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Abstract 

Endometrial cancer (EC) ranks fourth in the incidence rate among the most frequent gynaecological 
malignancies reported in the developed countries. Approximately 280,000 endometrial cancer cases are 
reported worldwide every year. Genomic instability and mutation are some of the favourable 
characteristics of human malignancies such as endometrial cancer. Studies have established that the 
majority of genomic mutations in human malignancies are found in the chromosomal regions that do not 
code for proteins. In addition, the majority of transcriptional products of these mutations are long 
non-coding RNAs (lncRNAs). In this study, 78 lncRNA genes were found on the basis of their mutation 
counts. Then, these lncRNAs were investigated to determine their relationship with genomic instability 
through hierarchical cluster analysis, mutation analysis, and differential analysis of driving genes 
responsible for genomic instability. The prognostic value of these lncRNAs was also assessed in patients 
with EC, and a risk factor score formula composed of 15 lncRNAs was constructed. We then identified 
this formula as genome instability-derived lncRNA-based gene signature (GILncSig), which stratified 
patients into high- and low-risk groups with significantly different outcome. And GILncSig was further 
validated in multiple independent patient cohorts as a prognostic factor of other clinicopathological 
features, such as stage, grade, overall survival rate. We observed that a high-risk score is often associated 
with an unfavourable prognosis in patients with EC. 
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 Introduction 1.
Endometrial cancer (EC), which is the most 

frequently reported gynaecological malignancy, ranks 
fourth in terms of the incidence rate in developed 
countries. Approximately 280,000 cases are reported 
worldwide every year [1]. EC majorly affects 
postmenopausal women, and the incidence rate 
spikes are observed in women aged between 55 to 65 
years old [1]. Clinically, 80% of patients with EC 
present with abnormal vaginal bleeding, which 
benefits the early diagnosis and treatment and has led 
to an improvement of the 5-years survival rate of EC 
patients [2]. However, there are 20% of cases 
presented with metastasis of pelvic cavity and lymph 

node, and about 10% of cases presented with distant 
metastasis at diagnosis [3]. The prognosis varies 
according to the stage of EC. The 5-years survival rate 
of EC patients at stage I was 80%–90%, but it declined 
to about 20% in EC patients at stage IV [4]. Hence, 
novel strategies are warranted to assess the prognosis 
of patients with EC and evaluate the clinical 
outcomes. 

Genomic instability and mutation are common 
characteristics in human malignancies. [5]. Genomic 
changes occur through several pathway such as single 
or minority nucleotide mutations and acquisition or 
loss of a whole chromosome, probably leading to 
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abnormal division, multi-nucleation, and trimeric 
mitosis [6, 7]. Different types of human malignancy 
exhibit different somatic mutation spectrums, 
corresponding to different numbers of gene 
mutations, indicating the tissue-specific or 
cell-specific tumourigenic mechanisms [8, 9]. In 
addition, as an evolutionary marker of human 
malignancy, genomic instability occurs mainly due to 
the mutation of DNA repair genes, which in turn 
promotes the progression of human malignancy and 
has been regarded as a key prognostic factor[10-12]. 
Hence, intensive study of the molecular features of 
genomic instability in various types of malignancies 
and investigating their clinical significance are 
essential. 

Several genomic mutations in human 
malignancies are found in the chromosomal regions 
that do not code for proteins. In addition, a majority of 
transcriptional products of these mutations are long 
non-coding RNAs (lncRNAs) [13]. Evidence 
accumulated during the past few decades suggests 
the involvement of lncRNAs in gene regulation, 
proliferative capability, migratory behaviour, and 
genome stability. These multi-functional regulatory 
activities make lncRNAs a valuable signature factor 
for human malignancies [14]. Notably, lncRNAs 
associated with gene changes can promote tumour 
growth and affect genomic stability. For instance, a 
novel lncRNA CCAT2 containing the rs6983267 SNP, 
whose expression level is abnormally high in 
microsatellite stable (MSS) colorectal cancer, has been 
shown to promote cancer progression, metastatic 
behaviour, and chromosomal instability [15]. Another 
study that performed somatic copy number changes 
(SCNAs) of lncRNAs showed that the lncRNAs of 
genomic changes or localized changes targeting genes 
for tumourigenic lncRNAs[16]. In addition, cancer 
related lncRNAs have been shown to contribute to 
increased genome instability and malignant behavior 
[17]. Conversely, some lncRNAs including NORAD, 
CUPID1, CUPID2, and DDSR1 facilitate the repair of 
DNA damage and exhibit genome stability [18-20]. 
Although lncRNAs play a key role in the regulation of 
genome stability, the clinical significance and 
underlying mechanism of lncRNAs related to 
genomic instability (GILncRNAs) in EC were not 
completely understood.  

In this study, we retrieved the lncRNA data and 
mutation data of patients with EC from the human 
malignancy genome atlas (TCGA) database. In 
addition, we assessed the prognostic value of the 
established GILncSig associated with genomic 
instability in EC. It is hypothesized that GILncSig has 
the potential to be utilized as a prognosis predictor in 
patients with EC. Overall, this study intended to 

assess the value of GILncSig as an independent 
prognostic predictor and provide an alternative 
assessment of genomic instability and human 
malignancy-related mortality risk. 

 Materials and Methods 2.
2.1 Data retrieval and handling 

The transcriptional profiles, clinical data, and 
somatic mutation profiles of patients with EC were 
obtained from the TCGA database (https://portal. 
gdc.human malignancy.gov/). The expression levels 
of lncRNAs and mRNAs in EC samples were 
extracted from the transcriptional data. The lncRNAs 
from the expression profile were extracted, the 
expression values of lncRNAs with the same Symbol 
were averaged, and the genes whose expression level 
was less than 30% were removed. Then, we integrated 
of the expression data and mutation data to obtain the 
intersection sample information. Finally, the 
expression matrix of 499 samples and 3527 lncRNAs 
was obtained for subsequent analysis.  

2.2 Screening of lncRNAs Related to Genome 
Instability 

To identify genome instability-associated 
lncRNAs, a hypothesis mutator-derived computa-
tional frame combining lncRNA expression profiles 
and somatic mutation profiles in a tumour genome: (i) 
the cumulative number of somatic mutations for each 
patient was computed; (ii) patients were ranked in 
decreasing order of the cumulative number of somatic 
mutations; (iii) the top 25% of patients were defined as 
genomic unstable (GU)-like group, and the last 25% 
were defined genomic stable (GS)-like group; (iv) 
expression profiles of lncRNAs between the GU 
group and GS group were compared using 
significance analysis of the ʻLimmaʼ package of R 
software to analyse GILncRNAs with different 
expression levels, where the threshold was |logfc| > 
= | log 1.3 | and the P value was <0.05. 

2.3 Construction of the lncRNA–mRNA 
network and functional enrichment of mRNA 

Based on the interactions data from the 
RNAInter database (http://www.rna-society.org/ 
raid/download.html), Cytoscape was used for 
visualisation to extract the mRNAs interacting with 
GILncRNAs. Furthermore, the functional enrichment 
of interacting mRNAs was analysed, and the cluster 
profiler was utilised for the pathway enrichment 
analysis. We utilised org. HS. Eg. DB to transform 
gene names and GOplot & ggplot 2 to visualise the 
pathways. 
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2.4 Hierarchical Clustering based on 
GILncRNAs 

According to the GILncRNAs–lncRNAs in all the 
samples, the Consensus Cluster Plus package of R 
software was utilized to cluster the samples for 
unsupervised analysis. The clustering method used 
was K-means, and the distance function utilized was 
Euclidean. The variation of the two sample sub-types 
was counted. The group with a high variation was 
called the GU-like group, whereas the lower group 
was called the GS-like group, and the two sub-types 
based on the stability of the genome were finally 
determined. Survival of the two sub-types was 
analysed using the ‘Survival’ and ‘Survminar’ 
packages of R software, and the KM curve was drawn. 
The heat map of GILncRNAs expression in two 
sub-types was drawn using R-package complex 
heatmap. 

2.5 Establishment of GILncRNAs-Based 
Prognostic Analysis Methods 

The samples were allocated into a training set 
and a testing set (the ratio of samples in the training 
set and testing set was 7:3). The Chi-square test was 
used to ensure that no deviation is present in the 
division of the training data set and test data set. 
Then, ‘Survival’ and ‘Survminar’ packages of R 
software were utilized to conduct the univariate Cox 
regression analysis. LncRNAs with Cox P < 0.05 were 
considered as the candidate genes with prognostic 
values. Then, the least absolute shrinkage and 
selection operator (LASSO) regression algorithm was 
utilized to screen candidate GILncRNAs. The LASSO 
Cox regression was then used to select variables for 
constructing the signature and provide coefficients. 
The risk score was calculated using the following 
formula: risk score = expression level of lncRNA1 × β1 
+ expression level of lncRNA2 × β2+ … + expression 
level of lncRNAn × βn, where risk score is a measure 
of prognosis of patients with EC, and β is the 
regression coefficient for each variable. The risk score 
of each patient was calculated according to the risk 
characteristics, and then, they were divided into two 
groups (high-risk and low-risk) based on the risk 
score. We utilized the Kaplan–Meier method to plot 
the curve of survival of patients in the two groups. 
Furthermore, the log-rank test was utilised to assess 
the survival of patients, P < 0.05. Finally, the GILncSig 
risk model was employed in the testing set and TCGA 
set to assess its function. 

2.6 Prognosis Prediction and Clinical 
Stratification Analysis 

To examine the potential role of GILncSig as an 
independent predictor of other crucial clinicopatho-

logical parameters, the univariate and multivariate 
Cox regression analyses were conducted using the 
‘Survival’ package of R software. A P value of <0.05 
was considered to signify statistical significance. 
Then, the clinical stratification analysis was 
performed to evaluate the value of GILncSig for 
predicting prognosis in patients with EC. According 
to the clinical parameters including age, the patients 
in The Cancer Genome Atlas (TCGA) were divided 
into subgroups according to the age (≥ 60 years), and 
disease course (stage I–II and stage III–IV). Based on 
the median value of the GILncSig score, cases in each 
clinical subgroup were further allocated into two 
groups (high-risk and low-risk). We then performed 
the Kaplan–Meier analysis and log-rank test to 
analyse the survival rates. 

 

Table 1. Clinicopathological information of the patients with EC 
in the TCGA cohort. 

 Type Number 
Os 0 416 

1 83 
Age ≥60 330 

<60 167 
NA 2 

Stage I 309 
II 50 
III 115 
IV 25 

Grade G1 93 
G2 109 
G3 288 
High Grade 9 

BMI ≥28 319 
<28 151 
NA 29 

Pregnancies 0 64 
1 46 
2 112 
3 61 
4+ 66 
NA 150 

 

2.7 Establishment and Verification of a 
Nomogram Scoring System 

Nomograms were used to display the results of 
Cox regression directly. According to the regression 
coefficients of all the independent variables, the 
scoring standard was set, and the total score of each 
patient was calculated, then the probability of each 
patient's prognosis time was calculated using the 
conversion function between the score and the 
prognosis probability. The nomograms were mainly 
drawn using the ‘RMS’ and ‘sarviva’ packages of R 
software. Firstly, the Cox proportional hazard 
regression model was constructed with CPH, and 
then, the Survival function was utilized to calculate 
the survival probability. Finally, the nomogram 
function tree was utilized to construct the 
nomograms, which showed as the plot, and the 



 Journal of Cancer 2022, Vol. 13 

 
https://www.jcancer.org 

2216 

correction curve and time-dependent ROC prediction 
curve were assessed. 

2.8 Statistical Analysis 
Chi-square test and Mann-Whitney U test were 

utilized to assess differences in the classification and 
quantitative data. A 2-tailed P value of < 0.05 denoted 
statistical significance. R version 4.0.2 (Institute of 
statistics and mathematics, Vienna, Australia 4) was 
compared by visual and statistical Analysis. 

 Results 3.
3.1 Identification of Genome Instability- 
Related lncRNAs 

Of the 499 samples, 130 EC patients with the 
highest mutation rate were assigned to the GU-like 
group, whereas 125 patients with the lowest mutation 
rate were assigned to the GS-like group (Fig. 1A). 
Then, the differentially expressed genes (DEGs) of the 
two groups were detected and 78 lncRNAs were 
found, with 32 lncRNAs up-regulated and 46 
lncRNAs down-regulated (Fig. 1B). To determine 
whether the differentially expressed lncRNAs 
reflected the genomic instability of the patients, we 
performed an unsupervised hierarchical clustering 
assay on the 78 lncRNAs. All 499 cases were divided 
into two groups with a significant difference in their 
mutation count (Fig. 1C). Next, we explored the 
potential function of GILncRNAs through the 
co-expression analysis and GO enrichment analysis. 
The lncRNA–mRNA co-expression networkwas used 
to show the relationship between lncRNAs and 
mRNAs (Fig. 1D). A total of 43 pairs of interacting 
GILncRNAs and mRNAs were identified, indicating 
that GILncRNAs are tightly correlated with the 
regulation of mRNAs expression. GO analysis of 
GILncRNAs-associated genes revealed that 
DE-lncRNA with mRNAs in this network are 
significantly associated with Binding to a Bcl-2 
homology (BH) and death domain binding in 
molecular function (MF) as well as mitotic cell cycle 
regulation in biological process (Fig. 1E). All the 
aforementioned factors are believed to be associated 
with genome stability. Based on the KEGG pathway 
analysis of lncRNA-related protein coding genes 
(PCG), 39 most enriched pathways were identified 
and the most of them were found to be related to the 
genome stability factors such as cell cycle regulators 
and malignancies (Fig. 1F). Collectively, these results 
suggested that 78 differentially expressed lncRNAs 
are associated with genome stability. In addition, the 
expression levels of these lncRNAs might 
compromise the cellular genome stability by 
disrupting the equilibrium of lncRNA-associated PCG 

modulatory web, thus tampering with the regular 
repairing pathways for genomic damage and causing 
an increased genome instability. 

3.2 Hierarchical Clustering based on 
GILncRNAs 

Based on GILncRNAs, 499 EC patients were 
divided into two groups through unsupervised 
clustering (154 patients in Cluster 1 and 345 patients 
in Cluster 2). We defined the group with a high 
mutation number as GU-like and the other group as 
GS-like. As shown in Figures 2A and 2B, the number 
of mutations in cluster 2 appeared to be significantly 
higher than that in cluster 1 (P = 1.6e-07). Hence, 
cluster 2 was defined as the GU-like group, and 
cluster 1 was defined as the GS-like group. Then, 
survival of the two subtypes was analysed. The 
survival curve revealed remarkable differences , with 
the GU-like group showing poor prognosis compared 
to the the GS-like group (P=0.0014). These results 
indicated that genome instability is strongly 
correlated with patient’s survival. 

3.3 Screening of the GILncSig and 
Predictability Evaluation 

The 499 EC cases were randomly allocated into a 
training group and a test group with the ratio as 7:3. A 
total of 22 lncRNAs that were tightly associated with 
the survival rates in the training set were examined. 
Of these 22 lncRNAs, 7 lncRNAs were protective 
factors, whereas 15 lncRNAs were risk factors (Fig. 
3A). Furthermore, 22 prognosis-related lncRNAs 
identified through Cox uni-variate regressions were 
selected for the LASSO regression. To construct the 
best model, the minimum lambda value, which is 
lambda.min, was selected through cross-validation, 
and then, 15 more significant lncRNAs from the 22 
lncRNAs were selected to construct a human 
malignancy-related prognostic risk score model (P < 
0.05, Figure 3B and 3C). According to the optimised 
model, the following formula was utilised to calculate 
the risk score: Risk score = 0.331 × AF131215.9 - 0.119 
× RP3 - 443C4.2 - 0.123 × RP11 - 760H22.2 - 0.314 × 
AC092580.4 + 0.091 × LINC01224 - 0.119 × RP11 - 
143E21.3 - 0.059BX2 - AS1 - 0.157 × MIR210HG + 0.029 
× RP11 - 440D17.3 - 0.073 × ATP2A1 - AS1 - 0.241 × 
HOXB - AS3 - 0.104 × AC144831.1 + 0.389 × GLIS3 - 
AS1 + 0.152 × FGF14 - AS2 + 0.009 × PRR34 - AS1. The 
risk score was used to categorise the cases into two 
groups (high-risk and low-risk groups) for the 
subsequent analysis. In the equation of GILncSig, six 
lncRNAs (PRR34-AS1, FGF14-AS2, GLIS3-AS1, 
RP11-440D17.3, LINC01224, and AF131215.9) with 
positive coefficients were regarded as risk factors, and 
the abnormal up-regulation of these genes correlated 
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with poor prognosis. On the other hand, another eight 
lncRNAs (AC144831.1, HOXVB-AS3, ATP2A1-AS1, 
MIR210HG, LBX2-AS1, AC092580.4, RP11-760H22.2, 
and RP3-443C4.2) with negative coefficients were 
considered as protective factors, whose up-regulation 
correlated with better outcomes. 

According to the calculated risk score, cases with 
scores greater than the median were categorised as 
the high-risk group, whereas cases with scores ≤ the 
median were categorised as the low-risk group. The 
results revealed that cases in the low-risk group had a 
better prognosis than those in the high-risk group (Fig. 
4A). The area under curve (AUC) values of the ROC 
curves in the training set for the 1-year, 3-year, and 
5-year survival prediction of risk scores were 0.828, 
0.811, and 0.837, respectively (Fig. 4B). To verify the 
accuracy of predicting the survival rate using risk 
scores, we calculated the risk scores of the test set and 

the whole TCGA set and plotted the ROC curves. In 
the test set, the survival time of the low-risk group 
was observed to be longer than that of the high-risk 
group (Fig. 4C). The AUC values of the ROC curves in 
the training set for the 1-year, 3-year, and 5-year 
survival prediction of risk scores were observed to be 
0.719, 0.683, and 0.67, respectively (Fig. 4D). The 
results obtained were similar to those in the entire 
TCGA dataset, which confirmed that patients with EC 
in the low-risk group exhibit significantly longer 
survival (Figure 4E). The time-dependent ROC curves 
analysis of the GILncSig yielded an AUC in the 
training set for the 1-year, 3-year, and 5-year survival 
prediction of risk score were 0.79, 0.771, and 0.786, 
respectively (Fig. 4F). All these findings suggested 
that the risk score is strongly associated with a great 
survival predictive significance. 

 

 
Figure 1. Screening and functional annotation of genomic instability-related lncRNAs. (A) screening of differentially expressed lncRNAs as genomic instability-related lncRNAs 
(GILncRNAs), (B) volcanic areas of 78 tunas, (C) unsupervised hierarchical clustering analysis of 499 EC patients. The higher one was designated as the genomic instability-like 
cluster (GU-like), and the lower one was designated as the genomic stability-like cluster (GS-like) (D). The expression network of GILncRNAs and their related mRNAs were 
analyzed. The orange and blue circles represent GILncRNAs and protein encoded mRNAs, respectively. It is necessary to draw the names of GILncRNAs and their highest 
co-expression mRNAs (E) mRNAs and GO enrichment analysis (P < 0.05), (F) of lncRNAs co-expressed through Pearson’s correlation coefficient in the network. Functional 
enrichment analysis of lncRNAs co-expressed through mRNAs by KEGG (P < 0.05). 
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Figure 2. Hierarchical clustering (a) based on GILncRNAs was used to cluster all the samples in an unsupervised manner. The higher one was designated as the genomic 
instability-like cluster and the lower one as the genomic stability-like cluster. (B) The unsupervised hierarchical cluster analysis heat map of 499 EC patients revealed the Kaplan–
Meier curve of the mutation number, (C) the class GU group, and class GS group.  

 

 
Figure 3. Establishment of prognosis signature in EC utilising GILncRNAs in the training set. (A) A total of 22 GILncRNAs correlating with the overall survival of patients with 
EC were plotted. (B) The distributing pattern of the LASSO coefficient. (C) The distributing pattern of the LASSO coefficient of 15 most significant GILncRNAs.  
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Figure 4. Evaluation of the prognostic significance of GILncSig in EC. Survival curves of the patients with EC were plotted by utilising the Kaplan–Meier method in the training 
set (A), the testing set (C), and the TCGA set (E). Cases in the low-risk group showed a more favourable prognosis. ROC curves to predict 1-year survival in the training set (B), 
the testing set (D), and the TCGA set (F). 
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Figure 5. Boxplot of correlation between the risk score and GU-like or GS-like group, (A) tumour stage of the patients, (B) tumour grade of the patients, (C) age of the patients, 
(D) and BMI of the patients (E). Univariate (F) and multivariate (G) Cox regression analyses of the GILncSig and clinicopathological characteristics. 

 

3.4 Risk scores are associated with clinical 
features 

Based on the calculated risk scores, a correlation 
analysis with clinical features was performed. The 
risk scores in the GS-like/GU-like subgroups were 

found to differ significantly, with the risk scores being 
higher in the group with genomic instability (Fig. 5A). 
The risk scores were distributed differently in the 
various stages of EC and were higher in the stage III - 
IV group (Fig. 5B). Additionally, the risk scores were 
distributed differently in patients with a different 
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grade and were higher in the G3 + high group than 
that in the G1 + G2 group (Fig. 5C). In addition, the 
risk score was distributed differently in the varied age 
groups, and the patients aged less than 60 years 
tended to have higher risk scores. However, no 
significant difference was observed between the BMI 
groups (Fig. 5D-E). Altogether, these findings verified 
the efficacy of GILncSig in predicting prognosis of 
patients with EC. 

3.5 Assessment of the Independent Prognostic 
Value of GILncSig  

To examine the independent prognostic value of 
GILncSig, uni-variate and multivariate Cox regression 
analyses were performed on all the patients, and 
factors such as age, disease course, and GILncSig were 
included. The uni-variate analysis revealed that 
GILncSig, tumour stage, tumour grade, clustering, 
and age were significantly associated with overall 
survival (P < 0.01) (Fig. 6A). However, the correlation 
between BMI and overall survival was not significant. 
Multivariate Cox regression analysis revealed that the 
risk score and cancer development were significantly 
correlated with the survival rate (Fig. 6B). The results 
revealed that the overall survival of the low-risk 
group was higher than that of the high-risk group (Fig. 
6A-H). Taken together, these findings indicated that 
the predicting values of GILncSig in prognosis can be 
considered independent of other clinicopathological 
parameters. 

3.6 Establishment and Verification of a 
Nomogram for Prognosis Prediction in EC 

To validate the prognostic significance of a 
multi-lncRNA signature, we performed multivariate 
Cox regression analysis, applying Limma R package 
to value the accuracy of the risk score and combine 
GILncSig with prognostic factor, including age, 
staging, grade and survival rate then construct a 
statistical nomogram model. The accuracy was 
verified through the calibration curve. As shown in 
Fig. 7A and Fig. 7B, the AUC of ROC for 3-year 
survival predictions was 0.771. The 1-year, 2-year, 
3-year, and 5-year survival predictors revealed great 
consistency between the actual and predicted survival 
rates of the three data sets (Fig. 7C-F). Overall, these 
results suggested that the prediction efficacy of the 
nomogram was enhanced. 

To show the top 20 mutant genes in the GU-like 
group and GS-like group, cumulative number of 
somatic mutations per patient was calculated and 
sorted in the decreasing order. The somatic mutation 
count of PTEN was the highest in both groups, 
meanwhile the number of the missense mutations in 
PIK3CA was the highest in both groups (Fig. 8A-B). 
High TMB consistently selects for benefit with 
immune checkpoint blockade (ICB) therapy. Our 
results show obvious difference in the level of TMB in 
two group as well as in stromal and immune score 
(Fig. 8C). Taken together, the GILncSig correlated 
with genomic mutation rate in EC and can act as an 
evaluation model of the degree of genome instability. 

 
 

 
Figure 6. Stratified analysis of survival of patients with EC. The survival curves of patients with EC were plotted using the Kaplan–Meier method within six subgroups, including 
patients with the tumour stage III–IV (A), the tumour stage of I–II (B), the tumour grade of G3 + high (C), the tumour grade of G1 + G2 (D), age > 60 years (E), ≤6 0 years (F), 
BMI ≥ 28 (G) and BMI < 28 (H).  
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Figure 7. Establishment of a nomogram for prognosis prediction in patients with EC. (A) The nomogram established in the training set for predicting prognosis. (B) ROC curves 
for 3-year survival prediction of the nomogram. Calibration curve for 1-, 2-, 3-, and 5-year, respectively (C-F). 

 

 Discussion 4.
Genomic instability is a crucial factor that 

contributes to the acquisition of various human 
malignancy-related characteristics. Persistent muta-
tions drive tumourigenesis, cancer progression, and 
resistance to treatment [21]. Research has 
demonstrated that abnormal transcriptional and 
epigenetic regulation affects the genome stability [22]. 
Studies have investigated mRNA and miRNA 
markers to determine the extent of genomic instability 
in cancerous tissues [23]. In the past decade, lncRNA 
expression changes have been shown to promote 
tumour development and progression and hence can 
be used as a new tumour biomarker [24, 25]. And 
lncRNAs have been reported to play key roles in EC 
progression [26]. Additionally, lncRNAs and genomic 
instability exhibit a close relationship. Recent 

advances in the exploring of functional mechanisms 
of lncRNAs revealed that lncRNAs are essential for 
genomic stability, such as NORAD and GUARDIN. 
Nevertheless, the relationship between genomic 
instability-related lncRNAs and human EC remains to 
be fully elucidated. Hence, we propose a GILncSig 
and examined its prognostic significance in EC. In this 
study, the EC patients were grouped according to the 
gene mutation number, and the analysis to screen the 
differentially expressed genes was performed. 
Following the multivariate Cox regression analysis, 
the independent prognostic factors, except for the risk 
score, were stratified. Among the seven GILncRNAs, 
PRR34-AS1, FGF14-AS2, GLIS3-AS1, RP11-440D17.3, 
LINC01224, AF131215.9 were identified as the risk 
factors for patients prognosis, whereas AC144831.1, 
HOXVB-AS3, ATP2A1-AS1, MIR210HG, LBX2-AS1, 
AC092580.4, RP11-760H22.2, RP3-443C4.2 were 
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identified as the protective factors associated with 
better survival. Among these risk factors, 
LncRNAPRR34-AS1 has been reported to aggravate 
the progression of hepatocellular carcinoma [27], 
GLIS3-AS1 is found to be correlated with the poor 
prognosis of intraductal papillary mucinous 
neoplasms [28], and LINC01224 is reported to 
modulate the malignant transformation in colorectal 
human cancer, gastric human cancer, ovarian human 
cancer, and hepatocellular carcinoma [29-32]. 
However, FGF14-AS2 functions as a favourable 
prognostic biomarker in various human malignancies 
including breast human malignancy and colorectal 
human malignancy [33,37,38,39]. In this study, 
MIR210HG was identified as a protective factor, and it 
has been reported to promote tumour progression in 
endometrial cancer, non-small cell lung cancer, 
triple-negative breast cancer, cervical cancer, 
colorectal cancer, and hepatocellular carcinoma 
[34-41]. Moreover, LBX2-AS1 has been identified as a 
non-favourable prognostic biomarker in colorectal 
cancer, ovarian cancer, glioma, and gastric cancer [42, 
43]. The other lncRNAs, namely RP11-440D17.3, 
AF131215.9, and AC144831.1, HOXVB-AS3, ATP2A1- 
AS1, AC092580.4, RP11-760H22.2, and RP3-443C4.2, 
were studied for the first time in this research. 
Nevertheless, more studies are warranted to explore 
their functions in EC prognosis. 

In this study, we found 78 gene lncRNAs by 
screening the expression of lncRNAs among cases 

with different mutation numbers. These lncRNAs 
were confirmed to be correlated with genomic 
instability, which was verified through hierarchical 
cluster analysis, mutation count, and differential 
analysis of driving genes responsible for genomic 
instability. Then the prognostic value of 78 lncRNAs 
was assessed, and a risk factor score formula 
composed of 15 lncRNAs was constructed. GILncSig 
was confirmed as an independent prognostic 
predictor; patients with a high-risk score were found 
to often have unfavourable prognosis. Taken together, 
GILncSig, as a genome instability-derived two 
lncRNA-based gene signature was proved to stratify 
patients into high-risk and low-risk groups with 
significantly different outcome and was validated in 
multiple independent patient prognostic factors. 
Additionally, we found a remarkable correlation 
between the risk score in patients with EC and the 
tumour mutation pattern, and the high-risk score 
correlated with high mutation as well as genomic 
instability. Notably, in different clinical subgroups, 
risk scores markedly correlated with EC prognosis. 
These results indicated that the risk factors identified 
in this study could be the promising markers for 
prognosis prediction and genomic instability in 
patients. Finally, a nomogram combining risk factors 
with tumour staging was constructed in the training 
set, which further improved the performance and 
accuracy of the prediction model.  

 
 

 
Figure 8. (A) Mutated genes in GU-like group and GS-like group. (B)Mutations in GU-like group(Left) and GS-like group.(C) The stromal score ,immune score, TMB and the 
stemness index based on mRNA expression (mRNAsi) in GU-like group and GS-like group. 
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Although we identified GILncSig as a factor for 
predicting prognosis in EC, our study still has some 
limitations. Firstly, we only used the data in the 
TCGA EC database.Therefore, more independent data 
sets are needed for further verification. Secondly, 
RP11-440D17.3, AF131215.9, AC144831.1, HOXVB- 
AS3, ATP2A1-AS1, AC092580.4, RP11-760H22.2, and 
RP3-443C4.2 associated with genomic instability, 
which is related to the prognosis of EC have been 
reported for the first time. Therefore, further studies 
are required to clarify their roles in EC. Thirdly, more 
biological experiments are warranted to verify and 
investigate the mechanism of GILncSig in the genome 
stability. Currently, our results are being validated in 
clinical trials and our conclusion would be verified in 
follow-up studies. 

Acknowledgments 
This study was supported by grants from the 

National Natural Science Foundation of China 
(No.82172714 to LBL, No. 81602281 to LBL), Natural 
Science Foundation of Shanghai (No.20ZR1443900 to 
LBL), Clinical Research Plan of SHDC (No. 
SHDC2020CR4086), The Youth Medical Talents of 
Shanghai ‘Rising Stars of Medical Talent’ Youth 
Development Program, 2017. 

Author Contributions 
LBL conceived and designed the experiments. 

WXJ and YL analyzed data. LBL wrote this 
manuscript. All authors read and approved the final 
manuscript. 

Data Statement 
The data that support the findings of this study 

are available from the corresponding author upon 
reasonable request. 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J 

Clin. 2021; 71: 7-33. 
2. Jorge S, Hou JY, Tergas AI, Burke WM, Huang Y, Hu JC, et al. Magnitude of 

risk for nodal metastasis associated with lymphvascular space invasion for 
endometrial cancer. Gynecol Oncol. 2016; 140: 387-93. 

3. Cramer DW. The epidemiology of endometrial and ovarian cancer. 
Hematology/oncology clinics of North America. 2012; 26: 1-12. 

4. Oncology FCoG. FIGO staging for carcinoma of the vulva, cervix, and corpus 
uteri. Int J Gynaecol Obstet. 2014; 125: 97-8. 

5. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 
2011; 144: 646-74. 

6. Mackay HL, Moore D, Hall C, Birkbak NJ, Jamal-Hanjani M, Karim SA, et al. 
Genomic instability in mutant p53 cancer cells upon entotic engulfment. Nat 
Commun. 2018; 9: 3070. 

7. Zhang S, Pan X, Zeng T, Guo W, Gan Z, Zhang YH, et al. Copy Number 
Variation Pattern for Discriminating MACROD2 States of Colorectal Cancer 
Subtypes. Front Bioeng Biotechnol. 2019; 7: 407. 

8. Lee JK, Choi YL, Kwon M, Park PJ. Mechanisms and Consequences of Cancer 
Genome Instability: Lessons from Genome Sequencing Studies. Annual 
review of pathology. 2016; 11: 283-312. 

9. Anandakrishnan R, Varghese RT, Kinney NA, Garner HR. Estimating the 
number of genetic mutations (hits) required for carcinogenesis based on the 
distribution of somatic mutations. PLoS computational biology. 2019; 15: 
e1006881. 

10. Suzuki K, Ohnami S, Tanabe C, Sasaki H, Yasuda J, Katai H, et al. The genomic 
damage estimated by arbitrarily primed PCR DNA fingerprinting is useful for 
the prognosis of gastric cancer. Gastroenterology. 2003; 125: 1330-40. 

11. Ottini L, Falchetti M, Lupi R, Rizzolo P, Agnese V, Colucci G, et al. Patterns of 
genomic instability in gastric cancer: clinical implications and perspectives. 
Annals of oncology : official journal of the European Society for Medical 
Oncology. 2006; 17 Suppl 7: vii97-102. 

12. Weyemi U, Galluzzi L. Chromatin and genomic instability in cancer. 
International review of cell and molecular biology. 2021; 364: ix-xvii. 

13. Huarte M. The emerging role of lncRNAs in cancer. Nature medicine. 2015; 21: 
1253-61. 

14. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding 
RNAs and its biological functions. Nature reviews Molecular cell biology. 
2021; 22: 96-118. 

15. Ling H, Spizzo R, Atlasi Y, Nicoloso M, Shimizu M, Redis RS, et al. CCAT2, a 
novel noncoding RNA mapping to 8q24, underlies metastatic progression and 
chromosomal instability in colon cancer. Genome Res. 2013; 23: 1446-61. 

16. Liu SJ, Dang HX, Lim DA, Feng FY, Maher CA. Long noncoding RNAs in 
cancer metastasis. Nature reviews Cancer. 2021; 21: 446-60. 

17. Qin N, Wang C, Lu Q, Ma Z, Dai J, Ma H, et al. Systematic identification of 
long non-coding RNAs with cancer-testis expression patterns in 14 cancer 
types. Oncotarget. 2017; 8: 94769-79. 

18. Polo SE, Blackford AN, Chapman JR, Baskcomb L, Gravel S, Rusch A, et al. 
Regulation of DNA-end resection by hnRNPU-like proteins promotes DNA 
double-strand break signaling and repair. Mol Cell. 2012; 45: 505-16. 

19. Betts JA, Moradi Marjaneh M, Al-Ejeh F, Lim YC, Shi W, Sivakumaran H, et al. 
Long Noncoding RNAs CUPID1 and CUPID2 Mediate Breast Cancer Risk at 
11q13 by Modulating the Response to DNA Damage. Am J Hum Genet. 2017; 
101: 255-66. 

20. Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, et al. Noncoding 
RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO 
Proteins. Cell. 2016; 164: 69-80. 

21. Andor N, Maley CC, Ji HP. Genomic Instability in Cancer: Teetering on the 
Limit of Tolerance. Cancer Res. 2017; 77: 2179-85. 

22. Romanish MT, Cohen CJ, Mager DL. Potential mechanisms of endogenous 
retroviral-mediated genomic instability in human cancer. Seminars in cancer 
biology. 2010; 20: 246-53. 

23. Habermann JK, Doering J, Hautaniemi S, Roblick UJ, Bundgen NK, Nicorici D, 
et al. The gene expression signature of genomic instability in breast cancer is 
an independent predictor of clinical outcome. International journal of cancer. 
2009; 124: 1552-64. 

24. Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B. Long Noncoding RNA 
(lncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel 
Potential Biomarkers and Therapeutic Targets for Colorectal Cancer. Int J Mol 
Sci. 2019; 20: 5758. 

25. Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New 
Paradigm. Cancer Res. 2017; 77: 3965-81. 

26. Ma J, Kong FF, Yang D, Yang H, Wang C, Cong R, et al. lncRNA MIR210HG 
promotes the progression of endometrial cancer by sponging miR-337-3p/137 
via the HMGA2-TGF-beta/Wnt pathway. Mol Ther Nucleic Acids. 2021; 24: 
905-22. 

27. Liu Z, Li Z, Xu B, Yao H, Qi S, Tai J. Long Noncoding RNA PRR34-AS1 
Aggravates the Progression of Hepatocellular Carcinoma by Adsorbing 
microRNA-498 and Thereby Upregulating FOXO3. Cancer management and 
research. 2020; 12: 10749-62. 

28. Permuth JB, Chen DT, Yoder SJ, Li J, Smith AT, Choi JW, et al. Linc-ing 
Circulating Long Non-coding RNAs to the Diagnosis and Malignant 
Prediction of Intraductal Papillary Mucinous Neoplasms of the Pancreas. Sci 
Rep. 2017; 7: 10484. 

29. Sun H, Yan J, Tian G, Chen X, Song W. LINC01224 accelerates malignant 
transformation via MiR-193a-5p/CDK8 axis in gastric cancer. Cancer 
medicine. 2021; 10: 1377-93. 

30. Chen L, Chen W, Zhao C, Jiang Q. LINC01224 Promotes Colorectal Cancer 
Progression by Sponging miR-2467. Cancer management and research. 2021; 
13: 733-42. 

31. Xing S, Zhang Y, Zhang J. LINC01224 Exhibits Cancer-Promoting Activity in 
Epithelial Ovarian Cancer Through microRNA-485-5p-Mediated PAK4 
Upregulation. OncoTargets and therapy. 2020; 13: 5643-55. 

32. Gong D, Feng PC, Ke XF, Kuang HL, Pan LL, Ye Q, et al. Silencing Long 
Non-coding RNA LINC01224 Inhibits Hepatocellular Carcinoma Progression 
via MicroRNA-330-5p-Induced Inhibition of CHEK1. Mol Ther Nucleic Acids. 
2020; 19: 482-97. 

33. Jin Y, Zhang M, Duan R, Yang J, Yang Y, Wang J, et al. Long noncoding RNA 
FGF14-AS2 inhibits breast cancer metastasis by regulating the 
miR-370-3p/FGF14 axis. Cell Death Discov. 2020; 6: 103. 

34. Yu T, Li G, Wang C, Gong G, Wang L, Li C, et al. MIR210HG regulates 
glycolysis, cell proliferation, and metastasis of pancreatic cancer cells through 
miR-125b-5p/HK2/PKM2 axis. RNA biology. 2021: 1-18. 



 Journal of Cancer 2022, Vol. 13 

 
https://www.jcancer.org 

2225 

35. Lei D, Fang C, Deng N, Yao B, Fan C. Long noncoding RNA expression 
profiling identifies MIR210HG as a novel molecule in severe preeclampsia. 
Life Sci. 2021; 270: 119121. 

36. Wang AH, Jin CH, Cui GY, Li HY, Wang Y, Yu JJ, et al. MIR210HG promotes 
cell proliferation and invasion by regulating miR-503-5p/TRAF4 axis in 
cervical cancer. Aging (Albany NY). 2020; 12: 3205-17. 

37. Li XY, Zhou LY, Luo H, Zhu Q, Zuo L, Liu GY, et al. The long noncoding RNA 
MIR210HG promotes tumor metastasis by acting as a ceRNA of miR-1226-3p 
to regulate mucin-1c expression in invasive breast cancer. Aging (Albany NY). 
2019; 11: 5646-65. 

38. Kang X, Kong F, Huang K, Li L, Li Z, Wang X, et al. LncRNA MIR210HG 
promotes proliferation and invasion of non-small cell lung cancer by 
upregulating methylation of CACNA2D2 promoter via binding to DNMT1. 
OncoTargets and therapy. 2019; 12: 3779-90. 

39. Wang Y, Li W, Chen X, Li Y, Wen P, Xu F. MIR210HG predicts poor prognosis 
and functions as an oncogenic lncRNA in hepatocellular carcinoma. 
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2019; 
111: 1297-301. 

40. He Z, Dang J, Song A, Cui X, Ma Z, Zhang Z. Identification of LINC01234 and 
MIR210HG as novel prognostic signature for colorectal adenocarcinoma. J Cell 
Physiol. 2019; 234: 6769-77. 

41. Li J, Wu QM, Wang XQ, Zhang CQ. Long Noncoding RNA miR210HG 
Sponges miR-503 to Facilitate Osteosarcoma Cell Invasion and Metastasis. 
DNA and cell biology. 2017; 36: 1117-25. 

42. Chen Q, Gao J, Zhao Y, Hou R. Retraction Note to: Long non-coding RNA 
LBX2-AS1 enhances glioma proliferation through downregulating 
microRNA-491-5p. Cancer Cell Int. 2020; 20: 600. 

43. Yang Z, Dong X, Pu M, Yang H, Chang W, Ji F, et al. 
LBX2-AS1/miR-219a-2-3p/FUS/LBX2 positive feedback loop contributes to 
the proliferation of gastric cancer. Gastric cancer : official journal of the 
International Gastric Cancer Association and the Japanese Gastric Cancer 
Association. 2020; 23: 449-63. 


