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Abstract 

Background: Neuroblastoma (NB) is a pediatric cancer occurring in the peripheral nervous system. A 
demethylase, alkylation repair homolog protein 5 (ALKBH5), is one type of N6-methyladenosine (m6A) 
eraser that plays a tumor-suppressive role in a variety of cancers. The significance of carbohydrate 
metabolism in cancer has been intensively investigated over the years, but the correlation between 
ALKBH5 and glucose metabolism in NB remains to be elucidated. 
Methods: Based on the overlapped genes (DE-GRGs) of ALKBH5-related differentially expressed genes 
(ALKBH5-DEGs) in GSE62564 (n=498) and genes related to glucose metabolism (GRGs), a LASSO 
regression model was constructed. External validations with datasets (EGAS00001001308, n=139 & 
GSE16476, n=88) and the NB samples from Shanghai Children’s Hospital (SCH) were performed. 
Meanwhile, biological and clinical utility, immune cell subtypes and drug sensitivity were assessed.  
Results: ALKBH5 was significantly correlated with better overall survival (OS) in NB patients, and gene 
set enrichment analysis (GSEA) showed its enrichment in GO/ KEGG terms regarding glucose 
metabolism. 27 of the 31 DE-GRGs were included in the LASSO screen after the univariate analysis. A 
prognostic glucometabolic model including AHCY, NCAN, FBP2, GALNT3 and AKR1C2 was established 
with the internal and external validation with biological experiments: the high-risk subtype compared to 
the low-risk subtype showed oncogenic and MYCN-related malignancy, glucometabolic dysregulation, 
poor prognosis and immunosuppression. TGX-221 was predicted to be a potential therapeutic drug and 
validated to suppress NB oncogenes including MYCN, AHCY and NCAN and immunosuppressive 
DNMT1 in NB cells. 
Conclusion: ALKBH5 was closely related to glucometabolic processes, and our prognostic model had 
high application value in predicting & assessing the OS of NB patients, and even served potential drug 
targets. 
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Introduction 
Neuroblastoma (NB), the most common 

extracranial solid childhood tumor in infants and 
children, accounts for 8~10% of childhood cancers 
and 15% of deaths in children [1]. Based on age, the 
International Staging System (INSS), histology, DNA 
copy number, MYCN amplification and other 
characteristics, NB patients are classified into very 

low-, low-, intermediate- and high-risk groups 
according to Children’s Oncology Groups (COGs) [2, 
3]. According to statistics across various countries, the 
overall survival (OS) rate of high-risk NB is still below 
50% [1]; therefore, the final goal of NB research is to 
improve the quality of life and survival of high-risk 
NB patients. Abnormalities in genes such as MYCN, 
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ALK, TERT, PHXO2B, and ATRX have come to be 
regarded as high-risk factor for NB; however, 
high-risk NB is characterized by heterogeneous 
genetics, and more than 25% of high-risk NB patients 
do not show the abovementioned genetic abnormali-
ties [4, 5]. Therefore, more biomarkers need to be 
identified to improve the current clinical evaluation 
system. 

The N6-methyladenosine (m6A) modification 
plays a role in cancer-related biological processes, 
including proliferation, invasion and metastasis [6, 7]. 
The regulation of this m6A involves readers such as 
IGF2BP3 and YTHDF2, writers such as METTL3 and 
METTL14 and erasers such as ALKBH5 and FTO [8]. 
There are a few reports concerning m6A writers [9, 10] 
and readers [11, 12] in NB, whereas the role of m6A 
erasers in NB remains to be elucidated. We briefly 
investigated the m6A erasers ALKBH5 and FTO in a 
dataset including survival data and found that 
ALKBH5 might play a more prominent role in tumor 
suppression. Therefore, our study aimed to interpret 
the biological role of ALKBH5 in NB. 

Our preliminary gene set enrichment analysis 
(GSEA) of the ALKBH5-low and ALKBH5-high 
groups in the dataset suggested that glucometabolic 
processes might play an essential role. Cancer 
development is characterized by aberrant gluco-
metabolic processes, as aerobic glycolysis (the 
Warburg effect) has been intensively studied over 
past decades [13, 14]. Nevertheless, there are no 
available reports concerning ALKBH5 and 
carbohydrate metabolism in NB. 

Therefore, we performed integrative bioinfor-
matic analyses in the present study to identify 
ALKBH5 and correlate its biological mechanism with 
carbohydrate metabolism. Based on a combination of 
univariate Cox regression and least absolute 
shrinkage and selection operator (LASSO) regression, 
a prognostic model including 5 glucometabolic genes 
(AHCY, GALNT3, AKR1C2, NCAN and FBP2) was 
established and proven to be effective in predicting 
NB patient prognosis in different cohorts. A brief 
experimental validation was also performed in NB 
tissue samples from our own center and 
MYCN-amplified BE(2)-C cells. Additional biological 
and clinical values of the glucometabolic gene 
signature were investigated, and potential drug 
targets were predicted and tested in genomics of drug 
sensitivity in cancer (GDSC). By elucidating the 
intricate relationships among ALKBH5 and these 5 
predictive factors, our study provides a new 
combination of biomarkers for the prognostic 
management of NB patients and the PI3K-β inhibitor 
TGX221 might be possibly effective in suppressing NB 
by finetuning the aberrant glucose metabolic 

processes.  

Methods and Materials 
 The retrospective study was approved by the 

Institutional Review Board (IRB) of Shanghai 
Children’s Hospital (SCH), Shanghai Jiao Tong 
University, in accordance with the principles of 
Declaration of Helsinki. Written informed consent to 
participate in this study was provided by the 
participants' legal guardian or next of kin. Patient’s 
identities and privacy were protected and invisible in 
the study. 

Study Design and Public Data Acquisition 
There were currently more than 50 NB public 

datasets available, but we priorly selected RNA-Seq 
rather than microarray in transcriptome profiling 
because the benefits of RNA-Seq over microarray, 
such as superiority in detecting low abundance 
transcripts and more compatibility in performing 
immune infiltration analysis [15]. For these 
considerations, the inclusion criteria of training set 
were that the NB RNA-Seq samples must originate 
from the human tissues with the sample number over 
200 and the complete information of survival state 
and time. The exclusion criteria were that the NB 
patients suffered other diseases except for NB. 
Eventually, we selected NB RNA-seq dataset 
GSE62564 (n=498) with the largest sample numbers 
and the most complete clinical and survival 
information for further analysis. GSE62564 was 
generally used for analysis of m6A erasers, GSEA, 
gene signature development, ssGSEA, etc. Also, the 
GSE62564 were randomly divided into a training set 
(TS, n=349) and an internal validation set (IVS, n=149) 
at the ratio of 7:3. The inclusion criteria of external 
validation datasets were that NB samples must have 
the gene expression profile concerning the newly 
constructed glucometabolic model in the training set, 
and the exclusion criteria were existed non-NB 
diseases. Therefore, the NB RNA-seq dataset 
EGAS00001001308 (abbreviated as EGAS) and 
microarray dataset GSE16476 were used as external 
validation sets (EVS), which were obtained from the 
R2 database 
(https://hgserver1.amc.nl/cgi-bin/r2/main.cgi). 
Other microarray datasets generated on the GPL570 
platform for different types of specimens, including 
normal adrenal glands (normal AG; GSE3526, 
GSE7307 and GSE8514) and NB tissue samples 
(GSE13136, 14880, 16237 and 16476), were also 
extracted from the R2 database. Cancer Cell Line 
Encyclopedia (CCLE) data (version 21Q3) were 
downloaded from https://depmap.org/portal/.  

For the acquisition of genes related to glucose 
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metabolism (GRGs), all genes in the 
h.all.v7.2.entrez.gmt gene set (downloaded from the 
GSEA official website) were subjected to enrichment 
analysis. Finally, 384 genes enriched in KEGG 
pathways/GO terms related to glucose metabolism 
(FDR q-value < 0.25) were obtained, which were 
considered to be GRGs. Detailed information about 
the enrichment analysis is provided in 
Supplementary Table 1. 

Patients and Specimens 
Fourteen primary NB samples according to the 

INSS (n=7 in T1, T2 and T4S vs. n=7 in T3 and T4) 
from SCH were obtained between January 2015 and 
December 2019. These tissue samples were 
snap-frozen in liquid nitrogen and then kept at -80°C. 

GSEA 
To explore the underlying molecular mechanism 

of ALKBH5, 498 pediatric NB patients were classified 
into ALKBH5-high (n=249) and ALKBH5-low (n=249) 
groups based on the median log2RPM value. GSEA 
software (version_4.1.0) was used to investigate GO 
terms and the KEGG pathways between these two 
groups. The GO terms belonged to three major 
categories: biological process (BP), cellular component 
(CC), and molecular function (MF). Meanwhile, 
glucometabolic gene sets enriched in Supplementary 
Table 1 were also used for further analysis. In 
addition to GO and KEGG analysis, Hallmark gene 
set (50 gene sets, v7.2) and some common 
MYCN-associated gene sets including NMYC_1, 
KIM_MYCN_AMPLIFICATION_TARGETS_UP as 
well as 
LAST--OWSKA_COAMPLIFIED_WITH_MYCN 
were applied. A false discovery rate (FDR) < 0.25 was 
regarded as statistically significant. 

Survival Analysis and Identification of 
Differentially Expressed Genes (DEGs) 

All survival data were analyzed and presented 
in Kaplan-Meier curves (package “survival” and 
“survminer” in R). P < 0.05 was deemed to be 
statistically significant. The hazard ratio (HR) was 
used to evaluate risk factors, where HR>1 indicated 
risk, and HR<1 indicated protection. The DEGs 
between the ALKBH5-high and ALKBH5-low groups 
were analyzed using a t-test. The cutoff was set for 
DEG selection based on the criterion of P < 0.05 and 
absolute value of log2 (fold change, FC) > 0.5. 

Venn Diagram and Functional Enrichment of 
Overlapped ALKBH5-DEGs and GRGs 
(DE-GRGs) 

Venn diagram analysis was conducted using the 
available online tool (http://bioinformatics.psb.ugent 

.be/webtools/Venn/). The group of overlapping 
ALKBH5-DEGs and GRGs was referred to as 
DE-GRGs. To reveal the functions of DE-GRGs, GO 
terms and KEGG pathway enrichment analyses were 
performed using the “clusterProfiler” package in R 
(Supplementary Table 2). The top 5 items were 
visualized in Figures. 

Gene-gene Correlation, Protein-protein 
Interaction (PPI) Network and Cytoscape 
Analyses 

To further clarify the interaction among the 
DE-GRGs, the gene-gene correlation value was 
analyzed using the Pearson method. The 
GeneMANIA tool (https://genemania.org/) was 
used to analyze gene-gene networks and functions by 
applying all available online databases/libraries. The 
edge (link) count was downloaded and analyzed by 
Cytoscape (Version 3.8.2) to determine the hub genes. 
In addition, the STRING (http://string-db.org/) 
database was applied to determine the PPI network of 
DE-GRGs with an interaction score of 0.15, after 
which Cytoscape combined with the Cytohubba 
plugin was used to visualize the PPI network and hub 
genes. 

Prognostic Gene Signature Establishment 
A total of 498 patients in GSE62564 with 

expression and survival data were enrolled in the 
analysis. First, 31 DE-GRGs were analyzed via 
univariate Cox regression to screen out prognostic 
genes (HR>1 or <1, P<0.05) in the whole dataset. 
Thereafter, these patients were randomly divided into 
TS and IVS at a ratio of 7:3. We constructed a 
prognostic model of a multiple gene signature by 
performing a LASSO regression analysis of prognostic 
DE-GRGs using the “glmnet” package in R. The 
DE-GRG signature could be used to predict the risk 
score as follows: 

Risk score = ∑ (𝐶𝑜𝑒𝑓𝑖 × 𝐺𝑒𝑛𝑒𝑖)Π
𝑖=1  

Clinical Evaluation of Gene Signature 
NB Patients were classified into a high-risk and 

low-risk subtype based on the median LASSO risk 
scores (LRS) of TS, IVS and EVS. The predictive value 
of the gene signature and the survival status of the 
high- and low-risk subtypes within TS, IVS and EVS 
were analyzed and visualized based on the 
time-dependent receiver operating characteristic 
(ROC) curve (package “timeROC” and “ggplot2” in 
R) and the Kaplan-Meier curve. 

In addition to investigating whether the 
prognostic gene signature could be independent of 
other clinical parameters (including age, sex, INSS 
and MYCN level), univariate and multivariate Cox 
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analyses were conducted (package “survival” in R). 
All independent prognostic factors identified as 
significant by multivariate Cox regression analysis 
were included to build a nomogram and calibration 
plot to investigate the probability of 3-, 5-, and 7-year 
OS of NB using the package “rms” in R. 

Q-RT-PCR Analyses 
Approximately 25 mg NB tissue samples were 

weighed and homogenized in 500 µL of 
TRIREAGENT (Thermo Fisher Scientific, Cat. No: TR 
118). RNA isolation was performed according to the 
manufacturer’s manual. RNA amounts and integrity 
were analyzed with a Nanodrop 2000 
spectrophotometer. A total of 500 ng of RNA in a 
volume of 10 µL per reaction was reverse transcribed 
into cDNA based on a High-Capacity RNA-to-cDNA 
Kit (Thermo Fisher Scientific, Cat. No: 4387406). A 
Q-RT-PCR mixture including cDNA and SYBR green 
buffer (Thermo Fisher Scientific, Cat. No: A25742) was 
finally transferred to a 384-well PCR plate (Thermo 
Fisher Scientific, Cat. No: AB1384), and PCR was 
conducted on a QuantStudioTM 5 Real-Timer PCR 
system (Thermo Fisher Scientific, Cat. No: A34322). 
The appropriate threshold was adjusted according to 
the amplification plot, and the Ct value was extracted. 
GAPDH was applied as a housekeeping gene, and the 
relative transcriptional expression level was 
calculated according to the 2^delta Ct approach. The 
mRNA level was normalized to 1 based on the 
median value in the T1+T2+T4S or 
MYCN-nonamplification group. The Q-RT-PCR 
primers are listed in Supplementary Table 3. 

Tissue Section and IHC Staining 
The NB tissues were fixed with 10% 

formaldehyde to construct paraffin embedded tissues 
that were sectioned by professional pathologists in 
SCH. Immunohistochemical (IHC) staining were 
performed by Servicebio biotechnology company in 
Shanghai using the primary rabbit antibody against 
human ALKBH5 (Proteintech, #16837-1-AP). 

Cell Culture 
Neuroblastoma MYCN-amplified cell lines 

BE(2)-C and IMR-32 were purchased from Chinese 
Academy of Sciences Cell Bank. BE(2)-C cells were 
cultured in DMEM/F12 (Gibco, #11330-032) 
supplemented with 10% fetal bovine serum (FBS; 
Sigma, #F2442) and 1×Penicillin Streptomycin (P/S) 
Solution (BasalMedia, #S110JV). IMR-32 cells were 
cultured in Eagle's Minimum Essential Medium 
(MEM) (BasalMedia, #L510KJ) supplemented with 
10% FBS and 1×P/S. Virus packaging HEK293T cells 
were cultured in Dulbecco’s modified Eagle 
medium/High glucose (DMEM) (BasalMedia, 

#L110KJ) added with 10% FBS and 1×P/S. Short 
Tandem Repeat (STR) sequencing was performed in 
NB cell lines by BIOWING Biotech Co., Ltd in 
Shanghai. 

Virus Packaging and Construct of Stable 
Transfected Cells (STCs) 

Lentiviral shRNA was constructed by 
molecularly cloning target oligonucleotides into the 
Tetracycline-on (Tet-on) puromycin-resistant plasmid 
(Addgene, #21915). The DNA extraction of plasmids 
was performed using DNA extraction kit (Vazyme, 
DC112-01). The lentivirus was packaged by 
transfecting objective plasmids with packaging 
vectors (psPAX2 and pMD2.G) and PEI MAX solution 
(Polysciences, #24765) in HEK293T cells. The ratio of 
DNA mass to PEI MAX (1mg/ml stock solution) is 
1:3. Afterwards, the virus supernatant was collected, 
filtered with 0.45 μ m strainer, concentrated with 
PEG6000 (Sigma, #81253), resolved in PBS and then 
aliquoted for subsequent transfection.  

Cells were transfected at an approximately 
multiplicity of infection (MOI) 1.5 to 3 after 48 hours, 
and the positive STCs were selected after 72 hours of 
2µg/mL puromycin (YEASEN, 60210ES25) treatment. 
1µg/mL of doxycycline (Dox) was used to induce 
ALKBH5 knockdown in Tet-on STCs. The target 
oligonucleotides are listed in Supplemental Table 3. 

Immunoblotting  
Protein samples were lysed in RIPA buffer 

(Thermo Fisher Scientific, #89900) and quantified 
using the Pierce BCA kit (Thermo Fisher Scientific, 
#23225). The 10-20µg/lane denatured protein samples 
were segregated by sodium dodecyl sulfate 
polyacrylamide gel (SDS-PAGE) and transferred onto 
polyvinylidene difluoride (PVDF) membranes. 
Afterwards, the 5% fat-free milk (BD Biosciences, 
#232100) in Tris buffer saline with Tween 20 (TBST) 
was used to block the membranes and then the 
primary antibodies rabbit-anti-human ALKBH5 
(1:1000; Proteintech, #16837-1-AP) and rabbit-anti- 
human β-Tubulin (1:5000; Abcam, #ab6046). 
Secondary antibodies were HRP-conjugate goat 
anti-rabbit IgG (0.2 ug/ml; Pierce, #31460). The 
luminescent image analyzer (Fujifilm, LAS-4000) was 
used to visualize the chemical fluorescence images of 
proteins after incubation with enhanced 
chemiluminescence reagents (Tanon, #180-5001). 

Cell viability measured by Cell-Titer-Glo 
(CTG) 

Cells were plated in 96-well plate in triplicate at 
1,000 cells/well within 100μL culture medium, and 
then the CellTiter-Glo® luminescent cell viability 
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assay (Promega, #G7573) was used to assess the cell 
viability at day 0 and 3 according to the 
manufacturer’s protocol.  

Assessment of Immune Cell Subpopulations 
The immune cell abundance identifier 

(http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/) tool 
was applied to estimate immune cell subpopulations 
using the single-sample GSEA (ssGSEA) algorithm 
that calculated the enrichment score and finally 
determined the infiltrated immune subsets in each 
sample. Additionally, the immunoactive and 
immunosuppressive gene signatures were extracted 
from the tracking tumor immunophenotype (TIP; 
http://biocc.hrbmu.edu.cn/TIP/).  

Drug Sensitivity Analysis 
Genes related to the prognostic model, as well as 

MYCN and DNMT1 were applied in the drug 
sensitivity analysis in GSDC with the assistance of 
GSCALite (http://bioinfo.life.hust.edu.cn/GSCA/ 
#/). The rationale of the drug target prediction 
integrated many approaches and algorithms 
according to the extended methods (https:// 
www.cancerrxgene.org/gdsc1000/GDSC1000_WebR
esources//Home_files/Extended%20Methods.html#
17). Drug sensitivity data were obtained from the 
Genomics of Drug Sensitivity in Cancer (GDSC; 
https://www.cancerrxgene.org/).  

Statistical Analyses 
Nearly all statistical analyses and visualizations 

were performed using R software v3.6.3. Some of 
simple visualizations were applied using GraphPad 
Prism v9.2.0 or GSEA v4.1.0. Unless otherwise 
specified above, P < 0.05 or FDR<0.25 was considered 
statistically significant. 

Results 
N6-methyladenosine Erasers in 
Neuroblastoma  

The workflow of the whole analysis is shown in 
Figure 1. To determine the potential role of m6A 
erasers in NB, we briefly checked the expression 
profiles of different groups and the survival data 
based on the median expression of the m6A erasers 
ALKBH5 and FTO (Figure 2A and 2B) in GSE62564. 
As an age ≥1.5 years, INSS and MYCN amplification 
(MYCN-amp) are hazardous indicators in NB patients 
[2, 3], we analyzed ALKBH5 and FTO expression 
levels in different age, INSS and MYCN-amp groups 
and found that ALKBH5 levels were lower in the 
≥1.5-year-old group, T3+T4 group and MYCN-amp 
groups (Figure 2A in upper panel). Lower FTO 
expression was observed in the ≥1.5-year-old group 

and T3+T4 group, whereas no significant difference 
was found in the MYCN-amp group (Figure 2A in 
lower panel). In addition, we classified NB patients 
from the whole dataset into a high-expression group 
(ALKBH5-high or FTO-high) and a low-expression 
group (ALKBH5-low or FTO-low) based on the 
median expression of ALKBH5 or FTO. Kaplan-Meier 
analysis showed that high ALKBH5 expression in NB 
tissue samples was positively correlated with better 
OS (HR=0.48, P<0.001; Figure 2B in upper panel), 
whereas higher FTO expression was not correlated 
with OS (HR=0.92, P=0.653; Figure 2B in lower panel). 
Furthermore, we analyzed the correlation between 
MYCN and ALKBH5, as well as MYCN and FTO, 
showing that ALKBH5 expression was negatively 
correlated with oncogene MYCN (R=-0.351, P<0.001), 
whereas there was no significant correlation between 
MYCN and FTO (Figure 2C). Except in GSE62564, we 
checked other transcriptomic NB data in tissues and 
cell lines, suggesting that lower expression of 
ALKBH5 but not FTO in NB compared with normal 
tissues (Figure 2D) and cell lines (Figure 2E). 
Therefore, we focused on ALKBH5 in further analysis. 

Identification and Landscape of ALKBH5 
As MYCN and ALK are risk indicators that are 

routinely examined in Chinese clinics, and TERT are 
found to be a novel risk factor in NB[16],we evaluated 
MYCN,ALK and TERT levels in both the 
ALKBH5-low and ALKBH5-high groups and found 
that NB patients with higher ALKBH5 expression had 
lower MYCN, ALK and TERT levels (Figures 3A). 
GSEA-Hallmark analysis showed that the 
ALKBH5-low group was enriched with oncogenic 
phenotypes, such as G2M_checkpoint and 
E2F_targets (Figure 3B). These findings suggest that 
ALKBH5, as an m6A eraser, might play a protective 
role in NB tumorigenesis. 

Then, we aimed to obtain deeper insight into the 
biological processes (BPs) of ALKBH5, and GSEA was 
employed to conduct GO annotation and KEGG 
pathway enrichment analyses. The top 5 significant 
GO-BP terms and KEGG pathways were extracted 
following the functional enrichment analysis of 
ALKBH5 mRNA, and the terms with red labels within 
figures show potential relationships with glucose or 
carbohydrate metabolism (Figure 3C and 3D). 
According to the GO-BP terms ranked by the gene 
enrichment ratio, the ALKBH5-low group, indicative 
of NB tumorigenesis, was mainly clustered with the 
terms “cellular glucuronidation” and “formation of 
cytoplasmic translation initiation complex” (Figure 
3C). Among the KEGG terms, it was mainly clustered 
with “ribosome”, “ascorbate and aldarate metabo-
lism” and “one carbon pool by folate” (Figure 3D). 
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The top 5 items in the GO-MF and GO-CC gene 
signatures were also listed (Figure S1A and S1B). 
Specifically, we checked some of the molecular 
signatures associated with MYCN (Figure 3E) and 
carbohydrate metabolism (Figure 3F, 3G, 3H and 
S1C). Our GSEA concluded that the ALKBH5-high 
group was enriched in and characterized by the 
glucose metabolic processes such as 
glycosphingolipid and polysaccharide (Figure 3F, G). 

Meanwhile, the ALKBH5-low group was enriched in 
gene signatures of “NMYC_1” (Figure 3E), 
“arachidonic acid epoxygenase activity” and 
“glycosyl compound metabolic process” (Figure 3H). 
Based on the effect of ALKBH5 on OS and its possible 
role in tumor suppression and carbohydrate 
metabolism, we next aimed to explore the role of 
glucometabolic dysregulation in NB. 

 

 
Figure 1. Flowchart of the entire analysis 
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Figure 2. N6-methyladenosine Erasers in Neuroblastoma. (A) ALKBH5 (upper panel) and FTO (lower panel) expression in different age, INSS and MYCN status groups. (B) 
Kaplan-Meier curve of the ALKBH5/FTO-high and ALKBH5/FTO-low groups (upper/lower panel). (C) Oncogene MYCN correlated with ALKBH5/FTO (upper/lower panel). 
(D) ALKBH5/FTO expression profile (upper/lower panel) across microarray datasets in the GPL570 platform. (E) ALKBH5/FTO expression profile (upper/lower panel) from 
CCLE. HR: hazard ratio. NS: not significant. P<0.05 was shown as *, P<0.01 as ** and P<0.001 as ***. 
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Figure 3. Identification and Landscape of ALKBH5. (A) MYCN, ALK and TERT levels in the ALKBH5-high and ALKBH5-low groups. (B, C, D) Top 5 Hallmark (B), GO-BP (C) 
and KEGG (D) gene sets enriched in the ALKBH5-low group obtained by GSEA. (E) One representative MYCN-related gene set negatively enriched in ALKBH5-high group. (F) 
Two representative glucometabolic gene sets enriched in the ALKBH5-high group. (G, H) Five representative glucometabolic gene sets enriched in the ALKBH5-high (G) and 
ALKBH5-low (H) group. NES: normalized enrichment score. FDR: false discovery rate. P<0.05 was shown as *, P<0.01 as ** and P<0.001 as ***. 
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Figure 4. Identification and Functional Enrichment Analyses of DE-GRGs. (A) Volcano plot showing differentially expressed genes between the ALKBH5-high and ALKBH5-low 
groups. (B) Venn diagram of 31 overlapping genes (31 DE-GRGs) between ALKBH5-DEGs and GRGs. (C) Thirty-one DE-GRGs in the GeneMANIA network. (D) Rank of 
DE-GRGs by edge counts. (E) Thirty-one DE-GRGs in the PPI network calculated by DMNC. (G, H) Top 5 gene sets functionally enriched by GO-BP (G) annotations and KEGG 
(H) pathways. DEGs: differential expression genes. GRGs: genes related to glucose metabolism. DE-GRGs: overlapped genes of DEGs and GRGs. 
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Identification and Functional Enrichment 
Analyses of DE-GRGs 

A total of 1927 DEGs were obtained from the 
ALKBH5-high and ALKBH5-low groups, which were 
together described as ALKBH5-DEGs, including 1206 
upregulated and 721 downregulated genes (Figure 
4A). Venn analysis was conducted to examine the 
overlap between the DEG and GRG profiles, 
demonstrating that there were 31 common DEGs 
shared between the two groups, which were 
considered DE-GRGs (Figure 4B). The general profile 
of these 31 DE-GRGs was visualized in Figure S2A 
and S2B. To obtain a comprehensive overview of 
these 31 DE-GRGs, the GeneMANIA and STRING 
database in combination with CytoHubba was 
adopted to determine the gene-gene links, PPI pairs 
and hub genes among the 31 genes. As presented in 
Figure 4C, the 31 DE-GRGs with other interactive 
genes by GeneMANIA exhibited complicated 
interactions with each other, and the hub genes were 
focused on CCR7, CCL19 and VCAN based on edge 
counts (Figure 4D), consistent with the results of 
STRING database and CytoHubba analysis (“DMNC” 
approach; Figure 4E). Interestingly, INS, TNF and 
CD44 were considered as the hub genes under the 
“degree” approach (Figure S2C). The correlation 
matrix also potentially showed the interactions 
among these 31 DE-GRGs, suggesting that the hub 
genes might play a tumor suppressive role in NB in 
somewhat immunogenic manners (Figure 4F).  

These 31 genes were included in GO and KEGG 
enrichment analyses to further explore the potential 
functions of the DE-GRGs. GO-BP analysis revealed 
that these 31 genes were markedly enriched in the 
“monosaccharide metabolic process” and “glucose 
metabolic process” (Figure 4G). The top markedly 
enriched KEGG pathways were “insulin resistance” 
and “insulin signaling pathway” (Figure 4H). 
Moreover, the GO-MF terms included “carbohydrate 
binding” and “organic acid binding” (Figure S2D), 
and the GO-CC enriched terms were “Golgi lumen” 
and “vacuolar lumen” (Figure S2E). Taken together, 
ALKBH5 might act as an anti-oncogene in accordance 
with immune cells in glucose-dependent pathways. 

Five-gene Prognostic Signature Based on 31 
DE-GRGs 

To investigate the prognostic role of 31 DE-GRGs 
in NB, we performed a univariate Cox regression 
analysis of the expression level data in the GSE62564 
dataset. The results showed that 27 of the 31 DE-GRGs 
were significantly associated with OS (P < 0.05), 
among which 7 genes (AHCY, FBP2, NCAN, etc.) 

were considered risk genes, with an HR > 1, whereas 
20 genes (APOD, CCL19, TFAP2B, etc.) acted as 
protective genes, with an HR < 1 (Figure 5A). In 
addition to Cox regression analysis, we investigated 
the correlation between ALKBH5 and 31-DE-GRGs 
(Figure S3A), which showed some similarity with the 
Cox regression results. 

Next, we applied the LASSO algorithm to the 27 
genes in TS. Five genes (AHCY, GALNT3, AKR1C2, 
NCAN, and FBP2) were screened to build the risk 
signature based on the minimum criteria (Figures 5B), 
and the coefficients obtained from the LASSO 
algorithm were used to calculate the LRS (Figure 5C; 
LRS=0.5562xAHCY+0.0877xNCAN+0.0505xFBP2+-0.
1076xGALNT3+-0.1332xAKR1C2). We also generated 
correlation matrix among MYCN, ALKBH5 the 5 
glucometabolic genes (Figure S3B), revealing 
relatively intense correlations of MYCN with AHCY, 
NCAN, and FBP2 (positively related) as well as 
GALNT3, ALKBH5 and AKR1C2 (negatively related). 

To further investigate the prognostic role of the 
5-gene risk signature, NB patients in both the TS and 
IVS were categorized into low- and high-risk groups 
based on the median LRS, and the results indicated 
that the number of patients who died increased 
considerably as the risk score increased in both TS and 
IVS (Figure 5D and 5E). Meanwhile, NB patients in 
the high-risk group showed lower survival in both TS 
and IVS (Figure 5F and 5G). The heatmaps of TS 
(Figure S3C) and IVS (Figure S3D) show the 
glucometabolic signature discriminate the high-risk 
and low-risk group independent of sex and age. 
Compared with the low-risk group patients, the 
high-risk NB patients generally showed higher 
expression of FBP2, NCAN, and AHCY and lower 
expression of GALNT3 and AKR1C2 in both TS and 
IVS (Figures S3C and S3D). In addition, the NB 
patients in the high-risk group were older and 
exhibited higher MYCN expression (Figure S3C and 
S3D). 

ROC curve analyses of the prognostic risk score 
at 1, 3, and 5 years were performed to test the 
predictive efficiency of the risk signature. The results 
showed that the risk score exhibited high accuracy 
that the area under curve (AUC) of all results in the 
ROC curves was > 0.800) in distinguishing the OS of 
NB in both TS and IVS (Figure 5H and 5I). We also 
calculated AUC in other independent risk factors such 
as MYCN, showing that the 5-gene signature had the 
highest AUC compared with other independent risk 
indicators (Figure S3E and S3F). To conclude, the 
newly established prognostic model performs well in 
GSE62564. 
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Figure 5. Five-gene Prognostic Signature Based on 31 DE-GRGs. (A) Univariate Cox regression showing HR and P values of 31 DE-GRGs. (B) LASSO regression screen in TS 
showing 5 of 27 candidate genes at the least deviance. (C) LASSO regression screen in TS showing coefficients of genes at different λ levels. (D, E) Risk score and survival 
distribution in TS (D) and IVS (E). (F, G) Kaplan-Meier curve of TS (F) & IVS (G) between the high-risk and low-risk groups determined by the 5-gene prognostic model. (H, I) 
Time-dependent ROC curve in TS (H) and IVS (I) for the 5-gene-based risk score. HR: hazard ratio. TS: training set. IVS: internal validation set. AUC: area under curve. 
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Figure 6. External Validation of the Gene Signature with Public Datasets. (A, B) Kaplan-Meier curve of EGAS00001001308 (EGAS) (A) and GSE16476 (B) between the 
ALKBH5-high and ALKBH5-low groups. (C, D) Heatmap showing the profile of clinical characteristics and the 5-gene model in EGAS (C) and GSE16476 (D). (E, F) Risk plot of 
EGAS (E) and GSE16476 (F). (G, H) Kaplan-Meier curve of EGAS, GSE16476 between the high-risk and low-risk groups based on the median LRS. (I, J) Time-dependent ROC 
curve in EGAS (I) and GSE16476 (J) for the 5-gene-based risk score. HR: hazard ratio. AUC: area under curve. 
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External Validation of the Gene Signature with 
Public Datasets 

To determine whether the 5-gene model can be 
applied in other NB cohorts, we selected 2 external 
datasets, consisting of one RNA-seq dataset, 
EGAS00001001308 (abbreviated as EGAS later), and 
one microarray dataset, GSE16476, to conduct 
subsequent validation. ALKBH5 still might play a 
protective role in NB tumorigenesis in both the 
RNA-seq (HR=0.36) and microarray (HR=0.56) 
datasets, although no significant difference was found 
in GSE16476 (Figure 6A and 6B). By applying LASSO 
risk coefficients to these 2 external datasets, we found 
that the 5-gene prognostic model performed well 
according to expression profile (Figure 6C and 6D), 
risk plot (Figure 6E and 6F), Kaplan-Meier curve 
(Figure 6G and 6H), and ROC curve analyses (Figure 
6I and 6J). Moreover, we demonstrated gene 
expression of ALKBH5 and 5 glucometabolic genes in 
different INSS groups and MYCN-amp groups 
(Figure S4A and S4B) and the correlation matrix was 
also shown to view the potential interactions (Figure 
S4C and Figure S4D). In brief, the glucometabolic 
gene model is applicable in external datasets.  

ALKBH5-enriched Gene Signature in the SCH 
Cohort and NB Cell Line Validation 

After external dataset validation, we checked the 
accuracy of the glucometabolic signature in NB tissue 
samples from SCH. Based on INSS, we compared the 
transcriptional levels of tumor suppressor genes, 
including ALKBH5, GALNT3 and AKR1C2, and 
oncogenes, including AHCY, NCAN and FBP2, 
between the T1+T2+T4S cohort and the T3+T4 cohort 
(n=7 vs. n=7) by Q-RT-PCR, revealing lower levels of 
suppressor genes (Figure 7A; left panel) and higher 
levels of oncogenes (Figure 7B; left panel) in the 
T3+T4 cohort. Similarly, compared with the NB 
patients in the MYCN-non-amp group, tumor 
suppressor gene expression was relatively lower in 
the MYCN-amp group (n=8 vs. n=6; Figure 7A; right 
panel), whereas oncogene expression was relatively 
higher in the MYCN-amp group (Figure 7B; right 
panel). Some of the differences were not considered 
statistically significant due to the small number of 
samples and low basal expression of FBP2. Moreover, 
the heatmap was drawn to visualize the profile of 
gene expression and clinical characteristics in the SCH 
cohort (Figure 7C), revealing a high similarity with 
GSE62564 (Figure S3C and S3D), EGAS (Figure 6C) 
and GSE16476 (Figure 6D). Meanwhile, the gene-gene 
correlation matrix in the SCH cohort was visualized 
(Figure 7D) and showed consistency with GSE62564 
(Figure S3B) and EGAS (Figure S4C). Moreover, we 

checked ALKBH5 expression in protein level and 
showed a decreased tendency from T1 to T4 (Figure 
7E). 

To validate the function of ALKBH5 as a tumor 
suppressor in cells, we construct 
BE(2)-C-shALKBH5-Tet-on STCs and found that 
1µg/mL of Dox was capable to induce ALKBH5 
knockdown in both mRNA level (Figure 7F) and 
protein level (Figure 7G). Genetic attenuation of 
ALKBH5 slightly promoted cell growth at day 3 of 
cell culture (Figure 7H). The results in NB cells 
showed that ALKBH5 functioned as a suppressor 
somehow. Taken together, we used our NB tissue 
samples and cells to validate the capability of 
glucometabolic gene signature and the potential 
tumor suppressive role of ALKBH5.  

Utility of the Glucometabolic Model in 
Assessing Biological and Clinical Status of 
Neuroblastoma  

To better understand the biological 
characteristics of NB in the newly developed 
prognostic model, we used the newly constructed 
model to classify NB patients to the high risk and low 
risk group based on the median LRS among 
GSE62564, EGAS and GSE16476. Comprehensive 
GSEA in 3 different cohorts was performed by 
applying Hallmark gene sets & MYCN-related gene 
sets (Figure 8A) and glucometabolic gene sets (Figure 
8B). The high-risk group was enriched in positive 
normalized enrichment score (NES), suggesting that 
NB patients in the high-risk group were characterized 
with oncogenic (blue columns in Figure 8A) and 
MYCN-related (red columns in Figure 8A) 
phenotypes. Moreover, the NB samples from the 
high-risk group was positively related to 
glucometabolic GO/KEGG terms of “pentose and 
glucuronate” and “glucose-6-phosphate” (blue 
columns in Figure 8B), and negatively related to 
“glycoprotein” and “polysaccharide” (red columns in 
Figure 8B), showing somewhat similarity with GSEA 
in ALKBH5 (Figure 3B-H and S1A-C).  

Clinical characteristics of NB including age and 
sex, as well as risk factors, including INSS and MYCN 
levels in the model were also investigated. We 
performed univariate and multivariate Cox regression 
analyses of GSE62564, EGAS and GSE16476 dataset to 
determine whether the risk signature was an 
independent prognostic indicator among other 
clinical characteristics. Univariate Cox regression 
showed that sex (P>0.05) and age (HR value close to 1) 
were not risk factors, in contrast to INSS stage 4, 
MYCN level and the risk score of the 5-gene model 
(HR>1, P<0.05; Figures 8C). The results of 
multivariate Cox regression analyses presented in 
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Figure 8D indicated that MYCN level (P>0.05 in 
GSE62564 and EGAS, HR<1 in GSE16476) were not 
risk factors; however, the risk score of the 5-gene 
model (HR=3.28, P<0.001 in GSE62564; HR=1.95, 
P=0.023 in EGAS; HR=4.94, P<0.001 in GSE16476) was 
still a risk indicator, similar to the well-established 
INSS stage 4 (HR=3.517, P<0.001; HR=5.91, P=0.083; 
HR=7.922, P=0.054), and even a better indicator with 
statistical difference in three different datasets. We 
further constructed a nomogram of clinical prediction 
in combination with age, INSS and the risk score of 
the 5-gene model to provide a quantitative method for 
clinical practitioners to predict the probability of the 
3-, 5‐ and 7‐year OS of NB patients. In the prediction 
nomogram (Figure 8E), each patient received some 
points for each prognostic parameter, and a greater 
number of total points suggested an inferior 
prognosis, in combination with a well-performed 
calibration plot (Figure 8F). 

Immune Landscape of Neuroblastoma 
Patients and Potential Targets 

Analyses of glucometabolic hub genes showed 
that CCR7, CCL19, VCAN, NCAN, FBP2, MMP12, 
CD44, INS, TNF, etc. had the great number of edge 
counts (Figure 4C-E and S2C), and most of these 
genes were indicative to immune response. Therefore, 
we performed ssGSEA with the help of ImmuoCellAI 
online tool to show immune cell infiltration in NB 
patients (GSE62564 as the representative dataset, 
n=498). As shown in Figure 9A, the immuno-
suppressive natural T regulatory cells (nTregs), 
inducible T regulatory cells (iTregs) and exhausted T 
cells were increased and the immunoactive 
monocytes, macrophages and dendritic cells (DCs) 
were reduced in the high-risk NB subtype (classified 
by 5-gene glucometabolic signature). By focusing 
immunosuppressive T cells and monocytes (as well as 
monocyte-differentiated macrophages), we down-
loaded the gene list of anti-inflammatory cytokines 
related to immunosuppressive T cells and 
pro-inflammatory cytokines related to monocytes, 
and visualized the increased immunosuppressive 
markers and the decreased immunoactive markers 
showing that NOS1 had the most dramatic increment 
and CCL5 had the most dramatic decline (Figure 9B). 
Immunosuppressive marker NOS1 that was 
positively correlated with iTregs & exhausted T cells 
and negatively correlated with macrophages & DCs 
(Figure S5A), and immunoactive marker CCL5 that 
was positively correlated with macrophages & DCs 
and negatively correlated with iTregs & exhausted T 
cells (Figure S5B). Kaplan-Meier analysis of NOS1 
and CCL5 (Figure S5C) showed that patients with 
higher NOS1 expression had poorer OS (left panel) 

whereas higher CCL5 expression indicated better OS 
(right panel). Subsequently, we explored all 
correlations between NOS1/CCL5 and all immune 
cells (Figure S5D) and found that NOS1 might also 
play an immunosuppressive role in CD4 & CD8 naïve 
T cells and CD4+ Th17 cells (left panel) and CCL5 
might also be potential in boosting CD4 & CD8 naïve 
T cells and CD4+ Th17 cells (right panel). 

We further aimed to conduct a drug sensitivity 
analysis using the GDSC database with the help of 
GSCALite online tool. This analysis was based on 
basal gene expression of cell lines and a very low 
mRNA level of NOS1 and CCL5 was tested in NB cell 
lines (data not shown). Therefore, we investigated the 
immunosuppressive indicator DNMT1 which had the 
highest mRNA level in NB cell lines and might 
contribute more to poor prognosis (Figure 9C; 
HR=3.49) compared with NOS1 (Figure S5C; 
HR=1.96). DNMT1 was positively correlated with 
nTregs & exhausted T cells and negatively correlated 
with macrophages and DCs (Figure S5E). Moreover, 
DNMT1 might play an immunosuppressive role in 
CD4 and CD8 naïve T cells (Figure 9D), which was 
similar to NOS1.  

Then we selected MYCN, ALKBH5, DNMT1 and 
5 genes in the model to perform a drug sensitivity 
screening and revealed that TGX221 was the most 
potential drug as its positive sensitivity with MYCN, 
NCAN, AHCY & DNMT1 and negative sensitivity 
with ALKBH5 and AKR1C2 (Figure 9E). Next, we 
tested TGX-221 in MYCN-amplified BE(2)-C and 
IMR-32 cell lines and found IC50 of TGX-221 was 
94.29 μM in BE(2)-C and 31.24 μM in IMR-32 (Figure 
9F). Therefore, we treated the NB cells with 100 μM 
TGX-221 for 8 hours and found that a declined mRNA 
level in NCAN, AHCY, MYCN & DNMT1 in BE(2)-C 
and NCAN & DNMT1 in IMR-32 (Figure 9G). 
Immunoblotting analysis showed that TGX-221 
increased ALKBH5 expression after 24 hours and 
slightly decreased MYCN expression after 8 hours 
(Figure 9H). Altogether, these results indicate that 
increased immunosuppressive T cells and decreased 
monocytes & DCs are associated with higher levels of 
NOS1 & DNMT1 and lower level of CCL5 in the NB 
high-risk group, and TGX221 is a potential agent in 
inhibiting the oncogenic and glucose-dysregulated 
pathway.  

Discussion 
Despite multimodal therapeutic strategies, 

COG-defined high-risk neuroblastoma with < 50% OS 
in 5 years is a critical issue to be focused on. The 
MYCN (or N-MYC) oncogene is an absolute 
determinant defining the high-risk NB [2, 3]. The 
specifically highly expressed MYCN in NB provokes 
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the elevated expression of a set of genes such as 
PHOX2B, ASCL1, GATA3, ISL-1, HAND2, and TBX2, 
referred to as the core regulatory circuit (CRC), which 
is closely associated with super enhancers and 
epigenetic abnormalities [12, 17]. m6A RNA 
modification is an epigenetic process that has been 
extensively studied in many types of cancer in recent 

years [7, 8]. However, far fewer of the m6A studies 
have been conducted in NB than in other types of 
cancer. The m6A writers METTL3 [10] and METTL14 
[18] have been demonstrated to play an oncogenic 
role in clinical samples; nonetheless, few studies 
regarding m6A erasers have been conducted. 

 

 
Figure 7. External Validation of the Gene Signature with the SCH Cohort and Biological Experiments. (A, B) Transcriptional level of tumor suppressor genes (A) and oncogenes 
(B) in the model among NB tissue samples based on INSS (left panel) and MYCN amplification status (right panel) from SCH. (C) Heatmap showing the profile of clinical 
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characteristics and the 5-gene model in the SCH cohort. (D) Matrix showing gene-gene correlation value among MYCN, ALKBH5 and other 5 genes in the model in the SCH 
cohort. (E) Representative ALKBH5 immunostaining images among NB tissues in different stages. (F) Transcriptional level of ALKBH5 in BE(2)-C-shALKBH5 Tet-on cells. (G) 
Representative immunoblotting images and quantification of ALKBH5 protein expression in BE(2)-C-shALKBH5 Tet-on cells. (H) Relative viability of BE(2)-C-shALKBH5 Tet-on 
cells. 1# and 2# represented different shRNA targets. Dox, doxycycline. NS: not significant. P<0.05 was shown as *, P<0.01 as ** and P<0.001 as ***. 

 
Figure 8. Utility of the Glucometabolic Model in Assessing Biological and Clinical Status of Neuroblastoma. (A) Top 5 Hallmark gene sets and MYCN-related gene sets enriched 
in the high-risk group obtained by GSEA in GSE62564, EGAS and GSE16476. (B) Representative three glucometabolic gene sets enriched in the high-risk group (blue columns) 
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and low-risk group (red columns) obtained by GSEA in GSE62564, EGAS and GSE16476. (C, D) Univariate (C) and multivariate (D) Cox regression for sex, age, INSS, MYCN 
level and risk score by a 5-gene model in GSE62564, EGAS and GSE16476. (E) Nomogram for clinical practitioners in GSE62564. (F) Calibration plot (100 subjects per group, 
resampling time = 1000) for the nomogram in GSE62564. 

 
Figure 9. Immune Landscape of Neuroblastoma Patients and Potential Targets. (A, B) Boxplot visualizing the difference of leukocyte infiltration (A) and immune-related 
markers (B) among different risk groups based on the 5-gene model from GSE62564. (C) Kaplan-Meier curve of GSE62564 between the DNMT1-high and DNMT1-low groups. 
(D) Radar map showing relationship between immune cells and DNMT1. (E) Matrix showing correlation between GDSC drug sensitivity and mRNA expression (which includes 
MYCN, ALKBH5, DNMT1 and 5 genes in the prognostic model). (F) Dosage curve of TGX-221 in BE(2)-C and IMR32 cells. (G) Transcriptional change of MYCN, ALKBH5, 
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DNMT1 and 5 genes in the model after 8 hours of TGX-221 treatment. (H) Representative immunoblotting image and quantification of ALKBH5 and MYCN after 8 and 24 hours 
of TGX-221 treatment. nTregs: natural T regulatory cells. iTregs: inducible T regulatory cells. DCs: dendritic cells. HR: hazard ratio. NS: not significant. P<0.05 was shown as *, 
P<0.01 as ** and P<0.001 as ***. 

 

Our integrative bioinformatic analysis suggested 
that the m6A eraser ALKBH5 might play a 
tumor-suppressive role in NB compared with another 
m6A eraser FTO. Moreover, in contrast to FTO, 
ALKBH5 presented higher expression in normal AG 
tissues and fibroblast cell lines. Subsequent analyses 
indicated that ALKBH5 might play a regulatory role 
in glucometabolic processes, and related 
glucometabolic genes were screened to build a new 
prognostic model. The 5-gene signature (AHCY, 
NCAN, FBP2, GALNT3, and AKR1C2) in the model 
showed good clinical prediction potency in TS, IVS 
and EVS, and the transcriptional profile was validated 
by the use of NB samples from our own hospital. 
Estimation of immune cell subtypes showed an 
increase of immunosuppressive T cells and decrease 
of monocytes, macrophages and DCs. At last, drug 
sensitivity screen and validation showed that 
TGX221, a kind of PI3K-β inhibitor, might be the most 
potential drug in the glucose-dysregulated pathway. 
Altogether, our work is the first study to perform a 
combined analysis of the m6A eraser ALKBH5 and 
carbohydrate metabolism in NB. 

Excepts for the demethylase activity of ALKBH5 
in m6A process, ALKBH5 also represents alpha 
ketoglutarate dependent dioxygenase [19], which is 
involved in the biological reaction of ketoglutarate to 
succinate in tricarboxylic cycle (TCA cycle). In 
addition to TCA cycle, ketoglutarate acts as the 
substrates in amino acid metabolic processes, such as 
glutamate, known as neurotransmitter. We hypo-
thesize that less TCA cycles occur in the high-risk NB 
patients with lower ALKBH5 expression in parallel to 
more aerobic glycolysis (Warburg effect), mimicking 
the oncogenic phenotypes of the ALKBH5-low NB 
patients. In combination with our all GSEA results in 
glucose metabolism, they suggest that ALKBH5 is 
generally involved in polysaccharide and glyco-
protein metabolic processes and lack of ALKBH5 is 
generally associated with glucose-6-phosphate and 
ascorbate & aldarate metabolism. Sohretoglu et al. 
summarized that natural polysaccharide might be an 
anti-cancer agent [20]. However, there are a huge 
amount of glycoproteins including “cancer feeders” 
[21] and “cancer killers” [22]so that it is hard to 
elucidate the relationship between ALKBH5 and 
glycoproteins.  

Among the oncogenes in the model, AHCY 
represents adenosylhomocysteinase, which is indica-
ted to catalyze the transformation of adenosyl-
homocysteine to adenosine and L-homocysteine. In 
our GO/KEGG enrichment analysis, AHCY was 

included in the “glycosyl compound metabolic 
process” gene set, suggesting that AHCY might link 
glucose with adenosine or homocysteine. 
Interestingly, AHCY is often selected in other LASSO 
models [23, 24], and its molecular function in viability 
has been proven in MYCN-amp NB cell lines [25] with 
a median dependency score <-0.5 in NB cell lines 
according to the Depmap database (https://depmap 
.org/portal/). NCAN, also known as neurocan, is 
considered to be a type of proteoglycan involved in 
the modulation of cell adhesion and migration. 
NCAN was associated with “glycosaminoglycan 
metabolic process”, “proteoglycan metabolic process” 
and “glycoprotein metabolic process”, suggesting that 
NCAN might serve as a type of proteoglycan and 
participate in glycoprotein metabolic processes. Its 
function of viability was also proven in a previous 
report [26], with a median dependency score <0 in NB 
cell lines. FBP2 represents fructose-bisphosphatase 2, 
which is a gluconeogenesis enzyme involved in 
glycolysis, with a median dependency score <0 in NB 
cell lines. There are no reports concerning FBP2 in NB, 
possibly due to their low expression in NB tissue 
samples. 

Among tumor suppressor genes in the model, 
GALNT3 represents polypeptide N-acetylgalactos-
aminyltransferase 3, participating in the processes of 
O-linked oligosaccharide biosynthesis and glyco-
protein metabolic processes. GALNT3 is reported to 
play a tumor-suppressive role in familial tumoral 
calcinosis [27] and lung cancer [28] and shows a 
median dependency score >0 in NB cell lines; 
however, there is no available study regarding 
GALNT3 in NB. AKR1C2 represents aldo-keto 
reductase family 1 member C2, which catalyzes the 
conversion of aldehydes and ketones to their 
corresponding alcohols and is associated with “gly-
cosyl compound metabolic process”. Interestingly, 
AKR1C2 has a median dependency score <0 in NB cell 
lines, in contrast to our findings in tissue datasets. 
However, AKR1C2 is generally considered to act as a 
tumor suppressor according to several cancer reports 
[29, 30]. Similar to GALNT3, few studies have 
examined AKR1C2 in NB.  

In addition to GALNT3 and AKR1C2, we 
performed some biological experiments concerning 
ALKBH5. The median dependency score of ALKBH5 
in NB cell lines is about -0.1. It should be mentioned 
that knockdown of ALKBH5 might slightly inhibit the 
long-term NB cell growth (data not shown) that was 
consistent with the recent reports in glioma [31, 32]. 
Moreover, TGX-221 treatment slightly inhibited 
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ALKBH5 expression in early time, which was 
contradictory to the main results that we found. The 
tumor growth in vitro controlled by genes and the 
tumor growth that affects patients in vivo are not 
completely consistent. For instance, GATA3 is 
commonly regarded as an oncogene [17, 33] with the 
median dependency score <-0.5 in NB cell lines, 
however, it is positively correlated with good 
prognosis in GSE62564 (HR=0.68). Moreover, some 
reports [34, 35] indicated that GATA3 might act as a 
tumor suppressor. Therefore, these discrepancies 
remain to be elucidated in the future studies. 

A large number of reports have indicated a 
correlation between glucometabolic processes and 
immune response. In our model, we showed the most 
dramatic change in immunosuppressive NOS1 and 
immunoactive CCL5, as well as the highest expression 
in immunosuppressive DNMT1. Except for NOS1, 
DNMT1 and CCL5, the hub genes CCL19 and CCR7 
in DE-GRGs are compose of the CCL19/CCL21-CCR7 
axis that exerts both immune response and tumor 
proliferation [36]. The ALKBH5-high (low-risk) group 
showed an increase of CCL19-CCR7 expression, 
suggesting that a more dominant role in inflammatory 
response in NB patients. The immune response of 
DCs was reported to be related with CCL19-CCR7 
axis [36], consistent with an increase of DCs in the 
low-risk group. Interestingly, there were a few studies 
concerning AHCY[37] /NCAN[38] /FBP2 
/GALNT3[39] /AKR1C2 [40] and T regulatory 
cells/macrophages, but most of these studies 
contradicted with our results in immunological 
manners, possibly because these studies were 
performed in different types of tumor. 

The ultimate goal of NB research is to find an 
effective agent to inhibit NB tumor growth and 
improve OS in the high-risk patients. Therefore, the 
drug sensitivity screen in our model showed that 
TGX-221 was potential compound in finetuning 
dysregulation of glucose metabolism. TGX-221 was a 
PI3K-β inhibitor and its derivatives were 
administered in ongoing or completed clinical trials 
(e.g., NCT03213678, phase II). We performed some 
experiments with TGX-221 and found its suppressive 
role in MYCN that was consistent with previous 
reports of PI3K inhibitor [41]. NCAN and DNMT1 
were commonly downregulated by TGX-221 in two 
NB cell lines, suggesting they were potentially 
involved in PI3K signaling in NB. Few NB reports 
have been found about the issue and it will be 
investigated in our future studies. 

Several limitations of this work should be noted. 
We actually tried to perform more external 
validations and further consolidate our findings; 
nonetheless, there were a few datasets with complete 

survival data, and the expression levels of 5 genes 
could not be extracted or downloaded in every 
open-access dataset. In addition, we did not extract 
single-cell or single-nucleus transcriptomic datasets to 
validate immune cell subtypes in different NB 
subtypes. This study mainly included analyses of NB 
tissue datasets with a brief validation, however, a 
specific cause-effect relationship of ALKBH5 and the 
glucometabolic signature in NB cells or immune cells 
remains to be elucidated by further biological 
experiments.  

In conclusion, our integrative study revealed a 
prognostic gene signature composed of 5 
glucometabolic genes correlated with the m6A eraser 
ALKBH5, which is of considerable significance for the 
OS of NB patients and may serve as novel biomarkers 
for the prognosis of patients and even therapeutic 
targets in the future. 
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