good 
agreement between prediction and observation in the 
prediction model (Figure 7).  

 

Table 3. Prediction power analysis in region model  

 Training cohort Validation cohort 
T1WI 0.8785 (0.7819-0.975) 0.6016 (0.3982-0.8049) 
T2WI 0.5 (0.659-0.9319) 0.7951 (0.4323-0.8489) 
Contrast-enhanced T1WI NA NA 

 

Discussion 
In this study, we develop and validated a 

radiomics model for the pretreatment individualized 
prediction of recurrence in patients with gliomas 
especially those with high-grade gliomas. The 
prediction model incorporated the item of the 
radiomics signature of MR image, since MRI is one of 
the important imaging techniques for diagnosis and 
follow-up in gliomas patients [10-12]. A robust 
modeling method was implemented to get the final 
model. This study is the first attempt for creating a 
prediction model of recurrence in glioma patients 
which may guide the treatment strategy. 

In the MR images of glioma patients, we 
delineated the gross tumor volume and recurrence 
tumor volume according to the regular MR images. 
As showed in Figure 8 and Figure 9, we tried to find 
the radiomics signature of tumor region without the 
peritumoral edema region.  

The radiomics feature shows discrimination 
among recurrence and non-recurrence patients. In 
variable selection, collinearity causes competition 
among predictors and make arbitrary decisions in 
choice. The radiomics signature demonstrated 
adequate discrimination in the training cohort, which 
was improved in the validation cohort.  

The results show that the clinical factors such as 
age, IDH mutation status, and WHO grade were 
significantly prognostic for recurrence in glioma 
patients. IDH-1 mutation predicts a better prognosis. 
Although the standard treatment for malignant 
glioma patients are applied, most patients suffer from 
local recurrence, which was similar to previous 
studies [13]. 
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Figure 6. ROC curves of radiomics signature in predicting recurrence in region for region model. A and B represent separately for training and validation cohorts. From left to 
right, the images represent T1WI, T2WI in turn. AUC was defined as area under curve. For an effective regression model (AUC >0.5). ROC, receiver operating characteristic 
curve; AUC, area under curve; T1WI, T1 weighted image; T2WI, T2 weighted image. 

 
Figure 7. Calibration curve for T1WI, T2WI of region model. T1WI, T1 weighted image; T2WI, T2 weighted image. 
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Figure 8. Representative non-recurrence patient’s regular brain MRI images, the purple line represents gross tumor volume. T1WI, T1 weighted image; T2WI, T2 weighted 
image. 

 
Figure 9. Representative recurrence patient’s regular brain MRI images, the purple line and the blue line represent gross tumor volume of primary tumor and gross tumor 
volume of recurrent tumor. T1WI, T1 weighted image; T2WI, T2 weighted image. 

 
The recurrence for glioma patients especially for 

GBM makes clinical control difficult. Previous studies 
reported that hypo-fractionation may have no 
significant differences in OS compared with standard 
IMRT in elderly patients [14]. There was no clear 
evidence suggest that the hypo-fractionated IMRT can 
improve local tumor control and OS. Re-resection for 
recurrence has been shown to have an impact on 

survival [15]. Intervention for recurrence glioblastoma 
patients: re-resection, systemic therapy, re-radiation 
may not benefit all the patients [16]. Therefore, early 
prediction of recurrence is very important and 
treatment must be individualized.  

Imaging such as MRI, CT and positron emission 
tomography (PET) can be used for tumor diagnosis, 
guiding therapy, and predicting clinical outcomes [12, 
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17, 18]. A few studies in differentiating recurrence of 
gliomas had been reported. 11C-methionine 
(11C-MET) PET was reported that can be used for 
identifying recurrent brain tumor by radiomics 
approach [19]. Kai et al. found the advantages of 
18F-fluorodeoxyglucose (18F-FDG) positron emission 
tomography (PET) radiomics features in identifying 
recurrence by integrating 18F-FDG (PET), 
11C-methionine (11C-MET) PET and magnetic 
resonance images [20]. However, these studies mainly 
focused on the treatment assessment in recurrent 
malignant gliomas by radiomics approach and most 
of them didn’t take clinical factors into account [21, 
22]. The purpose and significance of our study is early 
detection of relapse-prone patients and areas. In this 
study, we use radiomics features extracted out of MRI 
to study the recurrence characteristic. By creating a 
prediction model, the recurrence of malignant glioma 
patients can be identified through the validation 
model and early prediction of recurrence location can 
be achieved. 

There are some limitations in this study. 
Considering the aggressiveness of gliomas and lack of 
quality -in-life for patients, most patients lose to 
follow-up after surgery. Thus, the sample size of this 
study is limited. An expanded sample size and 
multicenter validation are necessary for further 
investigation in order to verify the results of our 
study. Secondly, the genomic characteristics, such as 
1p/19q, MGMT, EGFR, were not fully considered 
[23-25]. It is necessary for further radiogenomic 
analysis. Finally, our study was implemented on 
limited regular MRI sequence (T1WI, T2WI, 
contrasted-enhanced T1WI), the predictive radiomics 
value of other functional MRI sequence such as T2 
Flair, DWI could be further explored. Due to the 
limitation of pathology information, more than half of 
the patients had no MGMT gene promoter detection. 
Therefore, we excluded the "Methylation of the 
MGMT gene promoter" in the considered clinical 
factors. 

Conclusion  
We identified one wavelet texture feature 

derived from brain MRI that presented potential in 
predicting recurrence in glioma patients. This 
preliminary finding allows possibility in exploring 
risk prediction models for early identification of 
recurrence for such patients. Further investigation is 
necessary to include expanded sample size 
investigation and external multicenter validation.  
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