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Abstract 

Cuproptosis is a newly discovered non-apoptotic form of cell death that may be related to the development of 
tumors. Nonetheless, the potential role of cuproptosis-related lncRNAs in tumor microenvironment (TME) 
formation and patient-tailored treatment optimization of gastric cancer (GC) is still unclear. In this study, the 
six-lncRNA signature was constructed to quantify the molecular patterns of GC using LASSO-Cox regression 
model. Receiver operating characteristic (ROC) curves, C-index curves, independent prognostic analysis and 
principal component analysis (PCA) were conducted to verify and evaluate the model. The results showed that 
this risk model was accurate and reliable in predicting GC patient survival. In addition, two distinct subgroups 
were identified based on the risk model, which showed significant difference in biological functions of the 
associated genes, TME scores, characteristics of infiltrating immune cells and immunotherapy responses. We 
found that the high-risk subgroup was associated with immune activation and tumor-related pathways. 
Furthermore, compared with the low-risk subgroup, the high-risk subgroup had higher TME scores, richer 
immune cell infiltration and a better immunotherapy response. To accurately identify immune cold tumors and 
hot tumors, all samples of GC were divided into four distinct clusters by consensus clustering. Among them, 
Cluster 3 was identified as an immune hot tumor and was more sensitive to immunotherapy. Overall, this study 
demonstrates that cuproptosis-related lncRNAs could accurately predict the prognosis of patients with GC, 
help make a distinction between immune cold tumors and hot tumors and provide a basis for the precision 
medicine of GC. 
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Introduction 
As the fifth most common cancer globally, 

gastric cancer (GC) is a highly heterogeneous and 
aggressive digestive tract malignancy with high 
morbidity and mortality [1]. According to the latest 
data (Global Cancer Statistics 2020), GC accounts for 
over 1 million new cases and nearly 769,000 deaths 
worldwide annually [2]. Most GC patients are 
diagnosed at an advanced stage, and the 5-year 
survival rate is still not high even after surgery and 
systemic treatment [3]. For patients with unresectable 
GC, systemic therapy, including chemoradiation, 

targeted therapy and immunotherapy, is their only 
choice [4]. In recent years, immunotherapy has 
received great attention, and it has achieved remark-
able success in the treatment of many malignant 
tumors. However, only one-third of patients with 
most types of cancer respond significantly to immune 
checkpoint inhibitors (ICIs) [5]. Therefore, it is 
necessary to change the treatment strategy of GC to 
provide personalized treatment optimized for 
individual patients. 
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Cell death, like cell regeneration, is one of the 
most fundamental processes in life. Cell death can be 
divided into two types: programmed cell death (PCD) 
and necrosis. Apoptosis is a type of PCD that is 
controlled by genes and produced by a series of 
elaborate reactions [6]. A recent study published in 
Science proposed a new form of programmed cell 
death: cuproptosis. Cuproptosis occurs through the 
direct binding of copper to lipoylated components in 
the tricarboxylic acid cycle. This process leads to 
lipoylated protein aggregation, subsequent iron- 
sulfur cluster protein loss and proteotoxic stress, 
which ultimately leads to cell death [7]. Studies have 
shown that cuproptosis, like traditional oxidative 
stress-related cell death (e.g., apoptosis, ferroptosis, 
and necroptosis), may be closely related to the 
development of tumors [8, 9]. In addition, in some 
animal models of Cu-related disorders, ionophores 
such as elesclomol can be used to deliver Cu and 
restore function, which may be related to drug 
resistance of cancer [10]. 

Long non-coding RNAs (lncRNAs) make up a 
large fraction of non-coding RNAs and they have 
several special functions, such as chromatin modifi-
cation, transcription regulation, and post-transcrip-
tional regulation [11]. LncRNAs play an important 
role in carcinogenesis and metastasis by regulating 
the translation of genes or interacting with specific 
proteins and RNA [12, 13]. In addition, recent studies 
have found that lncRNAs are involved in the 
regulation and remodeling of the tumor immune 
microenvironment [14, 15]. LncRNAs regulate the 
tumor immune microenvironment in a variety of 
ways, help tumors escape immune surveillance, and 
promote tumor metastasis and drug resistance. Sun et 
al. identified tumor immune infiltration-associated 
lncRNAs that can divide patients with non-small cell 
lung cancer into the immune-cold group and 
immune-hot group and can predict the prognosis of 
patients and the response to immunotherapy [16]. At 
present, the mechanism of cuproptosis in GC is still 
unclear, and the relationship between cuproptosis- 
related lncRNA expression patterns and the tumor 
microenvironment (TME) of GC has not been 
reported. Therefore, identifying cuproptosis-related 
lncRNAs can help us clearly understand the roles of 
cuproptosis and lncRNAs in the TME and 
immunotherapy. 

In this study, cuproptosis-related lncRNAs were 
mined from TCGA transcript data via Pearson 
correlation analysis. Through univariate analysis and 
LASSO regression analysis, a lncRNA prognostic 
signature related to cuproptosis was constructed and 
verified for the first time. Functional enrichment, 
tumor microenvironment, immune cell infiltration, 

immune checkpoint inhibitors and drug sensitivity 
were analyzed to provide a robust theoretical basis for 
the application of immunotherapy and chemotherapy 
to GC patients. 

Methods 
Data acquisition and processing 

The mRNA expression, lncRNA expression, 
somatic mutation and clinical data of 407 STAD 
patients were obtained from the TCGA database 
(https://portal.gdc.cancer.gov/repository) on 20 
January 2022, which included 375 tumor samples and 
32 normal samples. The expressed data were 
normalized to fragments per kilobase million (FPKM) 
[17] format for subsequent data analysis. The 
inclusion criteria of GC and normal samples were as 
follows: the survival time and clinicopathological 
characteristics of the patients were clear, and the gene 
expression and lncRNA expression of the samples 
were not missing. Exclusion criteria: STAD samples 
with overall survival time less than 30 days, unclear 
survival status and clinical other factors, and lack of 
cuproptosis-related lncRNA expression. Subseq-
uently, the enrolled samples (337) were processed 
using Perl (version Strawberry-Perl-5.30.0) and R 
software (version 4.0.0), and they were randomly 
divided into the training sets and test sets through the 
"caret" package. 

Selection of cuproptosis-related genes and 
lncRNAs 

A total of 16 cuproptosis-related genes were 
obtained by searching the latest published studies 
[7-10]. Pearson correlation analysis was used to 
identify cuproptosis-related lncRNAs. Among them, 
| correlation coefficient| > 0.3 and p value < 0.001 
were considered meaningful. Using the “limma” 
package [18] to screen these lncRNAs (log2-fold 
change (FC) > 1, p < 0.05, and false discovery rate 
(FDR) < 0.05), we finally obtained 634 differentially 
expressed cuproptosis-related lncRNAs for subseq-
uent analysis. The differential expression of 
cuproptosis-related lncRNAs was expressed as a 
heatmap and volcano map using the “limma” and 
“pheatmap” packages. 

Construction and validation of the risk model 
Based on the expression and clinical data in the 

TCGA database, univariate Cox proportional 
regression analysis was performed to screen the 
lncRNAs related to the prognosis of GC from the 
cuproptosis-related lncRNAs. Then, least absolute 
shrinkage selection operator (LASSO) regression 
analysis was performed to construct a predictive 
model for cuproptosis-related lncRNAs. The formula 
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used to calculate each GC patient risk score was as 
follows: Risk Score =Ʃ (coef [lncRNA] × Exp 
[lncRNA]), where coef [lncRNA] represents the 
coefficient of each lncRNA and Exp [lncRNA] 
represents the expression of each lncRNA. According 
to the median risk score, all GC samples were 
separated into high-risk and low-risk subgroups. 
Kaplan–Meier (K-M) curves, receiver operating 
characteristic (ROC) curves, time-dependent ROC 
curves and C-index curves were used to assess the 
prediction performance of the risk model for the OS of 
GC patients in the training, test, or entire sets. 

Prognostic value of the risk model 
We analyzed whether the risk model could 

accurately predict GC patient survival in different 
clinical subgroups stratified according to clinical 
pathological variables (including age, sex, grade, T 
stage, N stage, M stage). Based on the “survival” 
package, univariate Cox (uni-Cox) and multivariate 
Cox (multi-Cox) regression analyses were performed 
to determine whether the risk scores and clinical 
characteristics could be used as independent 
prognostic factors. 

Construction and assessment of the 
nomogram 

A nomogram based on the risk score and 
independent clinical factors was constructed to 
predict the 1-, 3-, and 5-year OS of GC patients using 
the “rms” package. The calibration curve was applied 
to assess the accuracy of the nomogram for predicting 
the 1-, 3-, and 5-year OS of GC patients. Decision 
curve analysis (DCA) was used to appraise the clinical 
effect of the nomogram by calculating the net benefits 
of a series of risk threshold probabilities. 

Principal component analysis and gene set 
enrichment analysis 

Based on the expression patterns of cuproptosis- 
related lncRNAs, the principal component analysis 
(PCA) was applied to reduce the dimensionality, 
identify the risk model, and visualize the 
high-dimensional data of the whole gene expression 
profile, cuproptosis-related genes, cuproptosis-related 
lncRNAs, and risk model. To investigate differences 
in biological functions between the high-risk and 
low-risk subgroups, GO and KEGG analyses were 
performed by gene set enrichment analyses (GSEA) 
software in the entire set. P < 0.01 and FDR < 0.05 
were considered significant functional enrichment. 

Tumor microenvironment and immune cell 
infiltration 

The relationship between the risk score and the 
TME and tumor-infiltrating immune cells (TICs) was 

investigated to predict their correlation. Based on the 
“CIBERSORT” package [19], the components of the 
immune and stromal cells in the TME of each GC 
sample were calculated to verify the differences in 
microenvironment features between the high-risk and 
low-risk subgroups. The single sample Gene Set 
Enrichment Analysis (ssGSEA) scores were used to 
evaluate the enrichment levels of 13 immune-related 
functions between the high-risk and low-risk groups. 
Additionally, the Wilcoxon signed-rank test was used 
to analyze the differences in immune infiltrating cell 
content between different groups. 

Tumor mutational burden and 
immunotherapy 

To show the tumor mutational burden (TMB) of 
GC patients, the “maftools” package was used to 
integrate and process the somatic mutation data 
obtained from the TCGA database. The “limma”, 
“ggpubr”, “survival”, “survminer” and “maftools” 
packages were applied to analyze the difference in 
survival based on TMB between the high- and 
low-risk subgroups. The expression levels of common 
immune checkpoint molecules were compared 
between the high- and low-risk subgroups using the 
“ggpubr” package to appraise the predictive effect of 
the risk model for GC immunotherapy. The Tumor 
Immune Dysfunction and Exclusion (TIDE) score file 
was obtained from the TIDE website (http:// 
tide.dfci.harvard.edu). To further predict the clinical 
response to ICI therapy for GC patients in different 
risk subgroups, TIDE analysis was performed. 

Prediction of potential chemotherapeutic 
drugs for GC treatment 

To predict the potential chemotherapeutic drugs 
that may be effective in GC therapy, we calculated the 
half-maximal inhibitory concentration (IC50) values 
for each GC patient obtained from the Genomics of 
Drug Sensitivity in Cancer (GDSC) website (https:// 
www.cancerrxgene.org/) [20]. The “pRRophetic” 
[21], “limma”, “ggpub”, and “ggplot2” packages were 
used to evaluate their therapy response. 

Consensus clustering and precision medicine 
in clusters 

To explore precision medicine in GC, we used 
the “ConsensusClusterPlus” [22] package to divide 
337 GC samples into different molecular subgroups 
based on the expression of prognostic cuproptosis- 
related lncRNAs. Kaplan–Meier survival, PCA, 
T-distributed stochastic neighbor embedding (t-SNE), 
and Sankey relational diagrams were used to 
investigate the differences among clusters. In 
addition, tumor immune infiltration analysis and ICI 
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analysis among different molecular subsets were 
performed. 

Statistical analysis 
GC patients were divided into different 

subgroups according to the risk score or consistency 
analysis. Data between two groups were examined 
using a two-tailed paired Student’s t-test or ANOVA. 
The classification variables in the training and testing 
tests were contrasted using the chi-square test. The 
correlations between subgroups, clinicopathological 
features, risk scores, immune infiltration levels, and 
immune checkpoint inhibitors were assessed using 
the Pearson chi-square test or Spearman rank 
correlation test. For all statistical analyses, R software 
(version 4.0.0) was utilized. P values <0.05 were 
considered statistically significant differences. 

Results 
Identification of cuproptosis-related lncRNAs 
in GC 

The flow of the study is shown in Figure 1. First, 
we downloaded the transcriptome RNA-sequencing 
and matched clinical data of 407 STAD patients from 

the TCGA database, which contained 32 samples of 
normal gastric tissues and 375 samples of GC tissues. 
Subsequently, we annotated the transcriptome data 
and distinguished mRNAs and lncRNAs according to 
GTF files. Based on the expression of known 
cuproptosis-related genes and the differential 
expression of lncRNAs between normal and tumor 
samples (|Log2FC| > 1 and p < 0.05), we finally 
identified 634 cuproptosis-related lncRNAs by 
Pearson correlation analysis (|R|>0. 3 and P<0. 001) 
(Figure 2A). Among them, 590 lncRNAs were 
significantly upregulated, and 44 lncRNAs were 
significantly downregulated (Figure 2B, C). 

Construction and validation of the 
cuproptosis-related lncRNA risk model 

We performed univariate Cox regression 
analysis to initially screen 22 lncRNAs closely related 
to the prognosis of GC patients from the 634 
cuproptosis-related lncRNAs (Figure 3A). Of these, 16 
and 6 lncRNAs were related to good and poor 
prognosis, respectively. Figure 3B and 3C show the 
differential expression of these 22 lncRNAs in GC and 
normal samples. In addition, the Sankey diagram 
showed the interaction of cuproptosis-related 

 

 
Figure 1. The flow of the study. 
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lncRNAs and cuproptosis-related genes (Figure 3D). 
To avoid overfitting the risk model, we performed 
LASSO Cox regression analysis on these lncRNAs 
with higher prognostic value using the “glmnet” 
package and selected 6 lncRNAs when the first-rank 
value of Log(λ) was the minimum likelihood of 
deviance (Figure 3E, F). A total of 337 GC samples 
with these lncRNA expression data and integral 
survival information were randomly allocated to a 
training set (n=169) or a test set (n=168). Based on the 
expression levels of the 6 lncRNAs and the 
corresponding weighted coefficients, the risk score of 
each patient in the training, test, and entire sets was 

calculated using the risk formula: risk score = 
(-1.249958 × Exp TMEM75) + (-2.274612 × Exp 
LINC00412) + (1.629251 × Exp GAS1RR) + (-0.820546 
× Exp HOXC13-AS) + (2.079533 × Exp AC011997.1) + 
(1.412066 × Exp AC129507.1). The median risk score 
was used as the cutoff value, and GC patients in the 
training, test, and entire sets were divided into 
low-risk and high-risk subgroups. 

The risk score, survival status, and relevant 
lncRNA expression were compared between the high- 
and low-risk subgroups in the training, test, and 
entire sets. The results showed that the number of 
deaths increased significantly with increasing risk 

 

 
Figure 2. Identification of cuproptosis-related lncRNAs in GC. (A) The co-expression network diagram shows the lncRNAs highly related to cuproptosis genes (R>0.3, 
P<0.001). The volcano plot (B) and heatmap (C) show 487 differentially expressed cuproptosis-related lncRNAs. 

 
Figure 3. Extraction of the cuproptosis-related lncRNA prognostic signature in GC. (A) Forest map showing 22 prognostic lncRNAs identified by univariate Cox 
regression. Heatmap (B) and boxplot (C) show the differential expression of 22 lncRNAs in gastric cancer and adjacent normal tissues. *P<0.05, **P<0.01, and ***P<0.001. (D) 
The Sankey relational diagram of cuproptosis genes and cuproptosis-related lncRNAs. (E) LASSO coefficient profiles of cuproptosis-related lncRNAs. (F) Partial likelihood 
deviance of different numbers of variables revealed by the LASSO regression model. 
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score (Figure 4A-C). The results of survival analysis 
also showed that the prognosis of patients in the 
low-risk subgroup was significantly better than that 
in the high-risk subgroup, regardless of the set 
(training, test or entire) (Figure 4D-F). In addition, the 
ROC curve and C-index curves were used to assess 
the prediction performance of the risk model for the 
OS of GC patients in the entire set. The values of AUC 
and consistency index both indicated that compared 
with other clinical factors (including age, gender 
grade and stage), the risk score was the most accurate 
in predicting patient survival (Figure 4G-I). 

Prognostic value of the cuproptosis-related 
lncRNA risk model 

To further investigate the value of the risk model 
in clinical assessment, KM curves were used to study 
the relationship between risk score and survival 
probability in different clinical subgroups. All GC 
patients were stratified based on clinical pathological 
variables, including patients age > 65, patients age 
≤65, male patients, female patients, patients with 

G1-2, patients with G3, patients with T1-2, patients 
with T3-4, patients with N0, patients with N1-3, 
patients with M0, patients with M1, patients with 
stage I-II and patients with stage III-IV. For each 
stratification, the OS of GC patients in the low-risk 
subgroup was significantly higher than that in the 
high-risk subgroup (Figure S1A-N). These results not 
only confirmed the reliability of the risk model but 
also indicated that the risk model was an effective 
predictor of survival in different subgroups of 
patients. In addition, univariate and multivariate Cox 
regression analyses were performed to determine 
whether risk scores could be used as independent 
prognostic factors. The results of independent 
prognostic analysis showed that the risk score was a 
more stable predictor (Figure S1O-P). 

Construction and assessment of the 
nomogram 

Based on independent prognostic factors, we 
constructed a nomogram by weighing M, sex, stage, 
grade, T, age and risk score for predicting 1-, 3- and 

 

 
Figure 4. Construction and validation of the cuproptosis-related lncRNA risk model. (A-C) Distribution of risk score, survival status, and gene expression among 
patients in the training, test, and entire sets. (D-F) The Kaplan-Meier curves of the high- and low-risk subgroups in the training, test, and entire sets were compared. (G) The 
1-, 3-, and 5-year ROC curves of the entire set. The 5-year ROC curves (H) and C-index curves (I) of risk score, age, sex, grade, and stage. 
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5-year OS in GC patients (Figure 5A). The results in 
Figure 5B show that compared with other clinical 
factors (including risk score), the AUC value of the 
nomogram was the highest, reaching 0.731, which 
indicated that the nomogram was the most accurate in 
evaluating the survival probability of GC patients. 
Time-dependent ROC curves were used to evaluate 
the specificity of the nomogram for different survival 
periods. The 1-, 3-, and 5-year AUCs of the nomogram 
were 0.731, 0.732, and 0.762, respectively (Figure 5C). 
The prediction values of the 1-, 3- and 5-year 
nomograms in the calibration curves were close to the 
45-degree line, which indicated that the nomogram 
demonstrates good prediction capability (Figure 5D). 
Additionally, the DCA curve further confirmed that 
the nomogram based on the cuproptosis-related 
lncRNA risk model had great clinical applicability in 
estimating the OS of GC patients (Figure 5E). 

Principal component analysis and gene set 
enrichment analysis 

In four expression profiles (all genes, 
cuproptosis-related genes, cuproptosis-related 
lncRNAs, and the 6 cuproptosis-related lncRNAs for 
constructing the risk model), we performed PCA to 
examine the differences between the high-risk and 
low-risk subgroups (Figure 6A-D). The results 
showed that 6 cuproptosis-related lncRNAs had the 
best discriminating ability and could distinguish 

between the high-risk and low-risk subgroups quite 
well. To investigate differences in biological functions 
between the high-risk and low-risk subgroups, we 
performed GO and KEGG analyses using GSEA 
software in the entire set. GO analysis revealed that 
cuproptosis-related lncRNAs were associated with 
cell-cell interactions and ligand-receptor binding 
(Figure 6E). Figure 6F shows the top 5 pathways that 
were significantly enriched in the high-risk and 
low-risk subgroups. The five significantly enriched 
KEGG pathways in the high-risk subgroup were 
leukocyte transendothelial migration, cell adhesion 
molecules CAMs, cytokine-cytokine receptor 
interaction, MAPK signaling pathway and focal 
adhesion. The five significantly enriched KEGG 
pathways in the low-risk subgroup were base excision 
repair, homologous recombination, mismatch repair, 
nucleotide excision repair and cell cycle (all p < 0.01; 
FDR < 0.05; |NES| > 1.5). 

Characteristics of the TME and immune cell 
infiltration in the high-risk and low-risk 
subgroups 

Since the results of gene enrichment analysis 
showed that the high-risk subgroup was associated 
with multiple immune-related pathways, we further 
investigated the relationship between risk scores and 
immune infiltration. First, we calculated TME scores 
to measure the differences in the extent of infiltrating 

 

 
Figure 5. Construction and assessment of a nomogram for predicting 1-, 3- and 5-year OS in GC patients. (A) Construction of the nomogram comprising 
independent prognostic factors. (B) ROC curve analysis of indicated clinical factors in the entire set. (C) The 1-, 3-, and 5-year ROC curves of the nomogram. (D) The 
calibration curve of the nomogram for the prediction of 1-year, 3-year and 5-year survival OS probability. (E) Decision curve for assessment of the clinical utility of the 
nomogram. The X-axis represents the percentage of threshold probability, and the Y-axis represents the net benefit. 



 Journal of Cancer 2022, Vol. 13 

 
https://www.jcancer.org 

3694 

stromal components and immune cells between the 
high-risk and low-risk subgroups using the 
“ESTIMATE” package. As shown in Figure 7A–C, the 
ImmuneScore, StromalScore, and ESTIMATEScore of 
the high-risk subgroup were significantly higher than 
those of the low-risk subgroup. Then, ssGSEA was 
performed to research the relationship between the 
risk score and TICs and immune-related function 
using the “GSEABase”, “GSVA”, “limma”, 
“reshape2” and “ggpubr” packages. As shown in 
Figure 7D, B cells, CD8+ T cells, DCs, iDCs, 
macrophages, mast cells, neutrophils, NK cells, pDCs, 
T helper cells, Tfh cells, TILs and Tregs were 
significantly upregulated in the high-risk subgroup. 
The results in Figure 7F also showed that in the 
high-risk subgroup, immune-related functions such 
as APC co-inhibition, APC co-stimulation, CCR, check 
point, cytolytic activity, HLA, parainflammation, T 
cell co-inhibition, T cell co-stimulation, Type I IFN 
response and Type II IFN response were more active 
than those in the low-risk subgroup. Finally, a bubble 
chart was created to further verify the association 
between multiple immune cells and the risk score by 
using the results predicted by different softwares. The 
results showed that there was a favorable correlation 
between the degree of immune cell infiltration and the 
risk score (Figure 7F). 

The significance of the risk model in TMB and 
immunotherapy 

The landscape of the somatic mutation in GC 
was explored using the TCGA cohort. We found that 

although the mutation frequency of each gene in the 
high-risk subgroup and the low-risk subgroup was 
different, TTN, TP53 and MUC16 were the top three 
genes with the highest mutation frequency (Figure 
8A, B). The somatic mutation data were used to 
generate TMB scores to further compare TMB 
between high-risk and low-risk subgroups. 

The results of difference analysis showed that 
the TMB of the low-risk subgroup was higher than 
that of the high-risk subgroup (P<0.001) (Figure 8C). 
In addition, the results of the correlation analysis also 
showed that the risk score was negatively correlated 
with TMB (Figure 8D). The GC samples were divided 
into high-mutation and low-mutation subgroups 
according to the TMB score. The high-mutation 
subgroup had a higher OS than the low-mutation 
subgroup, according to the survival analysis (Figure 
8E). According to the risk score and TMB score, GC 
samples were further divided into four subgroups to 
compare the survival status of each subgroup. The 
results showed that the subgroup with low TMB + 
high risk had the worst prognosis (Figure 8E). Given 
the differences in TMB in the high-risk and low-risk 
subgroups, we wanted to further investigate whether 
there were differences in the response to 
immunotherapy between the subgroups. To evaluate 
the response of GC patients to immunotherapy in 
high-risk and low-risk subgroups, the expression 
levels of common immune checkpoint molecules were 
compared. Figure 8G shows that the expression of 
most immune checkpoint molecules was upregulated 
in the high-risk subgroup, indicating that GC patients 

 

 
Figure 6. PCA, GO and KEGG analysis. (A) PCA of all genes. (B) PCA of cuproptosis genes. (C) PCA of cuproptosis-related lncRNAs. (D) PCA of risk lncRNAs. (E) GO 
enrichment analysis of risk-related genes. (F) KEGG enrichment analysis in the high-risk subgroup and the low-risk subgroup. 
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in the high-risk subgroups may benefit more from ICI 
treatment. TIDE analysis was performed to evaluate 
the effect of ICI treatment in patients. In general, the 
lower the TIDE score is, the greater the likelihood of 
immune escape and the less benefit of immuno-
therapy. As shown in Figure 8H, patients in the 
high-risk subgroup had higher TIDE scores than those 
in the low-risk subgroup. 

Prediction of potential chemical drugs using 
the risk model 

The pRRophetic algorithm was performed to 
predict the relationship between sensitivity to 
therapeutic drugs and risk score. The results showed 
that there were significant differences in sensitivity to 
20 conventional chemotherapeutic or targeted drugs 
used to treat GC between the high-risk and low-risk 
subgroups (P<0.0001). Among them, the IC50 of 18 
conventional chemotherapeutic or targeted drugs was 
higher in the low-risk subgroup, while the IC50 of 
only 2 conventional chemotherapeutic or targeted 
drugs was higher in the high-risk subgroup (Figure 
S2). 

Consensus clustering of cuproptosis-related 
lncRNAs and precision medicine in clusters 

Clusters usually differ in prognosis and their 

immune microenvironments vary, which is often 
associated with difference in responses to 
immunotherapy. Based on the similarity in the 
expression levels of the 22 cuproptosis-related 
lncRNAs, we regrouped 337 CC samples into clusters 
by the ConsensusClusterPlus package. By increasing 
the clustering variable (k) from 2 to 9, we found that 
when k = 4, the value of the clustering distribution 
function (CDF) was the smallest, and the consensus 
matrix showed a clear boundary (Figure S3, Figure 
9A). Kaplan–Meier curve analysis indicated that there 
were significant differences in survival among the 
four subgroups, with the lowest OS in Cluster 3 and 
the highest OS in Cluster 4 (Figure 9B). The clinical 
features of the four clusters are shown on the 
heatmap. Compared with the Cluster 4 subgroup, the 
Cluster 3 subgroup appeared to be associated with a 
higher grade and stage (Figure 9C). PCA and tSNE 
were used to distinguish different clusters and 
high-risk and low-risk subgroups. We found that 
compared with 2 risk subgroups, 4 cluster subgroups 
could better distinguish GC samples, which was 
beneficial to customizing treatment to individual GC 
patients in the cluster (Figure 9D-G). The Sankey 
diagram clearly shows the corresponding relationship 
between each cluster and risk subgroup. As shown in 
Figure 9H, Cluster 3 corresponded to high-risk 

 

 
Figure 7. The landscape of tumor immune infiltration in the high-risk and low-risk subgroups. Comparison of ImmuneScore (A), StromalScore (B), and 
ESTIMATEScore (C) in the high-risk and low-risk subgroups. Differences in infiltrating immune cell types (D) and their immune functions (E) between the high-risk and low-risk 
subgroups based on the ssGSEA scores. (F) Correlation analysis between the risk signature and infiltrating immune cells. 
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subgroups, while Cluster 4 corresponded to low-risk 
subgroups, which explained why patients in Cluster 3 
had the lowest survival and was tended to be in later 
stages. The difference in tumor immune infiltration 
among different cluster subgroups was further 
explored. The results showed that there were signifi-
cant differences in the ImmuneScore, StromalScore, 
and ESTIMATEScore among each cluster subgroup, 
with the highest score in the Cluster 3 subgroup and 
the lowest in the Cluster 4 subgroup (P<0.001). A 
heatmap was created to explore the association 
between tumor-infiltrating immune cells and different 
cluster subgroups by using the results predicted by 
different softwares. The results showed that multiple 
software predictions were comparable, with multiple 
immune cells most active in the Cluster 3 subgroup 
(Figure 10D). These findings suggested that the 
Cluster 3 subgroup had a higher level of immune 
infiltration than the other cluster subgroups. In 
addition, we found that most of the immune 
checkpoint molecules had significant differences in 
expression levels among cluster subgroups, which 
may indicate difference in responses to 

immunotherapy (Figure 10E). Based on these cluster 
subgroups, we might further study the effects of 
immunotherapy effects on different patients and 
improve patient-optimized treatment stragety in GC 
patients. 

Discussion 
In recent years, radiotherapy, chemotherapy, 

and targeted therapy have made limited progress in 
the clinic, and the median overall survival for 
advanced-stage GC is only approximately 8 months 
[23]. As one of the breakthroughs in tumor therapy, 
immunotherapy has become an effective treatment 
after surgery, radiotherapy, chemotherapy and 
targeted therapy. Immunotherapy can be effective 
even when other treatment has failed or provided 
limited benefit [24]. Reprogramming the TME to an 
immunostimulatory state, redirecting the cytotoxic 
effects of cytotoxic lymphocytes toward tumor cells 
and inducing immunogenic death of tumor cells can 
transform immune “cold tumors” into “hot tumors”, 
which is an effective strategy for the treatment of GC 
[25, 26]. However, due to the immunosuppressive 

 

 
Figure 8. The significance of the risk model in TMB and immunotherapy. (A, B) Waterfall plots display mutation information of the genes with high mutation 
frequencies in the high-risk subgroup and the low-risk subgroup. (C) TMB difference in the high-risk and low-risk subgroups. (D) Correlation analysis between TMB and risk 
score. (E) Comparison of Kaplan-Meier curves of the high-TMB and low-TMB subgroups. (F) Kaplan-Meier curve analysis of OS is shown for patients classified according to the 
TMB and risk model. (G) The difference in the expression of 17 immune checkpoint molecules in the high-risk subgroup and the low-risk subgroup. (H) Differences in 
immunotherapy efficacy between the high-risk and low-risk subgroups. 
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state of the TME, some patients have a poor response 
to immunotherapy [5]. Therefore, the correct 
identification and distinction between immune cold 
tumors and hot tumors is helpful to strengthen the 
immunotherapy of tumors. Noninfiltrated tumors 
with a low TME immune score are usually regarded 
as cold tumors, while highly infiltrated tumors with a 
high TME score are regarded as hot tumors. For 
immune hot tumors, T cell-targeted immunotherapy 
or other immunotherapeutic drugs can be used to 
treat patients. However, it is difficult for immune cold 
tumors because they have low levels of pre-existing 
infiltrating T cells [27]. The effective method is to 
transform the immune cold tumor into a hot tumor 
first, rather than giving other treatments directly [28]. 
Recent studies have shown that cuproptosis may be 
related to the progression of a variety of malignant 
tumors and the tumor immune microenvironment, 
which will affect the prognosis and immunotherapy 
of patients [29-32]. However, the relationship between 
cuproptosis-related lncRNAs expression and tumor 
microenvironment of GC has not been reported. 
Therefore, the thorough elucidation of the overall 

characteristics of the TME regulated by 
cuproptosis-related lncRNAs is crucial to understand 
the antitumor immune milieu of the TME and guide 
the precision treatment of tumors. 

In this study, 6 cuproptosis-related lncRNAs 
(TMEM75, LINC00412, GAS1RR, HOXC13-AS, 
AC011997.1, and AC129507.1) were used to construct 
the risk model by LASSO regression. To demonstrate 
the practical value of the risk model in clinical 
settings, ROC and C-index curves were used to assess 
the predictive performance for the OS of GC patients 
in the entire set. The values of AUC and consistency 
index indicated that our constructed risk model is 
more accurate and reliable in predicting GC patient 
survival than other published risk models [33]. 
Stratified survival analysis, independent prognostic 
analysis and PCA implied that this model offers high 
sensitivity for survival prediction. In addition, the 
ROC, calibration and DCA curves confirmed that the 
nomogram based on the cuproptosis-related lncRNA 
risk model had great clinical applicability, which can 
guide clinicians to judge the prognosis of patients 
with GC. 

 

 
Figure 9. Consensus clustering analysis of cuproptosis-related lncRNAs. (A) Consensus clustering matrix for k=4. (B) Kaplan–Meier curves of OS for patients with 
gastric cancer in the four subgroups (P<0.05). (C) Heatmap and clinicopathologic features of the four clusters. (D, E) The PCA of four clusters and two risk subgroups. (F, G) 
The t-SNE of four clusters and two risk subgroups. (H) The Sankey relational diagram of four clusters and two risk subgroups. 
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Two distinct subgroups were identified in the 
risk model, which had significant difference in 
biological functions of the associated genes, TME 
scores, immune cell infiltration characteristics and 
immunotherapy responses. We found that the 
high-risk subgroup was associated with immune 
activation and tumor-related pathways, while the 
low-risk subgroup was associated with gene 
self-repair. Compared with the low-risk subgroup, the 
high-risk subgroup had higher TME scores. At the 
same time, the expression of CD4+ T cells, CD8+ T 
cells, M2 macrophages, mast cells, neutrophils, NK 
cells, T helper cells, Tregs and dendritic cells in the 
high-risk subgroup was significantly upregulated, 
indicating that the high-risk subgroup could be 
identified as an immune hot tumor. These abnormal 
infiltrating immune cells in the high-risk subgroup 
may be correlated with GC development. Through the 
detection of GC clinical samples, Jin et al. found that 
high infiltration of CD8 T cells in the tumor predicted 
poor overall survival and poor response to 
chemotherapy [34]. Studies have shown that M2 

macrophages can lead to acceleration of GC cell 
proliferation and tumor growth in xenograft models 
[35]. It has been reported that the disease-free survival 
time and total survival time of gastric cancer patients 
with high immune infiltration are significantly shorter 
than those with low immune infiltration [36]. Further 
analysis showed that the molecular activity of 
common immune checkpoint molecules was higher in 
the high-risk subgroups and that the response of 
patients to ICI treatment was better, which was 
consistent with the characteristics of immune hot 
tumors. In addition, the sensitivity of 20 common 
conventional chemotherapeutic or targeted drugs in 
the high-risk and low-risk subgroups was compared 
to guide clinicians in selecting appropriate anticancer 
drugs for GC patients. 

With in-depth research on tumor immunology 
and precision medicine, precision immunotherapy 
has become a new direction of tumor therapy [37, 38]. 
The key to this precise immunotherapy is to identify 
the right patients and provide specific treatments, 
including ICIs, therapeutic antibodies, and cell 

 

 
Figure 10. Difference in immune infiltration levels in clusters and prediction of responses to immunotherapy. Comparison of ImmuneScore (A), StromalScore 
(B), and ESTIMATEScore (C) in respective clusters. (D) The heatmap of immune cells in respective clusters. (E) The difference in the expression of 32 checkpoint molecules 
in respective clusters. 
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therapy. The classification of immune cold tumors 
and hot tumors is a feasible way to identify patients 
who might benefit from immunotherapy [26, 27]. It 
has been reported that clusters usually differ in 
prognosis and their immune microenvironments 
vary, which is often associated with difference in 
responses to immunotherapy [39]. To accurately 
identify immune cold tumors and hot tumors, all 
samples of GC were divided into 4 distinct clusters by 
consensus clustering. The Sankey diagram showed 
that Cluster 3 belongs to the high-risk subgroup 
(immune-inflamed phenotype), and Cluster 4 belongs 
to the low-risk subgroup (immune-desert phenotype). 
The immune-inflamed phenotype, also known as an 
immune hot tumor, is characterized by abundant 
immune cell infiltration and higher TME scores, 
which was consistent with our results [40]. Therefore, 
patients with the immune-inflamed phenotype 
(Cluster 3) might benefit from immunotherapy or 
combined immunotherapy. The immune-desert 
phenotype, also known as a cold tumor, is character-
ized by immunosuppression, lack of activated T cells 
and other related immune cells, and rapid tumor 
growth [40, 41]. Rapid tumor growth can affect the 
growth and infiltration of immune cells in the TME, 
which is not conducive to T cell proliferation and 
activation, resulting in poor prognosis and poor 
response to immunotherapy [40, 41]. The results of the 
TME score, characteristics of immune cell infiltration 
and response to ICI treatment confirmed the 
reliability of our immunophenotypic classification of 
the two distinct clusters, which further strengthened 
our logic behind precision treatment of gastric cancer 
according to different types of patients. 

The current study has several limitations, 
although multiple methods were used to evaluate the 
model. First, although we selected a catalog of 16 
known cuproptosis-related genes, new cuproptosis- 
related genes need to be enrolled to optimize the 
accuracy of the risk model. Our study, as a 
retrospective study, may be susceptible to the 
inherent biases of this research paradigm [42]. 
Therefore, we need to collect more clinical data or 
conduct research on prospective cohort of GC patients 
undergoing immunotherapy to validate our findings. 
Finally, our data are from TCGA, and all analyses are 
based on this, which may also lead to bias. If we 
perform a comprehensive analysis of data from other 
sources and reproduce our findings, our results will 
be more reliable. 

Conclusion 
In this study, we systematically evaluated the 

value of cuproptosis-related lncRNAs in predicting 
survival, estimating the role of the tumor 

microenvironment and immune cell infiltration, 
deducing potential compounds for the treatment of 
CC and precision immunotherapy in the clusters. The 
signature of six lncRNA associated with cuproptosis 
could predict the survival of GC patients, and the 
identification of immune cold tumors and hot tumors 
will contribute to the individualized and precise 
treatment of cancer patients in the future. 
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