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Abstract 

Although the concept that cancer is caused by mutations has been widely accepted, there still are ample 
data deprecating it. For example, embryonic cells displaced in non-embryonic environments may develop 
to cancer, whereas cancer cells placed in embryonic environments may be reverted to phenotypic 
normal. Although many intracellular or extracellular aberrations are known to be able to initiate a lengthy 
tumorigenesis, the molecular or cellular alterations that directly establish a neoplastic state, namely 
cellular immortality and autonomy, still remain unknown. Hereditary traits are encoded not only by gene 
sequences but also by karyotype and DNA or chromosomal structures that may be altered via 
non-mutational mechanisms, such as post-translational modifications of nuclear proteins, to initiate 
tumorigenesis. However, the immortal and autonomous nature of neoplasms makes them “new” 
organisms, meaning that neoplasms should have mutations to distinguish themselves from their host 
patients in the genome. Neoplasms are malignant if they bear epigenetic or genetic alterations in mutator 
genes, i.e. the genes whose alterations accelerate other genes to mutate, whereas neoplasms are benign 
if their epigenetic or genetic aberrations occur only in non-mutator genes. Future mechanistic research 
should be focused on identifying the alterations that directly establish cellular immortality and autonomy. 
Benign tumors may have many fewer alterations and thus be much better models than cancers for such 
research. Future translational research should be aimed at identifying the cellular factors that control 
cancer cells’ phenotypes and at establishing approaches of directing cancer cells towards differentiation, 
which should be a promising therapeutic tactic. 
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Introduction 
An adult person has about 1-3 × 1013 cells [1, 2], 

with 50-70 billion cells supplanted by the newly 
minted ones every day [3]. However, there probably 
are not any two of these 1013 cells having exactly 
identical DNA sequences in the nuclear genome, 
which consists of 3.0-3.2 billion nucleotides in a 
diploid cell [4-6]. This is because development from a 
fertilized egg to an adult person involves numerous 
rounds of cell division, and during these divisions a 
huge number of genetic alterations have occurred, 
leastways many changes in single nucleotides [7-11]. 
These genetic alterations may occur via programs that 
had been evolutionarily entrenched in the genome, or 
may occur desultorily. An important piece of 
biological information that is less known to folks and 
even many biologists is that many genetic alterations, 
especially those occurring through genome-encoded 
programs, are beneficial [12-14] and required for the 
normal development and normal life of human beings 
[15, 16]. For example, sister chromatid exchanges 
select good genes and pass them to daughter cells 
while purging detrimental alleles from the genome 
[17]; meiosis creates haploidies so that the best parts 
of chromosomal DNA can be passed to the next 
generation [18-20], which, as already being noticed by 
Muller and others in the early 1930’s [21], is an 
advantage of sexual reproduction. Moreover, 
establishment of acquired immunity involves genetic 
alterations to establish various strains of T and B 
lymphocytes that can respond to various pathogens 
[15, 22-24], and a large number of aneuploid 
hepatocytes are established in the liver to facilitate not 
only liver regeneration but also hepatic metabolism of 
various xenobiotics [25, 26]. Different neurons in the 
same brain undergo different genetic alterations 
during the early ages of life to specify their functions 
[27-30], which may be a reason why some persons are 
smarter than others [31]. 

All genetic alterations are under close 
surveillance and strict control by the cells because 
their aberrances will likely lead to pathologies, 
typically cancer. Indeed, a 2013 Nature paper that 
analyzed mutations in over 7,000 cancers averred that 
“all cancers are caused by somatic mutation” [32], 
which projects a fact that neoplasms are widely 
perceived as diseases brought about by genetic 
aberrations [33]. Actually, since 1956 mutations have 
been adopted by various nations’ governments as a 
yardstick to assess cancer risk [34, 35], despite that 
soon afterwards it has been questioned [36-38]. A 
poser our body faces is that many genetic alterations 
are beneficial and needed, and thus should be 
permitted and even encouraged, but this increases the 
chance for the bad alterations, which are usually 

dubbed as “mutations”, to mistakenly pass the 
surveillance and remain uncorrected. If evolution had 
not programmed genetic alterations in our genome 
and had not permitted any genetic change to happen, 
we would have many fewer worries about various 
repercussions (such as cancer), but, meanwhile, we 
would not have an exquisite brain with so diversified 
neurons and would not be able to live a happy life in 
the Mother Nature that is fraught with pathogens and 
harmful materials. For instance, gene fusions often 
occur in leukemia and lymphoma, which in our 
opinion is related to the fact that their normal parental 
cells perform genetic modifications to evolve 
themselves into functional immune cells. 
Unfortunately, human beings face too many “buts”. 

“Cancer is caused by mutation” has 
become a “cancer 101” 

Classically, genetic alterations are stratified into 
three different levels, i.e., the cellular level shown as 
changes in the chromosome number, the 
chromosomal level manifested as alterations in the 
chromosomal structure such as a deletion or an 
amplification of a DNA region, and the DNA 
sequence level exhibited as changes in single 
nucleotides. Changes in the chromosome number, 
either hypoploidy, hyperploidy, or aneuploidy, can 
be regarded as an enlarged version of deletion or 
amplification of DNA sequences. For simplicity, these 
three levels of alterations are collectively coined 
herein as “mutation”, although in many publications 
“mutation” is only used to indicate single nucleotide 
changes. A huge number of hereditary diseases, such 
as Down syndrome (trisomy 21 syndrome), have been 
causally linked to alterations at one or more of these 
levels, making it clear that hereditary traits are 
encoded not only by DNA sequences (i.e. genes) but 
also by chromosomal structures and chromosome 
number. Heng et al have further pointed out that, 
while genes encode “parts” of inheritance, 
chromosomal structure and karyotype encode 
“system inheritance”, which usually is ‘fuzzy” and 
does not follow Mendelian genetic law [39-42]. 

Ever since an abnormal number of chromosomes 
was observed in cancer cells in 1875 [43-45] and had 
later, during the turn from the 19th to 20th centuries, 
been propounded by Hansemann and Boveri as a 
cancer cause [44, 46-50], the idea that formation and 
progression of cancer are attributed to mutations has 
gradually become the orthodox doctrine of 
carcinogenesis research [51-57]. With accumulation of 
clinical and experimental evidence, Nordling formally 
proffered the first mutation theory of carcinogenesis 
in 1952 (published in 1953) [58] and, since then, there 
have been many discourses on the causal relations of 
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various types of mutations to tumorigenesis or 
carcinogenesis, which are herein referred collectively 
to as “mutation theory”. The Science issue of 
November 22, 1991 was devoted to this mutation 
concept [59], making it even more popular in the 
cancer research fraternity in recent decades. In 1976 
Nowell proffered a stepwise concept of 
mutation-caused carcinogenesis [60, 61]: A cell’s 
genome somehow goes awry and becomes unstable, 
thus randomly resulting in more and more mutations 
when cells replicate. These mutations serve as raw 
materials for the cells to select the beneficial ones to 
become fitter mutant clones [62, 63]. In most cases 
cancer cells in the same patient are greatly 
heterogeneous in their morphology and 
comportment, which has also been imputed to their 
accrual of various mutations [62, 63]. In this 
“bi-phase” process, i.e. random mutations followed 
by clonal selection and expansion of the fitter 
mutant(s), genetic instability as the initial cause often 
results in chaotic karyotypes, at least in the cells that 
bear mutations in the p53 gene [40-42, 64-66]. 

Changes at some higher levels of genetic 
control may also initiate tumor formation 

In our opinion, there are at least eight tiers of 
genetic control that escalate in the complexity and the 
influence on inheritance, with the DNA sequence as 
the bottom level (Fig. 1). Each higher tier encodes a set 

of hereditary traits that is more complex and probably 
“fuzzier”, compared to the set controlled by a lower 
tier. Karyotype studies, which analyze the structure 
and number of chromosomes and were popular in 
cancer research during the 1960’s-2000’s, had 
provided a profusion of data for the establishment of 
mutation theories [67], although, as pointed out by 
Heng et al. [41, 42], it is pity that this line of research 
has seemed to fade out in the past 20 years or so. The 
swift promulgation of DNA sequencing technology in 
recent decades has provided deep mechanistic 
insights into the effects of altered DNA sequences on 
tumor formation. However, in our opinion the 
intermediate levels between the gene sequences and 
the chromosomal structures shown in Figure 1 remain 
much understudied for their effects of alterations on 
tumor formation. Abnormalities at these intermediate 
tiers of genetic control, e.g. changes in nucleosomes, 
may have more systemic and thus more complicated 
contributions to formation of tumors, especially the 
malignant ones, compared with altered DNA 
sequences. Besides certain types of DNA mutations 
such as gene deletion or amplification, certain 
aberrant post-translational modifications of nuclear 
proteins, such as aberrant phosphorylations of 
histones, may alter some of these intermediate 
genomic structures, in turn altering hereditary traits 
or predisposing the afflicted cells to neoplastic 
transformation. 

 

 
Figure 1. An oversimplified representation of multilevel structures of genomic control of inheritance. The lowest level (level 1a) is the two genomic DNA 
sequences that harbor genes, i.e. the plus and minus strands of DNA. On the (-) strand, the gene indicated by the short black arrow is embedded in the long-black-arrow gene 
on the (+) strand [68], while the gene indicated by the green arrow partly overlaps, reverse-complementarily, with the long-black-arrow gene. Another gene on the (-) strand (the 
long red arrow) not only has an antisense RNA (the short red arrow) but also has a divergent transcript (the short blue arrow), both on the (+) strand. The many introns of the 
transcripts from this genomic locus are also processed to different small regulatory RNAs (e.g. siRNA and microRNA) that are not shown in the figure to avoid overwhelming 
it. These genes may interact with their counterpart allele on the other parental chromosome, which constitutes another sub genetic level (1b). Furthermore, one gene on one 
chromosome may collaborate with another gene on another chromosome, as having been shown by many bitransgenic or double knockout models of animals, which also 
constitutes an additional sub level (1c). Changes at these three sub levels that involve DNA sequences have been extensively studied for their roles in tumorigenesis (denoted 
with a yellow-shaded area). However, several higher levels (levels 2, 3, 4 and 5) of genetic controls, i.e. the levels at the formation of double helix, super coin, nucleosome, and 
chromatin, each of which encodes a set of hereditary traits that is more complex than the set controlled at a lower level, have been much understudied for their effects of 
alterations on tumorigenesis in part due to technical constraints. Fortunately, alterations at the two higher levels (levels 6 and 7) that deal with chromosomal structure and 
number, such as chromosomal translocation, aneuploidy, etc., have received relatively-more extensive studies for their contribution to tumorigenesis (denoted with a 
yellow-shaded area), although it seems that these lines of studies have gradually faded in the past 20 years or so. Studies on the level 8, i.e. the roles of DNA horizonal transfer 
(including fusion of two cells’ genomes) in tumorigenesis have, in general, been understudied as well. 
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Figure 2. Almost any aberration inside or outside a cell, mutational or not, may initiate cancer formation. (a) A primary cell may bear certain epigenetic or 
genetic alteration(s), such as one inherited from a parent, that enable the cell to proliferate and form a hyperplastic lesion while gradually becoming cancerous. (b) Certain 
extrinsic (extracellular) factors, such as radiation, a chemical, a virus, or an abnormal endocrine or paracrine signal, can cause genetic or epigenetic change(s) in the nucleus of a 
cell, either directly or via altering certain cytoplasmic factor(s), and make the cell cancerous, as in (a). (c) Hypothetically (the question marks), certain factors in the cytoplasm 
may become abnormal, due to such as an unhealthy lifestyle or aging, which renders the cell hyperplastic either directly or by causing genetic or epigenetic alteration(s) in the 
nucleus (N), driving evolution of the cell to a cancer. (d) Some cytoplasmic or nuclear alterations of some cell(s) (such as stromal cells) may alter their communications and 
interactions with other (such as epithelial) cell(s). The alterations may direct evolution of the latter cell(s) to cancers while the former cells remain phenotypically normal. (e) A 
normal embryonic or induced pluripotent stem cell (ePS or iPS) may develop into a cancer at an ectopic (i.e., extrauterine) place in adult animals. 

 

There are many theories that dissent from 
the mutation one 

While there are voluminous data undergirding 
the aforementioned mutation theory, there also are 
profuse biological phenomena and experimental data 
suggesting that mutations may not necessarily be 
required for cancer formation [56, 69-77] and even for 
the heterogeneity of cancer cells [78], as first broached 
by Rous in 1947 [79]. Actually, this constellation of 
data has led to formation of many theories and 
models of tumorigenesis or carcinogenesis that are 
collectively referred to as “non-mutation theories” 
herein [56, 80-94]. These divergent non-mutation 
theories include (but are not limited to) the “tissue 
organization field” theory (TOFT) [56, 91, 95-99], the 
“dynamic developmental disorder” theory [53, 100], 
the “population dynamics of cancer” theory [74, 101], 
the “dynamical non-equilibrium systems” theory 
[102-104], the “embryonic morphogenetic field” 
theory [94], the self-disorganization theory [105, 106], 
the eco-evolution, speciation, or atavism theory 
[107-112], the systemic-evolutionary theory [113, 114], 
the “cell reversal” theory [115], the karyotypic theory 
[116], the chaos theory [117], the pericyte hypothesis 
[118], the “activity paradigm” theory [119], etc. These 
deprecatory theories usually overlap with, or are 
complementary to, one another [120]. Many of them 
do not completely foreclose the mutation theory [121] 
but, instead, attempt to integrate with it to form a 

conflated theory, such as the “emergence framework 
of carcinogenesis” theory [122-126], the molecular 
theory [121], etc. The data as the raison d’être of these 
deprecatory theories are synopsized below, with the 
relevant history provided to our best knowledge and 
with our somewhat provocative perspectives 
elaborated. The terms “tumorigenesis” and “carcino-
genesis” are used in different places in part because 
the described process sometimes implicates formation 
of benign tumors. 

Dissenting evidence 1: Some biological 
phenomena are paradoxical to the mutation 
theory 

Species of larger animals are supposed to have 
higher cancer incidences than the smaller ones, 
because a larger body has experienced more rounds of 
cell replication and thus has encountered more 
chances for spontaneous mutations to occur (Fig. 2). 
However, this is not shown in reality, as was pointed 
out by Peto in 1975 and thus is dubbed as Peto’s 
paradox [127-131]. Usually, cell proliferation is 
quicker and more robust during the early part of life, 
and thus mutations and cancers should occur more 
often in the young if mutations are directly 
responsible for cancer formation. However, cancers 
occur more often in the elderly [132, 133], although 
very old individuals often have decreased cancer 
incidences [134-137]. Of course, there are pediatric 
cancers, which are likely initiated during the 
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embryonic stage [138, 139] and occur via different 
mechanisms from those for the sporadic cancers in 
adults [140]. A related perplexity is called “the 
proliferation paradox” [141]: Some cell types that 
have the fastest turnover in the human body have the 
lowest cancer incidences [141], epitomized by the 
epithelial cancers in the hair follicles and the small 
intestine. Epithelial cells of the hair follicles grow so 
fast that men need to cut their hair once a month, but 
these cells rarely develop to cancer [142, 143]. Small 
intestine makes up 75% of the length and 90% of the 
mucosal surface area of the digestive tract [144], and 
the lifespan of its mucosal cells is so short that the cells 
are supplanted by the newly minted ones every 3-4 
days [3, 145]. However, the incidences of epithelial 
cancer in the small intestine, especially in the jejunum 
and ileum, are extremely low [144, 146-148], in stark 
contrast to the cancer incidence in the colon and 
rectum that are much shorter in length with their liner 
epithelia having a much longer (5-21 days) lifespan [3, 
145].  

There are many genotoxic agents that are not 
carcinogens [149], whereas a large percentage of 
known chemical carcinogens are non-genotoxic, such 
as chloroform and p-dichlorobenzene [150, 151]. 
Endogenous hormones can beget benign or malignant 
tumors when they are present in an aberrant amount, 
which can be achieved using simple surgeries such as 
partial thyroidectomy [138, 152, 153], gonadectomy, 
and transplantation of gonads to an ectopic body site 
(such as to the spleen) [154-157], as we have reviewed 
before [138, 158-160]. Obviously, endogenous 
hormones and simple surgeries cannot be considered 
mutagenic. There are too many other factors that are 
not mutagenic but can increase risk for cancer, such as 
obesity and certain unhealthy lifestyles. 

There are some cancers in which no recurrent 
mutations could be identified [161, 162], and there has 
not been any proven set of mutations known to 
transform a normal cell to a cancerous one [163]. More 
bewilderingly, there are some oncogenic driver 
mutations appearing in benign diseases at a high 
frequency, sometimes even much higher than in 
malignant tumors [164-166]. There also are 
cancer-driver mutations that are found in normal cells 
or culminate in only clonal proliferation of normal 
cells, but not cancers [132, 133, 167, 168]. A conjecture 
on these observations is that, besides causing 
neoplastic transformation, these mutations can also 
improve fitness of relatively old cells and thus extend 
their life span; therefore, there is no need for the 
mutations to drive these fitter cells to a neoplastic 
state [132, 165, 168]. All of the observations 
enumerated above do not seem to be consonant with 
the mutation theory, although there may be other 

explanations. 

Dissenting evidence 2: Altered extracellular 
milieu may initiate carcinogenesis 

There have been several lines of experimental 
data intimating that abnormal extracellular signals 
from the matrix or from other cells may initiate 
neoplastic transformation [169, 170], which occurs 
even in evolutionarily very low animals like metazoan 
Hydra [171, 172]. Actually, there is a theory opining 
that cancer is a problem in intercellular 
communication [173]. One line of advocating data is 
derived from many animal studies showing that 
implantation of various foreign bodies can cause 
tumors, mainly sarcomas [174-177], which was first 
reported by Turner in 1941 who fortuitously found 
that subcutaneous implantation of Bakelite disks in 
the rat caused sarcoma at the site of implantation 
[178]. Implantation or chronic injections into animals’ 
peritoneal cavity of different non-mutagenic 
materials, such as solid plastics, mineral oil, and 
certain immunological adjuvants, can induce 
plasmacytomas, which has been reviewed by Potter 
decades ago [179-181]. These implanted materials fall 
into various categories, including metal, plastic, 
polymers, millipore filters, nitrocellulose, etc., and are 
insoluble and not toxic [182-188]. Moreover, the 
carcinogenesis does not seem to correlate with the 
amount (dose) of the implanted materials, but rather 
is related to their physical shape or surface [176, 
188-190]. Therefore, the carcinogenesis does not seem 
to occur via mutations caused by the intake of the 
materials into the cells but rather occurs due to 
disturbances to the extracellular milieu (Scenarios b 
and d in Fig. 2). It needs to be emphasized that such 
foreign-body-caused carcinogenesis has its human 
relevance. For example, there have been over 800 
cases of “breast implant-associated large cell 
lymphoma” reported in the literature [191]. Moreover, 
soft tissue malignancies caused by foreign bodies 
derived from shotgun blasts have also been reported 
[192]. Relevant mechanistic studies in the past 80 
years suggest that the carcinogenesis is likely to be 
ascribed to the chronic inflammation ignited by the 
implanted materials, such as the involvement of 
macrophages, plasma cells, and other inflammatory 
cells as well as various cytokines and other factors 
released by these cells [174, 189, 193]. Actually, Miller 
has already shown in 1931 that injections of 
tuberculo-proteins into the peritoneal cavity of rabbits 
can induce nodules in the omentum that contain 
“undifferentiated cells” [194], which are neoplastic in 
pathology term. In our opinion [138], this 
carcinogenesis is likely elicited via chronic 
inflammation, but not mutations, caused by the 
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bacterial proteins, and supports Rudolf Virchow’s 
theory that cancer results from chronic irritation 
[195-198], mainly inflammation [199-201]. 

Another line of espousing data is derived from 
experiments of transplantation of tumor tissues into 
normal animals [202-204]. According to Staab [205] 
and Goldenberg [206], during 1905-1907 Ehrlich, 
Apolant, Loeb, Bashford, and a few others had 
reported in German language that transplantation of 
mouse mammary carcinoma into other mice could 
culminate with sarcomatous transformation of the 
recipient’s stromal cells. Actually, in the 1902 Loeb 
had already noticed that the regrowing tumors in the 
recipient animals were sarcomas although the original 
tumors implanted were carcinomas [207], which 
suggests a possibility that the tumors occurring in the 
recipient animals may not really be a regrowth of the 
grafted tumor but may rather be a new tumor derived 
from a different cell lineage. Unfortunately, the 
importance of these earlier observations had been 
ignored for decades, and it was only in the 1970’s was 
it shown in a series of studies that inoculation of 
surgically-removed human cancer tissues into 
immunodeficient mice, rats or hamsters, followed by 
poly-passages of the transplanted tumor tissues from 
one animal to another, can cause sarcomatous 
transformation of the rodents’ stromal cells within the 
grafted human tumor tissues [205, 206, 208-213]. The 
detailed mechanisms underlying this horizontal 
transformation of malignancy remain nebulous even 
now. Possible explanations include that certain 
transforming-genes have been horizontally 
transferred from the primary tumor cells to some 
recipients’ cells [213-219], that spontaneous mutations 
have occurred in some recipients’ cells, and that 
immunodeficient animals have already borne certain 
mutations that drive malignant transformation of 
their stromal cells. However, in our musing these 
possibilities are improbable, partly because 
inoculation of well-established cancer cell lines [206, 
220], such as several subclones of Hela cells [221-223], 
into nude mice culminate only in metaplasia, typically 
bone or cartilage formation, and not neoplastic 
transformation, of the recipients’ cells. These 
discrepancies between inoculation of a cancer tissue 
and inoculation of a single cancer cell line intimate 
that heterogeneous populations of cancer cells and/or 
connective tissue components in the donor cancer 
may contribute to the neoplastic transformation of the 
recipients’ stromal cells. 

Ever since 1951, another set of tissue graft 
studies has also reached the conclusion described 
above: Billingham et al repeatedly painted some areas 
of mouse skin with 20-methylcholanthrene, a 
chemical carcinogen, and then removed the epidermis 

and implanted it onto an untreated area of dermis 
with the epidermis pre-removed [224]. Unlike other 
painted areas that developed many tumors, no 
tumors developed at the transplanted epidermis. 
Conversely, if implanting a pad of epidermis from an 
untreated area to a treated area with the original 
epidermis pre-removed, tumors would develop at the 
untreated epidermis. Obviously, the tumorigenesis in 
the graft of untreated epidermis is begotten by the 
deeper, carcinogen-treated tissues [203, 224, 225]. 
Similarly, non-tumorigenic COMMA-D cells 
inoculated into a mouse mammary fat-pad that was 
previously irradiated and cleared of epithelial cells 
developed to cancer [226-229]. Normal rat mammary 
epithelial cells inoculated into a mammary fat-pad of 
a rat that was previously treated with the chemical 
carcinogen N-nitrosomethylurea developed to cancers 
as well [56, 92, 98, 230]. In these experiments, 
mutations may still contribute to the tumorigenesis, 
but in such a way that a cell or cells bear mutation(s) 
and therefore keep providing a disturbing signal to 
other cells, eventually making the latter neoplastic 
(Fig. 2). Supporting this conjecture, normal ovaries 
grafted into the spleen [154, 156, 231] or tubal eggs 
grafted into the testis [232] have since the 1940s been 
shown to develop tumors. The ectopic site, i.e., the 
spleen or the testis, should not be mutagenic, but it 
provides a long-lasting disturbance to the grafted 
cells. Mention should be made of similar results from 
many unethical (likely criminal by today’s law) 
studies involving inoculation of cells directly into 
human bodies performed mainly during the 
1940’s-1960’s [233-237]. For instance, it had already 
been reported in Science in 1956 that subcutaneous 
inoculations of cultured human epithelial cell lines 
into forearms of human “volunteers” could lead to 
tumor formation, although the tumors eventually 
regressed [238, 239], likely due to immune clearance 
by the recipients [240]. The normal recipients’ 
forearms are not mutagenic but can still neoplastically 
transform the inoculated epithelial cells. 

Dissenting evidence 3: Primary rodent cells 
readily immortalize themselves in vitro 

Normal somatic cells have allegiance to the 
host’s body and are mortal, as they have lifespans. A 
neoplastic state of a cell means that the cell has lost its 
allegiance to the host’s body [111, 138, 139, 241, 242]. 
In other words, a neoplastic cell, benign or malignant, 
has become autonomous and maintains itself as a 
unicellular organism by interminable symmetric 
division, namely becoming immortal [243, 244], just 
like a bacterial cell that keeps symmetrical division to 
maintain its strain [111, 138, 241]. Unfortunately, 
many studies on neoplasms do not stick with this 
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“immortality and autonomy” definition of neoplasia 
[138] but describe tumors in various ways, as 
summarized by Gatenby et al [245] and Soto et al 
[246]. Some lesions that are described as benign 
tumors in pathology textbooks are not actually 
neoplastic because they are not immortal. For 
instance, many osteochondromas cease growth and 
even diminish after skeletal maturity [247-250], and 
thus should be considered as developmental 
malformations, but not neoplasms. A caveat is that in 
reality, every sizable tumor mass has a sheer number 
of neoplastic cells that are either dying or already 
dead (mortal) or have already committed to mortality, 
i.e., have lost the ability of interminable self-renewal, 
due to variegated reasons such as desultory 
development of lethal mutations or insufficient 
supply of oxygen or nutrients. This reality should not 
disqualify immortality and autonomy as the cannons 
for neoplasia. Unfortunately, as we have pointed out 
and discoursed recently [138], it has led to a wide 
misconception in cancer research that only a tiny 
number of cells in a cancer mass encompass the 
self-renewing ability and these cells should thus be 
specifically classified as “cancer stem cells” to be 
distinguishable from the remaining vast majority of 
cancer cells. 

The neoplastic nature of cells in vitro is usually 
referred to as “neoplastic transformation” or just 
“transformation”, which is equivocal as it does not 
clearly announce whether the “transformed” cells are 
immortal and/or autonomous [251]. Cells in culture 
dishes can only be evaluated for their immortality 
with their ability to be passaged endlessly, whereas 
their autonomy cannot be assessed, unfortunately, 
because no allegiance to the host animals is involved 
[111, 138, 241]. Actually, even “unlimited passage” is 
difficult to assess as it requires continuous passage for 
a long period of time, and currently we still lack a 
feasible approach to determine the turning-point from 
mortality to immortality of cells in culture. 

Carrel and his associates Burrows and Ebeling 
had since the 1910’s presented a series of publications 
claiming their successful in vitro immortalization of 
chick embryonic fibroblasts by continuing adding 
chick embryo extracts into the culture of chick 
embryonic heart tissue, although many 
contemporaries questioned this world’s first success 
in transforming cells in vitro [252-255]. Nevertheless, 
there have since 1940’s been many studies showing 
that in vitro culture can easily transform primary cells 
of small rodent origins [71], especially the hamster 
and mouse [256-260], as the cultured cells can form 
tumors when injected into syngeneic animals. A 
so-called “3T3 protocol”, namely transferring 3 x 103 
cells from one flask to another every 3 days, had been 

established in the 1960’s as an effective procedure to 
immortalize primary mouse fibroblasts, especially 
those from early embryos [261-263]. Rodent epithelial 
cells can easily transform themselves in vitro as well, 
which has been postulated to be due in part to the 
disruption of their interactions and communications 
with stromal cells. Moreover, isolation of epithelial 
cells detaches them from the basement membrane, 
which has been known for decades to facilitate 
immortalization [106]. In general, immortalization or 
neoplastic transformation of primary cells is much 
more efficient, once estimated to be 1010 times better 
[264], in vitro than in vivo [105, 106]. Treatment with 
various non-mutagenic agents can facilitate in vitro 
immortalization and neoplastic transformation. For 
example, a low dose of hydrogen peroxide can cause a 
transformation [265]. 

The cell culture situations enumerated above are 
stressful to the cells, which is likely to cause chaos of 
the karyotype, especially when the p53 gene is also 
mutated, as observed by Heng et al. [40-42]. However, 
in our opinion the stress itself may not be mutagenic; 
epigenetic alterations may more likely be the initial 
events occurring in the cultured cells whereas genetic 
changes, if they occur, may be the secondary and 
spontaneous ones. Indeed, it has been known that 
many spontaneously-established cell lines show 
deletion in the INK4a/ARF locus [266-268], besides 
methylation of the p16 gene within this locus [269, 
270]. 

Dissenting evidence 4: Mutations rarely 
transform cells in animals 

Although some inherited mutations are 
associated with higher tumor incidences [271-273], 
one particular inherited mutation culminates with 
only one or several tumor masses in only one or 
several cell or tissue types. For instance, an inherited 
mutation in the Rb gene may cause retinoblastoma, 
but often only one tumor is developed, although not 
only all of the retinal cells in both eyes but also all of 
the cells in the patient’s body bear the mutation [274]. 
This means that there are inherent factors in the body 
that prevent the vast majority of the incriminated cells 
from the mutation-initiated carcinogenesis [132]. This 
phenomenon can also be discerned in most animal 
models of solid tumors with genetically manipulated 
mice, as we have repeatedly pointed out before [6, 
138, 275]: In these models, although all animals may 
develop the anticipated tumor, usually each animal 
develops only one or several overt tumors during the 
life span, despite that the target organ of the animal, 
such as the liver or the mammary glands, have 
trillions of cells that bear the same genetic 
modification, as having been noticed decades ago 
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[276, 277]. For instance, only 4 or 5 islets in the 
pancreas of SV40-LT transgenic mice develop β-cell 
tumors [278], and only 1 among 10 mammary glands 
in c-myc transgenic mice develops a tumor [279, 280], 
although we did occasionally find two or three 
mammary tumors in a mouse in our lab (empirical 
experience of DJ Liao). To our knowledge, these two 
transgenic lines are already ones of the best models of 
carcinogenesis as they produce the highest tumor 
incidences. The fact that only one to several out of 
trillions of targeted cells in the same animal are 
transformed early enough for the cells to develop to 
overt tumors signifies that the genetic manipulation 
as an artificial mutation has negligible efficacy in 
neoplastic transformation [6, 138, 275]. The 
discrepancy between 100% tumor penetrance at the 
animal level and the negligible transformation 
efficacy at the cellular level is reminiscent of the 
situation in the human being that “cancer is so 
common a disease yet so rare at a cellular level”, as 
pointed out by Ferrell Jr et al [281]. Indeed, one of five 
people will likely develop cancer in his/her lifespan 
[142, 143], which is horrible. However, since one 
person has 1-3 x 1013 cells with 50-70 million cells 
supplanted by newly minted ones every day [2, 3], 
this still means that the rate of cellular neoplastic 
transformation is negligibly low, much lower than 
1/1013. 

Dissenting evidence 5: Mutations are not 
required for showing neoplastic properties 

Benign neoplasms are already immortal and 
autonomous, and malignant neoplasms have three 
additional features, i.e., 1) encroachment into their 
normal adjacent tissue, which can be considered as 
local metastases, 2) consumption of their normal 
surrounding tissue, which can be regarded as a 
cannibalism at the cellular level [282-286], and 3) 
metastasis to distant body site(s). The mutation theory 
contends that a normal cell develops mutation(s) to 
evolve to a neoplasm, and then develop more 
mutations to acquire the three malignant features. 
However, none of the five neoplastic properties are 
unique to malignant cells, and not even to benign 
cells, as these cellular properties are developed along 
with evolution from prokaryotic to eukaryotic and 
then to multicellular organisms. In other words, the 
genomes of animals (including the human being) 
encode these cellular properties and thus do not need 
mutations for their occurrence [62, 287, 288]: First, a 
normal human body consists of not only somatic cells, 
which are mortal and may undergo symmetric 
division, but also germline cells that are immortal and 
undergo asymmetric division [289, 290]. Actually, 
there are some plants and animals that are immortal 

as well [290, 291]. Therefore, immortality has been 
evolutionarily built within, or encoded by, our 
genomes although normally the program is derelict in 
somatic cells. An intriguing but unsolved question is 
how autonomy is related to immortality and whether 
it is also evolutionarily built within the genomes of 
multicellular organisms. In our cogitation, 
immortality and autonomy are the two sides of the 
same coin for neoplastic cells, meaning that they are 
controlled by the same factors that are currently 
unknown to us [138], as there is no evidence showing 
extrication of immortality from autonomy in human 
tumors. Second, invasion is an evolutionarily- 
developed cellular comportment seen widely in 
normal cells of animals and plants [292]. For instance, 
normal trophoblasts are highly invasive [293, 294] and 
can make inroads into the uterine wall to establish 
gestation and may even encroach into blood vessels 
and home in on the lungs of the mother and many 
organs of the newborn [295]. Third, macrophages and 
even some other cell types like epithelia can engulf 
other cells and materials in their surroundings; 
osteoclasts function to eat up bone tissue [296, 297]. 
Fourth, many bone-marrow-derived or thymus- 
derived cells can enter, i.e., “metastasize”, into the 
blood or lymphatic circulation and home in on almost 
anywhere in the body. Probably because of this 
property, in all pathology textbooks neoplasms of the 
bone-marrow and lymphatic origins are all classified 
as malignancy without exception. Fortunately, this 
property seems to have its benefits: Because these 
neoplasms, which usually are liquid cancers, do not 
need to experience additional cellular or molecular 
changes to be metastatic, many of them have fewer 
alterations and are easier to cure, compared to many 
solid tumors [298]. Actually, during embryonic 
development many cells migrate, with an instructive 
embodiment already described by Markert in 1968: 
“…melanoblasts originating in the neural crest 
migrate through many tissues of the body before 
reaching the terminal locations in which they 
complete their differentiation into nondividing, 
nonmigrating melanocytes” [288]. As we have 
described before [111, 138, 139] and in this essay, 
carcinogenesis is an atavistic process and cancer cells 
resemble embryonic cells in morphology and 
comportment, and metastasis of cancer cells may be 
considered as showing behavior of embryonic cells. 
Actually, for this reason pathologists use 
embryological terms, such as “undifferentiated”, 
“poorly differentiated”, “differentiated”, etc., to 
describe neoplasia [299]. 

According to the systemic-evolution theory of 
Mazzocca et al [113, 114, 300-302], other neoplastic 
properties, such as fermentative glycolysis, are also 
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entrenched in the genomes of eukaryotes that evolve 
from fusion of two different types of prokaryotes, 
with one of the erstwhile types now being represented 
by the nucleus and the other being represented by the 
mitochondria. This explains why cancer cells 
sometimes, but not always, manifest fermentative 
glycolysis. Many intracellular or extracellular 
disturbances, including epigenetic perturbations, may 
reactivate some of these derelict programs, making 
the cell stay at or return to an embryonic (or stem) 
stage to become neoplastic [303-305]. From a vantage 
point of logic, even very egregious cancer properties 
do not need to be derived from mutations [56], 
because they have already been entrenched in the 
normal genome, mostly in the genomic DNA and, 
probably, mildly in the mitochondrial DNA. Of 
course, some mutations may bestow these properties 
upon cells while some other mutations (such as a 
deletion) may make them disappear. This point of 
view is not just a logical inference but has actually 
been buttressed by many experimental data, as have 
been summarized by Pierce in 1983 [306]. 

Dissenting evidence 6: Pluripotent stem cells 
may develop into cancer at extrauterine sites 
in adult animals 

According to Needham [307], Belogolowy 
showed in 1918 that morulae and blastulae of anuran 
amphibia implanted into tissues or body-cavities of 
adult frogs developed into “round-celled sarcoma” 
that penetrated into the surrounding tissue and 
metastasized to the liver and lungs. Also according to 
Needham [307], Skubiszewski reported in 1926 that 
injection of chick embryonic tissue into chicken 
muscle or other tissues produced similar “round 
celled sarcoma”. In the 1930s, both Needham and 
Thomas observed oocyte-caused tumors in adult 
worms [307]. Witschi in the 1930s showed that if frog 
eggs were kept for a prolonged period of time before 
fertilization by sperms, which is referred to as 
over-ripeness, the eggs would produce teratomas or 
teratocarcinomas [307-309]. In 1960’s, Steven et al 
showed that, when germinal stem cells from early 
embryos of male mice of the 129-strain were 
transplanted into testicles of adult mice, the cells 
developed into teratomas or teratocarcinomas (Fig. 2) 
[232, 310, 311]. As reviewed by many pundits 
[312-327], many other researchers have later 
confirmed that early embryonic pluripotent stem 
(ePS) cells, including those of human origin [316], 
placed into several extrauterine sites of adult animals 
can indeed develop into teratomas or terato-
carcinomas [315, 328-332]. Sobis et al [333-340] and 
Hirai et al. [341] have also shown that displacement of 
yolk sac cells in fetectomized placenta induce 

teratomas and teratocarcinomas in small rodents. 
A host of studies in the past decade or so have 

confirmed and extended the earlier findings 
mentioned above on the development of teratomas or 
teratocarcinomas from induced pluripotent stem (iPS) 
cells [312, 342-347]. It is now clear that either ePS or 
iPS cells may develop into teratomas and even 
teratocarcinomas if the cells are placed ectopically, 
i.e., at an extrauterine site of adult animals (Fig. 2). 
The tumorigenic mechanisms, according to Rose’s 
work in 1955 with embryonic and adult frogs, may 
involve inhibition of differentiation of the pluripotent 
cells by the adult tissue matrix [348]. As extrauterine 
sites in animals should not be mutagenic, this 
tumorigenesis or carcinogenesis may not involve 
mutations. Moreover, the tumor formation can be 
greatly minimized or prevented by various 
manipulations [312, 344, 345, 347, 349], which also 
favors the perception that the tumorigenesis is mainly 
precipitated by the non-mutagenic microenviron-
ment. 

Dissenting evidence 7: Embryonic 
environment may revert cancer cells back to 
normal 

Mutations are in general considered irreversible 
[92], although sometimes polyploidy of cancer cells 
may be reversible [350, 351] and in some rare cases 
single nucleotide mutations may mutate back to the 
wild type [22], which had been described already in 
1940’s [352] and coined as “reverse mutation” or 
“back mutation” [353-357]. The irreversibility of 
mutations dovetails with the fact that human cancers 
rarely regress spontaneously. Of course, there are 
some rare cancer subtypes showing high frequencies 
of spontaneous regression with unclear reasons, such 
as the stage IV-S of neuroblastoma [358-360], some 
indolent histologic subtypes of non-Hodgkin’s 
lymphoma [361], and some subtypes of cutaneous 
malignant melanoma [362, 363]. A caveat is that many 
precursor lesions in animal models of carcinogenesis 
[138] and certain outgrowing lesions of humans [105, 
106] can regress via apoptosis because these lesions 
are still mortal and have not yet become authentic 
neoplasms [138]. 

While ePS cells may develop into cancer in 
extrauterine matrices, ever since 1907 [364, 365] a 
myriad of animal studies have also shown that cancer 
cells may be reverted back to normal in an embryonic 
environment as well (Fig. 3). When teratocarcinoma 
cells were injected into mouse blastocysts, the cells 
became incorporated into the developing embryos; 
organs and tissues of the adult mice developed from 
such embryos consisted of cells from both the normal 
blastocyst and the cancer (Fig. 3) [94, 306, 366-376]. 
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Actually, a similar observation was already made in 
1907 by Askanazy [377] who, according to Telerman 
[378], showed that ovarian teratoma cells could 
differentiate to normal tissues that contained 
embryonic germinal layers. Since the late 1950s, Pierce 
and his colleagues have further shown that a single 
cell of teratocarcinoma or some other cancer types can 
develop to the three major germ-cell layers of 
embryos [326, 379-385]. After being frozen-and- 
thawed in vitro for many times, cells of 
teratocarcinomas that were derived from mouse 
embryonic cells could still be made to develop to 
gametes, and the oocytes or sperms could generate 
normal progeny [386, 387]. Cells of other tumor types 
such as leukemia and neuroblastoma have been 
shown to be regulated by certain embryonic fields as 
well [306, 388, 389]. However, it seems that the 
embryonic environment’s control over malignant 
phenotypes has its specificity, since the blastocyst fails 
to control certain leukemia and sarcoma cells [376] 
and only tumor cell types with a normal cellular 
counterpart in the blastocyst could be well controlled 
[306]. More interestingly, treatment with Zebrafish 
embryo extracts, alone or in combination with certain 
chemo-drugs, has been shown to have therapeutic 
effects on liver cancer and breast cancer both in the lab 
and in clinical trials [390-394]. The microenvironment 
of mammary tissue can direct differentiation of breast 
cancer cells as well as normal cells of certain tissue 
origins (such as testes and nerves) [395, 396]. A 
regenerating mammary gland can also provide a 

special milieu in which human breast cancer cells can 
be reverted to mammary epithelial cells [397, 398]. 
These mammary-gland-related data are somewhat 
related to the effects of embryonic environments, 
because the mammary gland is special as it starts to 
develop only at the pubertal age and becomes mature 
only after parturition. 

It had been shown in the 1960’s that if nuclei 
isolated from the Lucké renal cancer cells of frog 
origin [399-402] were injected into enucleated frog 
eggs, the chimeric eggs could hatch phenotypically 
normal tadpoles (Fig. 2) [403-413]. Further 
transplantation of tissues from these tadpoles into 
normal recipients produced phenotypically normal 
tissues as well [407]. Similarly, if nuclei isolated from 
cells of mouse medulloblastoma are injected into 
enucleated mouse oocytes, the chimeric eggs can 
develop to embryos in recipient female mice, and the 
embryos can survive for 8.5 days of the embryonic 
stage with various normal embryonic tissues and 
without showing any neoplastic features [414]. These 
observations further extend the aforementioned in 
vivo findings by suggesting that an extranuclear 
milieu, i.e., the cytoplasm, of normal embryonic cells 
or eggs can override the nuclear genome in 
controlling the cellular phenotype. Therefore, 
leastways in these experimental settings, even if the 
nuclear genome bears oncogenic mutations, the 
mutations may not inevitably lead to neoplastic 
phenotypes. Many experiments have also shown that 
fusion of a cancer cell with a normal cell can make a 

 

 
Figure 3. Several modes of reverting cancer cells back to normal. (a) If a mouse cancer cell is injected into a mouse blastocyst, it would develop together with the 
embryonic cells into an embryo and then to a fetus. (b) If a nucleus isolated from a Lucké cancer cell of frog origin is injected into a denucleated frog egg, the chimeric egg can 
hatch a normal tadpole, showing that the normal cytoplasm of the egg overrides the cancerous nucleus in controlling the cellular and organic phenotypes. (c) Fusion of a normal 
cell with a cancer cell may make the hybrid phenotypically normal. However, removal of certain chromosome(s) from the hybrid that has already been normalized may revert 
it back to the cancer phenotype again [415-424]. 
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phenotypically normal hybrid [415-424]. However, 
mention should be made of that in many other 
occasions the hybrid cells may turn out to be more 
malignant [425]. Actually, according to the reviews by 
Pawelek [426, 427] and Dittmar [428], already in the 
1911 the pathologist Otto Aichel had proposed in a 
German language paper that fusion of tumor cells 
with leukocytes rendered the hybrid cells aneuploid 
and metastatic. Indeed, many studies have later 
shown that cell fusion may be a mechanism for tumor 
initiation and progression. It is worth mentioning that 
cell fusion is also a physiological event programmed 
in the mammalian genomes and occurring more often 
during embryonic stages [427-429]. Since such hybrid 
cells contain both normal and neoplastic nuclei, 
whether and how this complicated system is related 
to embryonic milieu are unclear. The Parrondo's 
paradox, which says that losing strategies can work 
together to produce winning outcomes [425, 430], 
leads us to wonder whether the hybrid that doubles 
its number of chromosomes is fitter than the two 
original cells. 

Mention should also be made of the plant 
evidence of the reversion, which has already been 
thoroughly reviewed by Braun in 1981 [431]. It has 
been shown, ever since 1926, that tumor cells in some 
plants can be reverted to normal plant cells and that 
tumor cells grafted onto another plant can develop 
into a normal plant which can bloom and produce 
seeds; the seeds can then germinate and grow to 
normal plants [432-453]. What remains unknown is 
whether (or how) these observations on plants relate 
to the above-described data from embryonic 
environments of animals. 

The above-described antithetic relationship 
between ePS or iPS cells and embryonic matrices, i.e. 
that stem cells in non-embryonic environment 
develop to tumors whereas embryonic environment 
reverts tumor cells back to phenotypical normal, 
extends the “seed and soil” theory that was initially 
proposed by Paget in 1889 to explain tumor 
metastasis [454]: ePS or iPS cells as “the seeds” 
develop to normal tissues in one soil (embryonic 
environment) but to tumors in another soil (non- 
embryonic environment). Moreover, when the soil has 
changed (to an embryonic environment), the product 
of the seed (i.e. the tumor) may be changed (back to 
normal). These extended explanations of the theory 
favor the non-mutation theory as it is the environment 
(the “soil”), but not the cell (the “seed”) itself, decides 
whether the cell should develop into a tumor and, if it 
has already become a tumor, whether it should return 
back to normal again. The antithesis also dovetails 
with the initial “cancer stem cell” theory described by 
Julius Cohnheim in the 1870’s [455, 456], which 

proposes that cancers are derived from stem cells in 
the normal tissues. Mention should be made of that 
there is a different “cancer stem cell” concept 
proffering that a tumor mass contains some cells that 
encompass properties of normal stem cells, such as 
self-renewal ability [138]. 

Dissenting evidence 8: Immortality can be 
disengaged from transformation and other 
neoplastic properties in the lab 

Some researchers have shown that cellular 
immortalization occurs before, and is a prerequisite 
of, neoplastic transformation [256-260, 457-461], 
which is the punditry of some other cancer wizards as 
well [258, 462-466]. Ample animal studies have 
accentuated that tumor development undergoes a 
two-step procedure of initiation and promotion; in 
some peers’ opinions, “initiation” immortalizes 
normal cells whereas “promotion” transforms the 
immortalized cells [467, 468]. However, in 1983, Land 
et al showed that a mutant ras gene could transform 
embryonic fibroblasts in vitro, as these ras-expressing 
cells could form colonies in soft agar, but the 
transformed cells were still mortal because they could 
not grow indefinitely in the culture; their 
immortalization required concomitant expression of 
the c-myc or a viral oncogene [469]. Similarly, mouse 
embryonic fibroblasts transformed with the SV40 
large T antigen can efficiently form colonies in soft 
agar, but most of the cells will eventually die [470, 
471]. Concomitant expression of the CDK4 gene and a 
ras mutant can confer upon primary cells the ability to 
form colonies in agar and to develop into invasive 
tumors in animals, but the transformed cells remain 
mortal as evidenced by their limited passages in 
culture [472]. These data suggest that in vitro 
neoplastic transformation can occur before, and thus 
can be extricated from, immortalization. Other studies 
have also shown this segregation [473], and there are 
data showing that simian virus 40 can transform 
human cells without immortalizing them [474]. 
Telomerase alone has been shown to prod primary 
cells into growing in agar and in animals, which 
together is a well-accepted emblem of a neoplastic 
state, but these effects of telomerase are independent 
from immortalization [475-478] and transformation 
[467, 479]. In some animal experiments, epithelial cells 
can be manipulated to invade, disseminate, and enter 
into the bloodstream before they can form primary 
tumors [480, 481]; mammary epithelial cells can be 
manipulated to metastasize and colonize in the lungs 
before they are malignantly transformed [482, 483]. 
All of the abovementioned laboratory data seem to 
suggest that immortality, transformation, invasion, 
and metastasis as key neoplastic properties can occur 
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independently of one other and in any order, 
depending on the experimental setting. Because 
epigenetic alterations are reversible and occur more 
easily than mutations, it is much more easily 
fathomable if each of these key neoplastic features is 
caused by epigenetic alterations, and not by 
mutations, and thus can occur earlier or later than 
other neoplastic features. Of course, as aforesaid, 
other plausible explanations exist. 

Dissenting evidence 9: A neoplasm is a 
unicellular species and is somewhat genetically 
stable 

As described earlier in this essay, the mutation 
theory says that cancer cells are genetically unstable 
and thus continuously accumulate mutations while 
endlessly replicating, leading to genetic heterogeneity 
[62, 63]. It is therefore envisioned that over a long 
period of time each tumor lineage should have 
accumulated too many mutations that are too huge a 
burden for it to survive, meaning that no lineage of 
tumor, especially a very malignant one, can survive 
for a long time. However, a canine transmissible 
venereal tumor has survived for 11,000 years [484], 
and the Hela cervical cancer cell line has survived for 
seven decades [485]; yet their genomes are still stable 
enough to maintain their lineages [484]. The atavistic 
nature of carcinogenesis connotes that each cancer 
lineage is a new or semi-new species of unicellular 
organism [111, 112, 138]. This “new species” concept 
denotes two important but often neglected notions: 
While “species” insinuates that a tumor lineage has a 
stable genome to forever maintain itself, “new” means 
that its genome has enough mutations to distinguish 
itself from its erstwhile one, i.e. the genome of its 
normal progenitor, because a species is defined by the 
specificity of the genome. It is possible that genomic 
instability of cancer cells, even at a chaotic extent, 
affects only certain parts of the genome while leaving 
certain other parts undamaged, and that once a 
mutant clone is selected, genomic stability resumes 
the hegemony until its cells enter into a new round of 
“mutations and clonal selections”, likely driven by 
new stress, and yield a newer mutant clone as a 
“newer species”. This is also to say that 
instability-caused mutations in cancer cells are not 
completely random and stochastic as they do not 
touch certain currently characterized core(s) of the 
genome that can later keep the “new” genome 
relatively intact. We envision that, if the Hela cell line 
was continuously cultured in dishes for 
another-thousand years, it would still be alive and be 
the Hela cells, although having millions of additional 
mutations. It seems that cancer researchers have 
emphasized enough the genomic instability of cancer 

but have put insufficient attention onto the aspect of 
their genomic stability. It remains unknown but very 
intriguing to us how a newly formed mutant clone, 
likely more malignant, turns from genomic instability 
to genomic stability. 

Cellular differentiation may be a 
mechanism for tumor reversion 

In many (if not most) cases [306, 369-371, 376, 
388, 389, 398, 486-491], reversion of cancer cells back 
to a normal state in an embryonic microenvironment 
occurs mechanistically via cellular differentiation 
[490, 492-497]. With models of chick embryo and 
Zebrafish embryo, or with an intrauterine injection 
approach in mice, a slew of studies has shown that 
human malignant melanoma cells in an embryonic 
microenvironment do not develop to tumors but, 
instead, differentiate to neural-crest-like cells 
[498-501]. Actually, earlier studies have shown that 
when the SRC oncogene is inactivated, the 
SRC-induced myosarcoma cells will differentiate into 
mature myocytes [502-504], and this inactivation- 
caused differentiation is actually a common event for 
SRC-caused transformation [505]. Emphasis should be 
given to a study by Pierce and Wallace in 1971, in 
which some cells of squamous cell carcinomas were 
shown to differentiate into mature keratinized cells as 
squamous pearls [380]. This observation is of 
significance as it shows that the squamous carcinoma 
cells highly resemble normal skin stem cells that 
divide asymmetrically to one stem cell (equivalent to 
a cancer stem cell) and one keratinocyte, and the latter 
continues both maturation and symmetrical division 
towards stratum corneum (equivalent to the other 
cancer cell that replicates and differentiates to the 
squamous pearl). Similar cellular differentiation has 
also been observed for the cells of chondrosarcoma as 
well as the cells of breast and colon cancers, which 
leads Pierce to conclude that the rules learned from 
teratocarcinoma govern the behavior of neoplasms in 
general [304, 306]. 

Certain extracellular matrices other than the 
embryonic milieu can also control cancer cells’ 
phenotypes in vivo. The BAG2-GN6TF cells of rat 
hepatocyte origin may quickly develop into tumors or 
develop into normal hepatocytes in rats, depending 
on the sites and routes of the cell inoculation and on 
the age of the recipient rats [488, 506]. S. Meryl Rose 
had also reported in 1948 that after frog kidney cancer 
cells were transplanted into and well grew in a 
salamander limb and then the limb was amputated 
through the tumor site, the limb could regenerate and 
some cancer cells within the regenerate differentiated 
into muscle and cartilage before they eventually died 
[507, 508]. These earlier observations suggest that 
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xenografted tumors can grow persistently in an alien 
animal species if the tumor cells remain 
undifferentiated, but if they differentiated to be more 
and more foreign, they will eventually be eliminated 
by the host. Shvemberger et al have in a series of 
publications reported that inoculation of mouse or rat 
malignant cells into an eye’s anterior chamber of 
syngeneic animals can reduce the malignancy and 
increase differentiation of the tumor cells in 
association with a trend to normalizing the karyotype 
to diploidy, which presumably occur via selection of 
the subclones of cells that are relatively less 
malignant, more differentiated, and less aneuploid 
[90]. However, these observations are partly 
incongruous with the seminal findings of Greene et al 
in the 1940’s [138, 240]. In a series of experiments, 
Greene et al. found that some cancers were 
transplantable to eyes’ anterior chambers of those 
syngeneic animals that bear a tumor, but not of those 
without tumors [243, 509, 510]. Greene et al also found 
that only those human tumors capable of 
metastasizing (but not those incapable) could be 
transplantable to eyes’ anterior chambers of animals 
of a different species [509, 511-513]. What remains 
vague is whether the various extracellular 
microenvironments described above are in a way 
related to an embryonic milieu. 

Ever since almost a century ago [514-516], there 
have already been a battery of studies showing that 
certain extrinsic factors, such as some drugs or nucleic 
acids [385, 517-529], can facilitate the reversion of 
cancer cells back to normal via differentiation or 
maturation [89, 514-516, 530-532] in culture dishes, in 
animals, or in patients [468, 496, 533-536]. Neural 
differentiation of the PC12 rat pheochromocytoma cell 
line induced by nerve growth factors or some 
chemicals is among the best-studied examples 
[537-539]. A dietary supplement methylsulfonyl-
methane [540], which is also a normal oxidation 
product of dimethyl sulfoxide (DMSO) [541], can 
obviate metastatic properties of a few different cancer 
cell lines via differentiating the cells [542-546]. 
Actually, there have been some clinical successes as 
proof in the remission of acute promyelocytic 
leukemias via differentiation induced by treatment 
with retinoic acid [547] or arsenic trioxide [548, 549], 
alone or in combination with other chemotherapeutic 
agents, although relapses from extant cells often 
ensue later [107]. Some of these chemicals, with the 
arsenic trioxide being best studied, are known to 
effect via driving cells towards differentiation [548, 
549]. Cell lines from the abovementioned 
teratocarcinomas have been well studied for the 
molecular mechanisms of the reversion [550, 551]. 
Other studies have suggested that reversion of 

leastways certain malignancies to a normal state may 
entail over 300 genes [378, 552-554]. 

Mention should be made of spontaneous 
regression of certain human cancers [90, 138], certain 
tumors in fish and amphibians [410, 555-563], and the 
canine transmissible venereal sarcoma [140, 564, 565]. 
Reversion seen in some of these human and animal 
cases may in part be ascribable to differentiation and 
ensuing senescent death of the differentiated cells. 

Does mutation have anything to do with 
tumor reversion? 

In Pierce’s apercu [318], the above-described 
tumor reversion challenges the dictum of “once a 
cancer cell, always a cancer cell”. Simple explanations 
for the reversion include that the reversible tumors 
are not caused by mutations but by reversible 
epigenetic alterations [566] or, alternatively, that they 
are caused by mutations but the mutations are readily 
reversed back to normal [567]. Actually, a “cell 
reversal theory” opines that carcinogenesis may start 
with reversal of a differentiated cell to a less 
differentiated epigenetic status, such as a stem cell 
status, whereas a stem cell or a cell at a stem status 
that does not dwell in the stem cell niche is very 
chaotic and will enter into uncontrolled proliferation 
[115]. However, although all cancer researchers likely 
agree that epigenetic alterations are instrumental to 
the formation and progression of tumors [568, 569], 
whether or not such alterations alone are sufficient to 
cause tumors, especially the malignant ones, remains 
as an enchanting but fiendish puzzle. On the other 
hand, there are other equally plausible explanations 
for the tumor reversion, such as the three scenarios 
proposed by Telerman and Amson [378]. 

If tumors are caused by mutations as most cancer 
researchers believe, it seems improbable that the 
mutations would disappear later from live cells (lethal 
mutation may disappear along with the death of the 
cell [570]). Therefore, a possibility is that the reverting 
pathway activated by the extrinsic reverting factors, 
such as an embryonic milieu or a chemical like 
retinoid acid or arsenic trioxide, is a different one 
from the mutations-initiated tumorigenic process and 
is not impeded by the mutations. Alternatively, the 
mutations may hinder the reversion but the extrinsic 
reverting factors can override the impediment, since 
correction of one or two signaling pathways has been 
shown to be capable of reverting cancer cells [496]. In 
either scenario, the reverted cells are perceived to still 
retain the mutations [529, 571-574]. In Harris’ words, 
“the malignant phenotype may be held in an 
abeyance during the reversion” [418], which 
insinuates that the malignant phenotype can still 
reappear. Indeed, the animals developing from 
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cancer-cell-derived gametes have a high chance to 
develop cancers late [575]. Therefore, unless the 
normalized cells eventually die of senescence like all 
terminally differentiated cells [576, 577], thus purging 
mutations and cancer cells from the patient, the 
patient still faces a peril of tumor recurrence because, 
as aforementioned, the mutated genome still retains 
the right to control the phenotype. Today, with the 
feasibility of whole genome sequencing, repeating the 
early experiments described above and sequencing 
the whole genome of the cells before and after the 
reversion should help clarify these scenarios and 
provide us with information on what mutations the 
cells have that hinder the extrinsic-factor-driven 
differentiation of malignant cells. 

Our manipulations can only coerce 
primary cells into showing neoplastic 
features, but cannot directly transform 
the cells 

We have previously realized a few attributes of 
experimental tumorigenesis [112, 138, 139, 578]: 1) 
Lesions induced in most, if not all, animal models of 
tumorigenesis are inducer-dependent until terminal 
stages (for more early references, see [497, 579, 580]). 
The lesions, even if they manifest cancerous 
morphology and behavior, regress upon withdrawal 
of the inducer, although reintroduction of the inducer 
usually [138, 581, 582], but not always [497, 581, 583], 
induces quick recurrence of the lesions. Regression of 
these non-neoplastic lesions occurs via apoptosis and 
thus differs from the aforementioned regression of 
tumors that occurs via differentiation and ensuing 
senescent death. 2) Cancer induction in animals 
requires a long latent time, and usually only one to 
several tumor masses appear in an animal [138, 276, 
277]. As aforesaid, these phenomena evince a 
negligible transformation efficacy of our 
manipulations at the cellular level. Besides these two 
properties, we have described three additional 
phenomena earlier in this essay: 1) Formation of 
tumors may not necessarily entail mutations. 2) Cells 
considered to be “transformed” may still be mortal. 3) 
Immortality, transformation, invasion, and metastasis 
as key neoplastic attributes can be segregated from 
one another in the lab and can occur in different 
orders, depending on the experimental setting. 

In our opinion, which is partly similar to Harris’ 
punditry [416], all of the five traits of experimental 
tumorigenesis described above suggest that our 
manipulations in cell culture or in animals are not able 
to directly cause the cellular or molecular alteration(s) 
that bestow immortality and autonomy upon the 
primary cells. In most, if not all, of our in vitro or in 

vivo systems, our manipulation, such as knockout of 
the p53 gene or ectopic expression of a k-ras mutant, 
is simply to coerce the primary cells into 1) replicating 
incessantly, 2) manifesting transformed morphology 
and/or behavior, 3) sustaining the cells’ life, 4) 
causing or accelerating DNA damage, and 5) 
impairing DNA repair mechanisms [112, 138, 139, 241, 
584]. The lesions produced are actually hyperplastic, 
and not neoplastic. Actually, the malignant behavior 
of these hyperplastic cells had already been observed 
in the world’s first experiment of chemical 
tumorigenesis by Fischer in 1906 [585]. According to 
Braun [431], Fischer repeatedly injected Scharlach R 
into subcutaneous sites of rabbits’ ears, which drove 
the local epithelial cells to proliferate and invade 
deeply into the blood and lymphatic vessels. In some 
animals the lesions metastasized distantly. However, 
the cells, although invasive and even metastatic, 
remained mortal as they regressed upon withdrawal 
of the Scharlach R. The cellular alterations directly 
responsible for the immortality and autonomy, which 
are still unknown to us even now (Fig. 4), can only 
occur spontaneously in a random and stochastic 
manner during the incessant cell replication under the 
duress from our manipulations. This is why when the 
transforming agents, such as oncoviruses, are 
withdrawn or lost, the “transformed” cells may revert 
back to normal, a phenomenon that has already been 
discerned for over 50 years [586-588] and reviewed 
many years ago [497]. Actually, sometimes our 
manipulations can just confer upon primary cells 
additional rounds of cell replication, as epitomized by 
additional 20-30 population doublings of primary 
cells offered by ectopic expression of the SV40 large T 
antigen, during which a few cells acquire spontaneous 
cellular or molecular alterations that establish 
immortalization [589]. Pierce had once stated in 1983 
[306]: “it is easy to show what cells can be made to do, 
and it is often difficult to know what cells do.” We 
should remind ourselves that what we have observed 
in our experiments is what cells are forced by us to do, 
but what we actually want to know is what cells, and 
even the organism (such as a human being) as a 
whole, would like to do in a given physiological or 
pathological situation [6, 68, 112, 138, 578, 584]. 
Probably, we often put the cart before the horse in our 
research [112]. 

Our manipulations drive cell proliferation to 
form hyperplastic lesions, cells of which are 
redundant and still allegiant to the animal’s body. 
This allegiance forces the cells to commit suicidal 
apoptosis and probably, to a lesser extent, also 
senescent death, because the animal’s body wants to 
avoid cellular redundancy of the tissue or organ [111, 
138, 139, 241, 546, 576, 590-595]. It is likely that our 
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manipulations inhibit apoptosis and senescent death 
as components of their coercive mechanisms, but this 
inhibition disappears once our manipulations are 
withdrawn. Oncogene-withdrawal-caused regression 
of the-oncogene-induced outgrowths may involve 
modification of metabolism [596] and immune 
functions [597, 598], which is not surprising as the 
cells die via apoptosis and apoptotic cells are known 
to be eliminated via phagocytosis by macrophages, 
according to Kerr et al who created the word 
“apoptosis” [599]. Since in culture systems cells do not 
have to care about the cellular redundancy issue, a 
spellbinding but unaddressed question is whether, 
after withdrawal of the coercion, the proliferating 
cells die of senescent death or/and some other form(s) 
of programmed cell death [138, 577]. 

Knowing that there is no way of promptly 
immortalizing primary cells, researchers often 
perpetuate the manipulations, namely the coercions, 
by using such as stably-expressing cell clones or 
transgenic animals. However, for different research 
needs, many systems of “conditional immortality” or 
“conditional transformation” have also been created 
[600-605], including transgenic animals [606]. 
Accordingly, many conditional cell lines have been 
established [589, 606-615], like the temperature- 
controlled ones [612, 616], which show controllable 
immortalization or neoplastic transformation [612, 
615, 617]. The words “conditional” and “controllable” 
already proclaim the nature of swift reversibility and 
accentuate that the immortality or the neoplastic 
transformation so created is not authentic because the 
cells are still mortal. 

Bearing the manipulation-bestowed duress in 
mind, many “surprising findings” in animal models 
are actually not so surprising, such as the 
aforementioned observations that epithelial cells can 
evade, disseminate, and enter into the bloodstream 
before they can form primary tumors [480], that 
cancer cells can enter into the circulation before 
invading adjacent stroma [481], and that mammary 
epithelial cells can metastasize and colonize in the 
lungs before they are malignantly transformed [482, 
483]. These results from manipulated animals show 
diversion from the “growth, invasion, and then 
metastasis” trajectory of epithelial carcinogenesis [62, 
295]. These phenomena have not and will not be 
discerned in human situations, because withdrawal of 
the coercers will likely lead to the disappearance of 
these comportments of manipulated cells. 

Most, if not all, of our manipulations in 
experimental systems of tumorigenesis have been 
designed to simulate epigenetic or genetic alterations 
identified in human tumors. For instance, we often 
ectopically express a k-ras mutant in pancreatic ductal 
cells to transform them because we know that most 
pancreatic cancers bear this mutation [251, 618, 619]. 
However, we need to bear several points in mind: 1) 
In human tumors, these alterations are not the 
intrinsic factors directly responsible for the tumor 
cells’ immortality and autonomy, although they might 
have already caused, by kindling a cascade of 
molecular events, cellular immortality and autonomy 
at the time of diagnosis. 2) In many, if not most, 
experimental studies, the target cells may not have 
been immortalized but have already displayed 

 

 
Figure 4. Depiction of our coercion hypothesis and of tumor reversion or conversion. Certain intrinsic factors (such as an inherited mutation) or extrinsic factors 
(such as our manipulation in an experimental animal) may drive proliferation of a primary cell to form an outgrowing lesion. If the factor disappears, such as due to the 
manipulator withdrawal, the lesion will regress via cellular apoptosis, suggesting that the lesion, which may have already exhibited cancerous features, has not yet become 
immortal and thus is still hyperplastic, and not yet neoplastic. At this stage, its proliferation and its possible manifestation of cancerous features are actually sustained under the 
coercion of the intrinsic or extrinsic factor. However, if the factor lasts much longer, the lesion will evolve to an authentic neoplasm by acquiring cellular immortality, autonomy, 
and maturation obstruction that are caused by epigenetic or genetic changes in non-mutator genes (in this case the neoplasm is benign) or in mutator genes (in this case it is 
malignant). The neoplasm, benign or malignant, may (or may not) be reverted back to normal like its normal counterpart tissue via cellular maturation, or may (or may not) be 
converted to another mature tissue type via metaplasia. 
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transformed comportments and/or morphology, 
which may dupe us into discontinuing our 
manipulations and harvesting the lesions before they 
have experienced spontaneous immortalization and 
become genuine neoplasms. 3) The molecular or 
cellular aberrations we conferred onto primary cells, 
such as k-ras mutations, can transform the cells in 
culture dishes and in animals, but it does not mean 
that there actually is a patient whose tumor is caused 
by one of these anomalies. There are probably over 
100 million genetic alterations of different types in 
human cancers, since there have been about 85 million 
point mutations identified [620, 621], pancreatic 
cancer alone has 857,971 genetic alterations identified 
[622], and the p53 gene alone has over 30,000 
mutation types [6, 623]. A fact is that many cancer 
researchers endlessly use different combinations or 
different sequences of these alterations to efficiently 
transform primary cells in culture or to precipitate 
tumors in animals, and then claim identification of 
novel carcinogenic pathways. However, researchers 
are still unable to pinpoint any of these alterations, 
these combinations of alterations, or these orders of 
alterations, which together make innumerable 
permutations, as the cause for the tumor formation in 
a patient [112]. Even worse, it remains possible that 
these alterations, or these combinations or sequences 
of alterations, are just the results or byproducts, but 
not the causes, of the tumor formation in patients. 

Only the neoplastic morphology and 
behavior caused by intrinsic factors are 
authentic 

The above-described “coercion hypothesis” 
signifies an important fact learned from over a 
century of experimental tumorigenesis research: In 
vitro colony formation, neoplastic morphologies, as 
well as invasive and metastatic behaviors can all be 
caused by both extrinsic and intrinsic factors. The 
currently-unidentified cellular or molecular 

alterations responsible for immortality and autonomy 
are intrinsic factors, and the neoplastic morphology 
and behavior caused by them reflect an authentically 
neoplastic state (Fig. 5). On the contrary, those 
neoplastic morphology and behaviors occurring 
under the duress from our manipulations, which are 
extrinsic factors, do not reflect a neoplastic state. 

The notion that only intrinsic-factor-caused 
neoplastic properties are authentic repudiates 
extrinsic-factor-caused spuriousness, and thus is of 
importance and has clinical relevance. Many things, 
such as chronic viral or bacterial infections, treatments 
with certain drugs, exposures to certain 
environmental pollutants, etc., may be such extrinsic 
factors that coerce cells into outgrowing and 
manifesting neoplastic features. For example, chronic 
infection by Helicobacter pylori (HP) can result in 
low-grade lymphomas [624-630], chronic infection by 
human T cell lymphotropic virus type I (HTLV-1) can 
cause lymphoma or leukemia [631-633], and infection 
by parasite theileria can transform bovine leukocytes 
into disseminating tumors [634-636]. However, 
therapeutic removal of these causal pathogens can 
cure these tumors, leastways at an early stage. For 
another example, hepatomas and hepatocellular 
carcinomas had been reported frequently during the 
1970’s-1980’s among women chronically using 
estrogen-rich oral contraceptives, but the tumors 
could regress upon cessation of the contraceptives 
[637-643]. In these instructive cases, the cure of the 
tumors upon removal of the extrinsic factors is 
reminiscent of the withdrawal of our manipulations in 
experimental systems. In our opinion, the tumor cells 
caused by the HP, HTLV-1, theileria parasite, or 
excessive estrogen may not have been immortal and 
autonomous at the time of diagnosis and thus may not 
be authentically neoplastic, albeit their morphology 
denotes a pathological diagnosis of malignancy and 
they, if left untreated, will eventually evolve to 
genuine neoplasms. 

 

 
Figure 5. Illustration of the relationship between the “tumor-initiating factors” and their downstream “immediate tumor-causing factors”. A cell (cell A) 
may have an epigenetic or genetic alteration in the nucleus (α) that occurred spontaneously, was inherited from a parent, or was caused by an altered factor in the cytoplasm (β) 
or by an extracellular factor (γ, such as a radiation, a chemical, or a virus). A similar alteration in the nucleus (δ) or cytoplasm (ε) may also occur in another cell (cell B) nearby 
or even in a distant body site, which alters the communications and interactions with cell A, in turn causing α or β. All of these alterations may mutually affect each other (between 
the two cells, between the nucleus and the cytoplasm of a cell, as well as between the intracellular and extracellular environments of a cell). α or β is defined herein as a 
“tumor-initiating factor” as it triggers a cascade (referred to as a, b, c, etc.) of molecular events in the nucleus (e.g., epigenetic or genetic changes) and/or the cytoplasm, 
culminating in one or some currently-unknown cellular or molecular alterations (question mark) that establish cellular immortality (Immor.) and autonomy (Auton.), namely a 
neoplastic state, and thus are coined herein as “immediate-tumor-causing factors”.  
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We still have no way of directly 
transforming primary cells 

In all experimental systems established so far, 
our manipulation can make primary cells of small 
rodent origins truly immortal only after weeks in cell 
culture or months in animals [138], obviously as a 
secondary event. Some plant cells may be exceptions, 
as some early studies showed that some plant cells 
could be transformed after only 34-48 hours of 
manipulation [440, 443, 453], with a few more days of 
manipulation creating more aggressive cells [431, 441, 
442, 444-446, 449-451]. This is to say that in our in vitro 
and in vivo models, the cellular alterations responsible 
for immortality and autonomy occur only 
spontaneously during the enduring cell replication 
caused by the duress from our manipulations (Fig. 5). 
The aforementioned fact that usually only one to 
several of the cells in an animal develops into tumors 
signifies that normal cells guard firmly their mortality 
program to ensure that all cells will die eventually, 
which is the will of a higher eco-system as we 
expounded before [241]. We still hitherto have had no 
way of breaking through this guard of normal cells 
and thus have to wait until the cells themselves give 
up this guard to adapt to the stressful milieu. 
Fortunately, our manipulations as extrinsic factors can 
accelerate this giving-up not only by imposing a 
stressful environment but also by sustaining the cells’ 
life, accelerating cell replication, damaging DNA, 
impairing DNA repair, etc. 

There are two types of differentiation 
obstructed by two types of cellular 
alterations 

All neoplastic cells, benign or malignant, are less 
differentiated than their normal counterparts, as 
pointed out decades ago by Markert [288], betokening 
that cellular maturation has been blocked during 
tumorigenesis [644, 645]. Of course, in benign tumor 
cells this blockade may be set at a point near the 
terminal differentiation, allowing the cells to highly 
resemble their normal counterparts. For example, 
uterine leiomyoma cells are highly similar to, and 
thus basically indistinguishable from, uterine muscle 
cells in cellular morphology; these tumors are 
pathologically diagnosed mainly based on their 
histological features. 

There are three different sets of antithetical 
cellular properties that pertain to the obstruction of 
maturation (Table 1). First, a normal cell can be 
well-differentiated but still possesses a strong 
proliferation potential [646, 647], evincing that 
differentiation and proliferation are not incompatible 

[44, 149, 415], although cells that proliferate robustly 
are usually less differentiated. As noted by Harris 
[415, 648], it has become an “ancient question of 
whether a tumor grows rapidly because it does not 
differentiate or does not differentiate because it grows 
rapidly, but this is a false question.” For instance, after 
partial hepatectomy, the remaining hepatocytes that 
are highly differentiated can robustly proliferate to 
produce new well-differentiated hepatocytes [6, 649]. 
Second, immortality, which can be considered as an 
extreme of proliferation potential, and differentiation 
are not incompatible either. For instance, many 
benign tumor cells not only are immortal but also are 
well-differentiated, with uterine leiomyoma cells as 
an epitome. Third, even very malignant cells from the 
same patient can differentiate into a diversity of tissue 
types [650-658], which is a phenomenon often dubbed 
as “metaplasia” or “transdifferentiation” [385], as in 
pathology textbooks “metaplasia” means conversion 
from one differentiated cell type to another, such as 
squamous metaplasia and osseous metaplasia. 
Actually, benign tumor cells from a given patient may 
exhibit multiple types of metaplasia as well [659-661]. 
This betokens that tumor cells may retain 
pluripotency, although they are blocked somewhere 
towards the terminal maturation. Therefore, there are 
two different types of cellular differentiation, one 
being maturation towards the parental cell or tissue 
type, and the other being metaplasia towards some 
other cell or tissue type(s). This fact further 
annunciates that the currently-unidentified molecular 
or cellular alterations which militate against cellular 
differentiation can be dichotomized into two 
categories, i.e., 1) those that prevent tumor cells from 
maturation without stymieing their pluripotency and 
thus allowing the cells to differentiate into one or 
more other cell types, and 2) those that not only 
interdict maturation but also cancel pluripotency. A 
captivating question oblivious of by many researchers 
is whether immortality, autonomy, and maturation 
interdiction are three different facets of the same dice, 
i.e., whether these three neoplastic properties are 
controlled by the same cellular factor(s). 

 

Table 1. Three sets of opposing cellular properties relevant to 
neoplasms 

Cell type Maturity Opposing properties 
Normal Mature Proliferating and differentiated 
Benign Blocked at late 

differentiation stage 
Immortal (endlessly proliferating) and 
differentiated 

Malignant Blocked at early stage Undifferentiated and 
pluri-differentiating potency 

 
One important concept learned from the above 

introduction is the existence of three cellular 
antitheses, i.e., 1) well-differentiated status vs 



 Journal of Cancer 2022, Vol. 13 

 
https://www.jcancer.org 

2827 

proliferation potential of normal cells, 2) immortal 
status vs well-differentiated status of benign tumor 
cells, and 3) maturation blockade vs pluripotency, or 
maturation disability vs metaplasia ability (Table 1). 
Another important notion is that, germane to 
tumorigenesis, one type of cellular or molecular 
aberration is those stymieing only cellular maturation 
and another type is those impeding both maturation 
and pluripotency. Being cognizant of these two 
concepts is of importance, because we may consider 
developing some approaches or extrinsic factors as 
remedies for directing cancer cells towards certain 
types of metaplasia as an alternative, if it is difficult or 
impossible to direct the cells towards maturity such as 
in the situation where maturation genes are severely 
impaired [467]. Either type of differentiation should 
be followed by senescent death of the cells [576, 577]. 

Immortality and autonomy may entail 
one set of genes, while malignant 
morphology may involve another set 

A prodigious number of publications deliver, to 
many cancer biologists and molecular biologists who 
lack clinical experience in oncology and surgical 
pathology, a convoluted message about the 
demarcation between benign and malignant 
neoplasms. For instance, most of the “cancer 
hallmarks” described by Hanahan and Weinberg [662, 
663] are actually not unique to malignancy, and 
certainly are not unique to every cancer cell in the 
same cancer mass. They are, in fact, hallmarks of “any 
growing tissue”, in Llambi’s words [664], including 
benign neoplasms, as pointed out first by Lazebnik 
[665] and later by us [112]. In Blagosklonny’s words, 
“…hallmarks can be observed without cancer” [475]. 
Today, there have not been any molecular markers 
available for us to distinguish malignity from 
benignity, and morphological features are still the 
main clinical criteria for this differentiation. However, 
morphological criteria are not flawless, as has been 
pointed out by the superlative surgical pathologist 
Harry S. N. Greene in 1948 [509] and has been 
reviewed by us [138]. Concerns about pathological 
criteria include overdiagnosis [666, 667], such as 
overdiagnosis of thyroid cancer [668-671]. Therefore, 
we may need to find a better way to classify tumors or 
to reset the demarcation between malignity and 
benignity so as to better explain a tumor’s prognosis. 

Both benign and malignant cells are immortal 
and autonomous. However, many benign cells highly 
resemble, whereas most malignant cells differ greatly 
from, their normal counterparts in morphology. This 
disparity connotes that there are some epigenetic or 
genetic alterations establishing only immortality and 
autonomy without significantly affecting cellular 

morphology, whereas there are some other alterations 
that specifically establish malignant morphology and 
do not occur in benign tumors. We surmise that there 
may be a set of genes, or one or more genomic 
structures depicted in Figure 1, that govern not only 
cellular mortality but also the loyalty of cells to their 
host body; their alterations, epigenetic or genetic, 
establish cellular immortality and autonomy. We 
herein call these genes or genomic structures “mortal 
and loyal factors” and call their alterations 
“immediate tumor-causing factors”, so as to 
distinguish them from well-studied oncogenes or 
tumor suppressor genes that have well-known roles 
in initiating a lengthy tumorigenesis (Table 2 and Fig. 
5). Conversely, there may be another set of 
“malignant morphology genes or genomic 
structures”, dubbed herein as “malignant 
morphology factors” for simplicity, whose anomalies 
are responsible only for the establishment of 
malignant morphology (Table 2). An enthralling but 
unaddressed question is whether the “malignant 
morphology factors” are also those controlling 
cellular maturation, since maturation pertains not 
only to morphology but also to function. 

 

Table 2. Classification of genetic factors relevant to key 
properties of tumor biology 

Category Features/Functions Current state 
Tumor-initiating 
factors 

Oncogenes Well studied 
Tumor suppressor genes 

Mortal and loyal 
factors 

Block maturation and establish 
immortality and autonomy 

Hypothetical; 
unidentified 

Tumor 
morphology 
factors 

Benign (similar to normal) Hypothetical; 
unidentified Malignant (greatly divergent from 

normal) 
Tumor 
progression 
factors 

Non-mutators related to benign 
tumors 

Some identified as 
oncogenes or tumor 
suppressor genes Mutators related to malignant 

tumors 
Note: The “genetic factors" may be canonically defined genes on the genomic DNA 
sequences but can also be higher genomic structures depicted in Figure 1. 

 
So far, there has not been any “mortal and loyal 

factor” or “malignant morphology factor” established, 
although whole genome sequencing has been 
performed on thousands of tumors. Probably, as 
Heng et al has frequently pointed out before [39, 41, 
42, 672], one of the reasons is that these factors or 
some of them are not genes shown as the level 1a in 
Figure 1 but entail higher genetic levels. Moreover, in 
our opinion, one tactical mistake cancer researchers 
have made for many decades is to dwell mainly in the 
research of malignancy and hardly set foot onto 
research of very benign neoplasms. Very benign 
neoplasms, typified by uterine leiomyoma, are likely 
to have many fewer and much stabler genetic and 
epigenetic alterations, compared to their malignant 
counterparts. Therefore, they serve as much simpler 
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and thus better models for us to identify the critical 
alterations immediately behind cellular immortali-
zation, autonomization, and probably also maturation 
interdiction. 

The benignity or malignity, and even the 
neoplastic state, of cells transformed in vitro require 
much more attention. Some cell lines such as 
MCF10AT [673, 674] can form colonies in soft agar, 
which is considered an insignia of a neoplastically 
transformed state [251, 675], but in animals they can 
form only benign tumors, judged by the histology of 
the xenograft tumors. On the other hand, some other 
cell lines, like NMuMG (ATCC website, [676], and our 
experience), cannot efficiently form colonies in agar 
but can often form benign tumors in animals. These 
and other dissonant lab data lead us to consider that 
both colony formation in culture and xenograft tumor 
formation in animals are required to qualify a 
neoplastic transformation. Determining whether in 
vitro transformed cells are malignant is difficult, and 
currently we still lack convenient but reliable 
measures for this purpose [251], since the soft agar 
clonogenic assay initially developed by Hamburger 
and Salmon in 1977 [677] is not always reliable [678, 
679]. Cell fusion studies have suggested that 
transformed and malignant phenotypes are under 
separate genetic control [680], which is fathomable 
because a transformed, i.e., neoplastic, state may be 
benign. As Lazebnik has pointed out, distant 
metastasis is currently the only reliable yardstick for 
malignancy [665], although this canon is still not 
flawless because in some rare cases histologically 
benign lesions also metastasize, such as in the 
cutaneous fibrous histiocytoma [681] and in the 
growing teratoma syndrome of the ovary [682, 683]. 
Unfortunately, most relevant studies employ only 
subcutaneous inoculation of in vitro transformed cells, 
whereas few cell lines at a subcutaneous site can 
metastasize distantly, according to the literature and 
our experience, although we suspect that some cell 
lines may metastasize if inoculated viscerally. 

Benignity and malignity may be defined 
based on genomic alteration 

Benign tumors in general do not progress but 
malignant ones are always on their way to 
more-wayward states, notably states of metastasis 
and therapeutic resistance. Tumor progression is 
perceived to be attributed chiefly to accumulation of 
more epigenetic or genetic alterations, which is in turn 
ascribed to certain initial alterations, such as those 
impairing DNA repair. Pertinent to progression, 
tumor-related genes can be dichotomized into 1) 
mutators that are defined herein as the genes or 
genomic structures whose epigenetic or genetic 

alterations can cause or accelerate alterations at others 
and 2) non-mutators whose epigenetic or genetic 
alterations do not cause alterations at others (Table 2). 
While the “evolvability” theory of Pienta et al 
suggests the involvement of the ability of evolution in 
tumorigenesis [141, 684], our “mutator” concept, 
which may entail any genomic level(s) illustrated in 
Figure 1 and not just canonically defined genes, 
emphasizes the ability of evolution in tumor 
progression to more-heinous states. With this 
dichotomy, neoplasms can be reclassified at the 
genomic level: Benign neoplasms are those bearing 
epigenetic or genetic anomalies at non-mutators and 
thus do not accumulate genetic abnormalities, 
whereas malignant neoplasms are those bearing 
epigenetic or genetic alteration(s) at the mutators and 
thus easily have accrued alterations (Table 3 and Fig. 
4) as the bedrock for continuous progression towards 
more-diabolical states [62]. The essence of this 
reclassification is first to attribute accumulation of 
epigenetic or genetic alterations to the initial ones at 
certain mutator(s), then to attribute progression 
potential to the accrual of such alterations, and finally 
to utilize progression potential to demarcate the 
border between benignity and malignity. Of course, 
benign cells are also immortal and keep replicating, 
which increases the risk for new alterations to occur. 
Actually, this is a reason why some benign tumors are 
at peril for progression. 

 

Table 3. Tumor classification at the genomic level 

Type Non-mutator Mutator Properties 
Epigenetic Mutation Epigenetic Mutation 

I with without without without benign, easily cure 
II without with without without benign, curable 
III with with without without benign, curable 
IV with/ 

without 
with/ 
without 

with without malignant, 
relatively better 

V with/ 
without 

with/ 
without 

without with malignant, bad 

VI with/ 
without 

with/ 
without 

with with malignant, worse 

Note: mutator and non-mutator include not only canonically defined genes but also 
higher structural level(s) shown in Figure 1. 

 
Epigenetic aberrations more often change the 

expression level of the inflicted gene than confer new 
function onto it, whereas mutations may completely 
change the gene’s function. Therefore, epigenetic 
changes may or may not resemble mutations. It is 
perceivable that epigenetic alterations of mutators 
may trigger epigenetic and genetic changes at other 
mutators and non-mutators and thus may drive 
tumor progression as well. With our reclassification, 
benign tumors can be further systemized into 1) those 
bearing epigenetic alterations only at non-mutators, 2) 
those bearing mutations only at non-mutators, and 3) 
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those bearing both. Similarly, malignant tumors can 
be further stratified into several subgroups as those 
with or without epigenetic or genetic changes at 
non-mutators, besides the alterations in mutators 
(Table 3 and Fig. 6). 

Currently, our classification approach can only 
be used in the study of neoplastic comportments and 
underlying mechanisms, and is inapplicable in clinical 
practice because we still do not have enough detail 
about which genes or genomic structures are mutators 
and what alterations they have that are implicated in 
establishing malignancy, although many mutations of 
many genes are already considered by some cancer 
pundits as cancer “drivers” [62, 685-689]. However, as 
aforesaid, our classification provides an explanation 
for the question as to why some rare tumors can 
regress spontaneously or can be cured easily: They 
may bear only alterations in non-mutators without 
involvement of epigenetic or genetic alterations in 
mutators, and are benign even if they manifest 
malignant morphology. Moreover, there is an obvious 
incongruity between morphology and prognosis seen 
now and then in the clinics. For example, most 
nasopharyngeal cancers are the undifferentiated type, 
but many of them actually have a good prognosis and 
can even be cured [690-692], which sharply contrasts 
with most other types of poorly differentiated or 
undifferentiated cancer that have very poor 
prognoses. It is captivating to know whether those 
undifferentiated but curable cancers bear alterations 
only in non-mutators. 

Above-described mouse teratocarcinomas 
may be special with little human 
relevance 

In clinics, teratoma and teratocarcinoma are 
usually pediatric pathologies, although teratoma in 
some males may be diagnosed as late as middle age 
[693]. Pediatric tumorigenesis has its inception at an 
embryonic stage [694] and may indeed occur as a 
repercussion of epigenetic aberration. In our 
rumination, teratomas occur simply because 
epigenetic or genetic changes occur to some early 

pluripotent cells and thwart their differentiation while 
the cells proliferate continuously, whereas 
teratocarcinomas occur because such alterations occur 
at an even earlier embryonic stage and the hindrance 
of differentiation makes the tumor cells less 
differentiated. Reiterated, if less-differentiated 
pluripotent cells are the tumor progenitors, 
teratocarcinomas would result, whereas if 
more-differentiated cells are the tumor progenitors, 
teratomas would result [318]. However, even if 
epigenetic alterations were the initial causes, in real 
life these tumors have likely developed mutations as 
secondary events and become irrevocable at the time 
of diagnosis. If other types of pediatric neoplasms are 
initiated by epigenetic aberrations alone as well, many 
of them may have also acquired some mutations at 
the time of diagnosis, or even before the child was 
born. The 40-week gestation is a long stint during 
which a single fertilized egg grows into a fetus of 
several kilograms, involving numerous rounds of cell 
replication and thus providing numerous 
opportunities for mutations to occur. Actually, if 
certain rare sporadic tumors in adults are also 
initiated by epigenetic alterations alone, the tumors 
have likely developed mutations at the time of 
diagnosis as well. Therefore, in real life the adult 
cancers that bear only epigenetic aberrations are 
probably as scarce as hen’s teeth. We realize that there 
are some tumors without mutations detected, but 
several possibilities remain to be ruled out. First, some 
single nucleotide polymorphisms in these tumors 
may actually function as mutations. Second, 
mutations on the extrachromosomal DNA [695, 696] 
or alterations at the level(s) of genomic structures 
higher than the gene level (Fig. 1) have been neglected 
or are harder to discover. Third, technical issues may 
exist [620, 697, 698]. Actually, we still do not know 
what mutations are responsible for immortality and 
autonomy and thus do not know what we should 
specifically look for. However, tumors in small 
rodents may show epigenetic alterations alone, partly 
due to their much shorter lifespans and smaller body 
sizes, besides other disparities from humans [699]. 
Because cancer cells in the human and the mouse 

 

 
Figure 6. Propounded classification of tumors. Benign tumors are those bearing epigenetic alterations (green triangle) and/or mutations (black dot) in non-mutator genes 
or genomic structures. Malignant tumors are those bearing epigenetic alterations (red dot), mutations (green dot), or both in mutators, with or without epigenetic alterations 
and/or mutations in non-mutators. 
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require similar time frames for completing one cell 
cycle, which is around 24 hours for those 
fast-proliferating cell lines according to the literature 
and our experience [6], a tumor of the same size in 
mice and in humans has a similar cell number, but a 
very small tumor in a human is already very large in a 
mouse. Therefore, tumors in mice are much smaller 
and have experienced far fewer rounds of cell 
replication, thus having far fewer chances to develop 
mutations, generally speaking. In reality there is no 
way of knowing whether or not clinically-diagnosed 
human cancers are solely caused by or bear only 
epigenetic alteration(s). 

Concluding remarks 
There have been many theories about 

tumorigenesis, disputing over the involvement of 
mutations. One extreme theory considers that 
mutations not only are the initial cause but also reach 
a chaotic extent, while the diametrical theory thinks 
that mutations are not necessary. Main evidence 
against the mutation theory includes that ePS or iPS 
cells displaced in a non-embryonic environment may 
develop to neoplasms, whereas neoplastic cells placed 
in an embryonic environment may be reverted back to 
phenotypic normal. Until now, the differential control 
by the embryonic environment in this antithesis still 
remains vague. In our opinion, both extremes and 
many, if not all, intermediate theories are correct as 
they describe formations of different types of 
neoplasms in different situations. We envision that a 
chaotic level of genomic changes can occur in highly 
stressful situations and can more efficiently establish a 
malignant state. For example, isolating a primary cell 
and putting it into a culture dish containing a medium 
with 10% fetal (but not adult) bovine serum make the 
cell highly stressed, because it is nourished 
abnormally and has lost all interactions with other cell 
types and lost normal neural and hormonal controls. 
Forcing the cell to ectopically express one or more 
oncogenes, which is a common approach to transform 
cells, further raises the stress level. However, it 
remains questionable whether in patients the genome 
still has to experience a chaotic mess for development 
of some benign tumors, such as uterine leiomyoma 
that is indistinguishable from normal uterine muscle 
in most cellular aspects and may be caused by mild 
hormonal imbalance. Theoretically, certain epigenetic 
changes in nuclear proteins, such as abnormal 
phosphorylations of histones, may alter some 
genomic structures such as nucleosomes and 
chromosomes, in turn initiating tumor formation. 
While carcinogenesis has been extensively studied, an 
important aspect of tumorigenesis, i.e. development 
of benign tumors in a slightly abnormal situation, has 

been much understudied. In turn, fewer discourses 
have been focused on the immediate tumor-causing 
factors, i.e., those molecular or cellular alterations that 
directly establish cellular immortality and autonomy. 
The “immortality and autonomy” definition of 
neoplasia connotes that a neoplasm resembles a new 
or quasi-new unicellular organism [700] and thus 
should have some mutations, because a new organism 
should have something new in the genome [141]. 
Therefore, wrangling over “whether epigenetic 
abnormality alone can establish cellular immortality 
and autonomy, namely establishing a neoplastic 
state”, is actually a debate on whether “difference(s) 
only at the epigenetic level are sufficient to define a 
new organism”, making this issue a general question 
of taxonomy. In our opinion, neoplasms are 
malignant if they bear epigenetic or genetic 
abnormalities in mutator genes or genomic structures, 
defined as those whose alterations accelerate others to 
change, whereas neoplasms bearing epigenetic or 
genetic abnormalities only in non-mutators are 
benign. Future mechanistic research should be 
devoted to identifying the abovementioned 
“immediate tumor-causing factors”. Very benign 
tumors may have many fewer alterations and thus be 
much simpler and better models than malignant ones 
for this line of research [701, 702]. Future therapeutic 
research should be focused on identifying the 
extracellular and intracellular factors (such as 
embryonic ones) that control tumor cells’ phenotypes 
and on establishing approaches or drugs that can 
revert cancer cells to a differentiated state, either 
maturation or metaplasia. 
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