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Abstract

Background: The diffuse large B-cell lymphoma (DLBCL) is a heterogeneous lymphoma with a dismal
outcome, due to approximately 40% patients will be relapsed or refractory to the standard therapy of
rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP). Therefore, we
need urgently to explore the approach to classify the risk of DLBCL patients accurately and accurately
targeting therapy. The ribosome is a vital cellular organelle that is mainly responsible for translation
mRNA into protein, moreover, more and more reports revealed that ribosome was associated with
cellular proliferation and tumorigenesis. Therefore, our study aimed to construct a prognostic model of
DLBCL patients using ribosome-related genes (RibGs).

Method: We screened differentially expressed RibGs between healthy donors’ B cells and DLBCL
patients’ malignant B cells in GSE56315 dataset. Next, we performed analyses of univariate Cox
regression, the least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox
regression analyses to establish the prognostic model consisting of 15 RibGs in GSE10846 training set.
Then, we validated the model by a range of analyses including Cox regression, Kaplan-Meier survival,
ROC curve, and nomogram in training and validation cohorts.

Results: The RibGs model showed a reliably predictive capability. We found the upregulated pathways in
high-risk group most associated with innate immune reaction such as interferon response, complement
and inflammatory responses. In addition, a nomogram including age, gender, IPl score and risk score was
constructed to help explain the prognostic model. We also discovered the high-risk patients were more
sensitive to some certain drugs. Finally, knocking out the NLEI could inhibit the proliferation of DLBCL
cell lines.

Conclusion: As far as we know, it is the first time to predict the prognosis of DLBCL using the RibGs

and give a new sight for DLBCL treatment. Importantly, the RibGs model could be acted as a
supplementary to the IPl in classifying the risk of DLBCL patients.

Key words: DLBCL, ribosome-related genes, prognostic model, targeting therapy, NLE1

Introduction

The diffuse large B-cell lymphoma (DLBCL) furthermore the incidence increased markedly in
belonging to non-Hodgkin lymphoma (NHL), is the  recent years and ranked the top ten common
most common type lymphoma in adult[l], cancers[2, 3]. The combination of rituximab,
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cyclophosphamide, doxorubicin, vincristine, and
prednisone (R-CHOP), is the first line treatment for
DLBCL patient for several decades[4]. Although
50-70% patients get completely remission (CR)[5],
15-25% patients are primary refracted to standard
treatment and 20-30% of patients will relapse after an
initial complete response[6].

The prognosis of DLBCL is heterogeneous,
which is influenced by age, disease stage and
gene-expressed profiling. Usually, the International
Prognostic Index (IPI) risk score, including stage, age,
lactic dehydrogenase (LDH), performance status, and
extra-nodal sites involved, is the first choice to assess
the risk of patient with DLBCL. Recently, the revised
IPI (R-IPI)[7] and National Comprehensive Cancer
Network -IPI (NCCN-IPI)[8] were established to
improve the discrimination of patients treated with
R-CHOP. However, the IPI risk score, R-IPI and
NCCN-IPI were based on the 5 clinical variables, they
are limited in accurately prediction individualized
therapy of DLBCL patients.

The gene-expression profiling helps us to predict
the prognosis of DLBCL patients. For instance, the
activated B-cell-like (ABC) and germinal-center
B-cell-like (GCB) subgroups of DLBCL are distinct by
expression of CD10, BCL6 and IRF4/MUM1[9-11],
and the patients of GCB subgroup have a higher CR
ratio than non-GCB[12]. In addition, the patients with
rearrangements of MYC and BCL2 and/or BCL6 gene,
or double-protein expression are associated with a
more aggressive clinical course and poor progno-
sis[13]. Therefore, making the gene-expression into
consideration will help us classify the risk of DLBCL
accurately and contribute to target therapy.

The ribosome is the most ancient primordial and
crucial molecular machine in mammalian cell, which
is responsible for translating mRNA into protein[14].
The assembly and function accurately are very
important in ribosomal biogenesis, because a range of
diseases are associated with defects in ribosome
proteins (RPs), rRNA processing or ribosome
assembly factors[15]. Previous reports showed that
patients with ribosomal mutations have a higher risk
to develop cancer in their life, moreover, in particular
cancer the risk even up to 200-fold higher[16-18], and
a variety of tumors were discovered somatic
mutations in RPs. Accordingly, the tumor cells have
mutations in ribosome-associated genes frequently,
for example, heterozygous loss of RPL5 occurs in 30%
of multiple myeloma, melanoma, glioblastoma and
breast cancers[19-22], and 2% of T-ALL patients[23,
24]. Furthermore, the oncogenes and loss of suppres-
sor genes will enhance the activities of ribosome
biogenesis[25, 26]. On the other hand, the ribosome-
related genes could be targeted to anti-tumor, as the

mammalian target of rapamycin complex1 (mTORC1)
regulates the ribosome biogenesis showed a notice-
able inhibition of growth in tumor cells[27]. In
summary, more and more studies showed that the
ribosome plays a key role in tumorigenesis and
association with prognosis[28]. Therefore, we chose
the RibGs to construct the prognostic model of the
DLBCL.

In our study, we constructed a model that
calculated the risk score using the mRNA expression
of RibGs to predict the prognosis of DLBCL patients
pioneeringly, which showed a better predictive
capability than present approach in DLBCL
prognosis.

Materials and methods

Data Acquisition

The 2591 ribosome related genes (Supple-
mentary Table S1) were collected from the GSEA
database (https:/ /www.gsea-msigdb.org/gsea/
index.jsp). The GSE56315 contains the
gene-expression data of B cells of normal and DLBCL
patients. The clinical and genes expressed information
came from these datasets including GSE10846,
GSE11318 and GSE87371. The GSE datasets were
retrieved from Gene Expression Omnibus (GEO)
database (https://www .ncbi.nlm.nih.gov/geo/). The
detail information is presented in Table 1.

Table 1. Clinical information of the datasets using in this study.

Cohort GSE56315 GSE10846 GSE11318 GSE87371 TCGA
Number of 33/55 0/414 0/200 0/221 0/48
patients

Normal/

DLBCL

Age (y) NA 62.5(14-92) 64 (14-88) 60 (19-87) NA
Gender NA 172/ 224/ 18 110/ 90 116/ 105 NA
Male/

Female/

NA

GCB/ NA 163/ 232/ 19 70/100/ 30 84/117/20 NA
ABC/ NA

Stage NA 66/ 122/97/ 25/50/32/ 29/42/35/ NA
1/2/3/4/ 121/ 8 55/ 38 115

NA

LDH NA 173/ 178/ 63 68/ 76/ 56 NA NA
<1/>1/

NA

ECOG NA 85/ 211/ 60/ 34/88/28/ NA NA
0/1/2/3/ 28/5/ 25 10/ 1/ 39

4/ NA

IPI NA 45/81/90/ 15/40/46/ 31/43/45/ NA
0/1/2/3/ 56/28/5/ 29/12/58  53/35/14

4/5/ NA 109

Status NA 249/165 88/112 168/53 39/9
Alive/

Death

Differentially Expressed Ribosome Related
Genes

There were 2357 ribosome related genes
commonly in GSEA and GSE dataset (Supplementary
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Table S1). Differentially expressed genes between
normal B cells and DLBCL B cells were analyzed by
the limma package in R software with the Wilcoxon
test according to Log2Fc < -1 or > 1 and p < 0.005
(Supplementary Table S1). The upregulated genes
were functional enriched by clusterProfiler package.
The top 15 pathways (supplementary Table S1) from
Gene ontology analysis were showed by bar plots.

Construction of the Prognostic model

Firstly, the univariate Cox analysis was applied
to screen genes related to overall survival (OS) in
GSE10846 training set. Secondly, analysis of the least
absolute shrinkage and selection operator (LASSO)
Cox regression was used to get the more accurate
genes[27]. Lastly, the multivariable cox analysis was
performed to identify the coefficient and p-value of
ribosome-related gene. The prognostic risk score was
calculated for each patient as follow: risk score = X
expression level of gene x coefficient. The low-risk
and high-risk were divided by the best cut-off value
(Supplementary Table S1).

To verify the Ribosome-based prognostic model,
the univariate and multivariate Cox analysis were
performed in GSE10846 training set. The Kaplan-
Meier (K-M) survival curves was used to test this
model in different groups of GSE10846 and validated
sets including GSE11318, GSE87371 and TCGA-
DLBCL cohorts. The sensitivity and specificity of the
model were examined by ROC curve analysis.

Establishment of the Nomogram

The prognostic nomogram was constructed to
predict the prognostic risk of DLBCL patients in 1, 3
and 5 years by the rms R package. The independent
parameters included age, gender, IPI score and risk
score. The Calibration plots was applied to show the
consistency between the predicted and factual OSin 1,
3 and 5 years.

Predicting Drug Response

The responses of DLBCL patients to a range of
chemotherapeutic and targeted drugs, were analyzed
by the pRRophetic R package. Then the boxplots and
Wilcoxon rank test were used to exhibit the difference
between low and high-risk score groups in GSE10846
cohort (Supplementary Table S1).

GSEA

Gene set enrichment analysis (GSEA) was
performed to find the related pathways between low
and high-risk score groups in GSE10846 cohort.
Pathways with a p-value <0.05 and false discovery
rate (FDR) <0.25 were thought significantly enriched
(Supplementary Table S1).

Knocking out NLEI

The cell lines of DLBCL including OCI-LY7,
TMDS8 and 293T were purchased from the American
Type Culture Collection (ATCC). We packaged
lenti-virus by 293T cell. The sgRNA targeting NLE1 or
negative control as follow: NLE1-sgl: TGAGCCGA
TACAACCTCGTG; NLEl-sg3: ACTGACTATGC
CCTGCGCAC; Nontarget-sg: ACGGAGGCTAAGC
GTCGCAA. After knocking out the NLE1, we tested
the proliferation by the EdU staining.

Statistical Analysis

All statistical analyses were performed by R
statistical software version 4.0.4 and GraphPad Prism
8.0. The different Ribosome-related genes were
screened by Wilcoxon test and Fisher’s exact test. The
boxplot in figure 3D were analyzed by unpaired test.
The boxplots of in figure 4G-I, figure S1A-C, figure
S3D-F and figure 11A-L were analyzed by the
Wilcoxon test. Stratification variables in Table 3 were
compared by chi-square and Fisher’s exact test. The
K-M curves used the log-rank test to compare low and
high risks groups. The bar plots of the percentage of
proliferation in figure 13C were compared by
unpaired t-test.

Results

We screened the RibGs between 33 health donors
and 55 DLBCL patients. Our training datasets
included 414 DLBCL patients and the validation sets
included 421 DLBCL patients. The detail information
of these donors and patients were summarized in
Table 1. The analyzed procedures were exhibited in
Figure 1.

Differentially Expressed Ribosome-related
genes (RibGs) and Pathways

To collect the RibGs, we downloaded 2592 RibGs
from the GSEA database, and we selected the 2358
common genes among the GSEA and GSE datasets.
Then, we compared the differentially expressed RibGs
between the normal B cells and DLBCL B cells by
limma package in GSE56315 set. There were 984
differentially expressed genes under the condition of
Log2FC < -1 or > 1 and p < 0.005 (Figure 2A). The
number of upregulated was 724 and downregulated
was 260 in the DLBCL patients (Figure 2B). We
analyzed the pathways enriched by the upregulated
genes, and the bar plots showed the top 15 pathways
associated with ribosomal pathways such as ribosome
biogenesis, translational elongation and mitochon-
drial translation (Figure 2C). These data suggested
that the RibGs could affect the cellular functions by
mRNA translation and mitochondrial activities.
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Construction of the Prognostic RibGs
signature

To seek the prognostic genes, we performed
univariate Cox regression analysis using the 984 genes
and identified 304 genes significantly associated with
OS. These genes were conducted LASSO Cox
regression analysis, which selected 41 genes related
with OS (Figure 3A-B). Then we applied multi-
variable cox analysis to find the genes of prognostic
signature, which included 15 genes significantly
associated with OS (Figure 3C). The prognostic risk
score for each patient was calculated, basing on the
expression levels of the 15 genes and the coefficients

from multivariate Cox regression analyses, as follow:
APOD x 0.186 + CAPG x (-0.422) + CD70 x 0.243 +
GCLM x 0.754 + GOLGA4 x 0.495 + IKZF5 x (-0.579) +
LDHA x (-2.0) + MT1G x 0.195 + NEURL2 x 0.202 +
NLE1 x 0.611 + PNPT1 x 0.636 + PRMT1 x (-0.819) +
TAF1 x (-0.416) +TAF15 x 0.381 +TGFB1 x 0.431.
Moreover, the expressions of these genes were
differentially expressed between normal donors and
DLBCL patients significantly (Figure 3D), and their
functions were vital to cellular activities such as
reaction oxygen species, lymphoid development,
ribosomal assembly and RNA polymerase II (Table
2).

GSE56315 cohort 55 DLBLC and 33 normal tissue, 2358 ribosome associated genes |

l Differential expression analysis

984 differently expressed genes (Jlog FC|>1, p-value <0.005)

l GSE10846 Univariate Cox regression analysis

304 genes significantly correlated with overall survival (p-value <0.01)

l LASSO Cox regression analysis

41 genes significantly correlated with overall survival

Clinic parameters

l Multivariate Cox regression analysis

15 genes prognostic model

l Univariate and Multivariate Cox regression analysis

Independent prognostic factor

l Kaplan-Meier and ROC analysis

Validation of independent GEO cohorts: GSE11318, GSE87371

!

Construction of the nomogram

)

Analysis of GO and GSEA

l

Validation of experiment

Figure 1. Flowchart of the study.
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Figure 2. Screening of the differentially expressed RibGs. (A and B) The heatmap (A) and the Volcano plots (B) of the differentially expressed ribosome-related genes. (C) Bar
plots of the enriched pathways by GO. RibGs: Ribosome related genes, GO: Gene Ontology.
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Figure 3. Establishment of the prognostic RibGs signature. (A) LASSO coefficient profile plots of the 304 prognosis-related genes. (B) Penalty plot for the LASSO model for the
304 prognostic genes with error bar denoting the standard errors. (C) Forest plots of the multivariate Cox regression analyses of the 15 gene significantly associated OS. (D)
Expression level of the prognostic 15 genes between normal B cells and DLBCL B cells. P < 0.05: *, P < 0.01: *¥, P < 0.001: *¥, P < 0.000] *¥¥*,

To validate the risk score, we conducted the
univariate and multivariate Cox regression analyses
to assess the predictive function of the RibGs model in
training dataset and validation datasets. The analyses
including gender, IPI score, age and risk score of the
RibGs model, showed the risk score and IPI score
correlated with OS significantly in univariate (Figure
4A-C) and multivariate Cox regression (Figure 4D-F).
The IPI score is the most often used to stratify DLBCL
patients into low risk (0-1), low intermediate risk (2),
high intermediate risk (3) and high risk (4-5). The risk
score of prognostic RibGs signature was higher in

subgroup of high IPI score (3-5) than low IPI score
(0-2) subgroup in the training set GSE10846 and
validation sets (Figure 4G-I). Patients in GCB
subgroup had a better prognosis than non-GCB
subgroup, consistently, we found that the GCB
patients had a lower risk score than non-GCB (Figure
S1A-C). In summary, these data indicated that the risk
score of the RibGs signature had a negative
correlation with the favorable prognosis.

Evaluation of the Prognostic RibGs Signature

The patients were divided into low-risk group
and high-risk group by the median values of their risk
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scores. The correlation between the risk scores and
survival statuses were exhibited by scatterplots in
training set and validation sets (Figure 5A-C). The
low-risk patients defined by the best cutoff, had a
significantly higher survival probability whatever in
training dataset or in validation datasets (Figure 5D-F
and Figure S2A). The specificity and sensitivity of the

signature were pretty good, which were reflected by
the area under the receiver operating characteristic
(ROC) curve (AUC) for predicting 1, 3, and 5 years in
training dataset and validation datasets (Figure 5H-I
and Figure S2B). These data suggested that the RibGs
signature was reliable to predict the prognosis of
DLBCL patients.

Table 2. Functions of the 15 RibGs in the prognosis model

Risk coefficient

Gene Function summary
APOD response to reactive oxygen species 0.185732
CAPG encodes a member of the gelsolin/villin family of actin-regulatory proteins -0.421626
CD70 This cytokine is a ligand for TNFRSF27/CD27 0.243280
GCLM limiting enzyme of glutathione synthesis 0.754312
GOLGA4 participates in glycosylation and transport of proteins and lipids in the secretory pathway 0.495399
IKZF5 implicated in the control of lymphoid development -0.579333
LDHA catalyzes the conversion of L-lactate and NAD to pyruvate and NADH in the final step of anaerobic glycolysis -2.000347
MT1G Enables zinc ion binding activity 0.194525
NEURL2 the adaptor component of the E3 ubiquitin ligase complex in striated muscle, and it regulates the ubiquitin-mediated 0.202417
degradation of beta-catenin during myogenesis
NLE1 involved in Notch signaling pathway and ribosomal large subunit assembly 0.611415
PNPT1 implicated in RNA processing and degradation 0.635507
PRMT1 encodes a member of the protein arginine N-methyltransferase (PRMT) family -0.818692
TAF1 Initiation of transcription by RNA polymerase II -0.463185
TAF15 plays a role in RNA polymerase II gene transcription as a component of a distinct subset of multi-subunit transcription 0.381328
initiation factor TFIID complexes
TGFB1 encodes a secreted ligand of the TGF-beta (transforming growth factor-beta) superfamily of proteins 0.431421
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Figure 4. Validation of the prognosis model. (A-C) Forest plots of the univariate Cox regression analyses of clinical parameters and risk score in training dataset and validation
dataset. (D-F) Forest plots of the multivariate Cox regression analyses of clinical parameters and risk score in training dataset and validation datasets. (G-I) Box plots of risk score
in IPl-Low and IPI-High groups in training dataset and validation dataset. Training dataset: GSE10846; Validation datasets: GSEI 1318 and GSE87371; IPl-Low: 0-2, IPI-High: 3-5.

https://lwww.jcancer.org



Journal of Cancer 2023, Vol. 14 409
. Risk group .
A GSE10846 Risk group B GSE11318 ®Low C GSEST3TS Risk group
5.0 OLow ) 3 . OLow .
g . i @ High . 2 g '
H High 2 5 [ : @High
a 3 3 4 :
x @ 0 »n .
] = x 0
(4 2 2 2 .
. [ x -1 : Status
: Status . i . : @ Alive
@ . 5 @ Alive = .
2 - . : @ Alive o o . . : . ® Dead
2 : . ©® Dead Pead g . o KA o) * o
=2 o o
s 15 . < " 3 o B ST i Lo
£ B .. ., @ Y 1} V .,_;“-.. ‘. K
= 10 ,-' . E l-v ™ oo
o K . . £ o .
a&?@fwxﬁﬁ o) R
2 o 0d? ¢ MN'..AMA. g o B o% el «®e \- .0l
@ 100 200 150 200 g 0 50 100 150 200
Rank Rank
D GSE10846 E GSE11318 F GSE87378 = High
1.00 == ngh 1.00 k- High Low
L 1.00 P =0.00018
2 075 go7s o £
3 P <0.0001 2 P < 0.0001 3 075
2 050 S 050 3
= = S 050
£ 025 2oz E
2 g £ 025
7] 0 @
0.00 0.00
0 5 10 15 20 0.00
Number al risk Years Number at risk Years 0 2 4 6
High | 124 8 2 0 0 High| 74 12 4 0 Number at risk Years
Low {290 79 18 3 1 Low (126 57 7 1 High | 158 102 35 1
) 5 10 15 20 [ 5 10 15 20 Low |63 57 27 2
Years Years 0 2 a4 6
G H I Years

GSE11318

GSES87378

o o -
o 3 o
1 I 1

Wt

o -
o o
| 1

Sensitivity

Sensitivity

2 06 Lﬁ“

Sensitivity

0.4+ 0.4 , I
HL‘\ ,F 5 y 0.4 I_r
¥ ]
o2 | 7 0z J 4
—— AUC at 1 years: 0.779 A —— AUC at 1 years: 0.687] 0.2 — AUC at 1 years: 0.676
——AUC at 3 years: 0.800 — AUC at 3 years: 0.745 o — AUC at 3 years: 0.696
0.0 AUC at 5 years: 0.799 0.0 AUC ats years 0. 747 - f "
: ; q . T ; 1 1 T 0.0 ; . . AUIC at5 Velars. 0.638]
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.8 1 0 0 0.2 0.4 0.6 0.8 1.0
1 - Specificity 1- Spemfcnly 1 - Specificity

Figure 5. Prediction of the prognostic gene signature. (A-C) The distributions of the risk score, survival time, and status of patients in training cohorts and validation cohorts.
(D-F) Kaplan-Meier curves of patients in the high-risk score group and low-risk score group for OS in the training set and validation sets. (G-I) The time-dependent ROC curves
of the prognostic gene signature in training dataset and validation datasets. Training dataset: GSE10846; Validation datasets: GSE11318 and GSE87371.

The Predictive capability of RibGs Signature in
different Subgroups of DLBCL

The age is a key influence on prognosis, for
instance, patients under 60-year-old always had more
favorable prognoses than older patients. Therefore,
we validated the RibGs prognostic model in patients
under 60-year-old and older than 60-year-old patients.
The patients of high-risk of the RibGs model showed
more shorter OS time than low-risk patient in both
age subgroups (Figure 6A-B). IPI score is extremely
important to classify DLBCL patients into different
risk groups, thus, we examined the prognostic model
in low score of IPI (0-2) and high score of IPI (3-5)
subgroups dividedly. The high-risk patients had a
shorter survival time in low IPI score subgroup as
well as in high IPI score subgroup (Figure 6C-D).
Similarly, not only could the prognostic model predict
the prognoses in GCB and non-GCB subgroups
significantly (Figure 6E-F), but also forecast the
prognoses of different treatments of CHOP and
R-CHOP subgroups (Figure 6G-H) in the training set.
Above data illustrated that our prognostic model
could distinguish the heterogeneity of the DLBCL
patients in different subgroups.

Comparing the RibGs model with clinical
parameters

We descripted the relationship of risk score of
the RibGs model with the clinical factors including
age, gender, GCB/ABC, stage, LDH, ECOG, IPI and
status in Table 3. The risk score was significantly
correlated with GCB/ABC, stage, ECOG, IPI and
stage in training dataset and validation datasets.
Furthermore, as we all known, the DLBCL patient of
ABC classification had a worse prognosis than GCB.
we found that high-risk subgroup had more
proportion of ABC patients than low-risk subgroup in
training dataset and validation datasets (Figure
7A-C). Consistently, the higher score of IPI (3 and 4-5)
subgroup had a larger proportion of patients with
high-risk than low-risk in training dataset and
validation datasets (Figure 7D-F). In line with the
above results, the stage of the DLBCL patients,
showed more advanced in high-risk subgroup than
low-risk subgroup (Figure 7G-I). Next, we compared
the consistency between the risk score and the R-IPI,
which showed that the high-risk group patients had a
higher proportion of R-IPI with score of 3-5 (Figure
S3A-S3C). Similarly, the higher score of R-IPI, the
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higher risk score was (Figure S3D-S3F) in the training
dataset and validation datasets. Lastly, we analyzed
the correlation between the risk score and different
age or stage associated with the NCCN-IPIL. Consis-
tently, the high-risk patients had larger percentage of
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older years (Figure S4A-S4C) or advanced patients
(Figure S4D-S4F). In conclusion, these results
exhibited that our RibGs model had a marked
consistency with the present clinical evaluate factors.
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Figure 6. The K-M curves in different subgroups. (A-B) The K-M curves in ages of patients younger and older than 60-year-old. (C-D) The K-M curves of prognosis model in
low-IPI score group and high-IPl score group in training dataset GSE10846. (E-F) The K-M curves of low-risk score and high-risk score in GCB and non-GCB patients in GSE10846
dataset. (G-H) The K-M curves of low-risk score and high-risk score in CHOP and R-CHOP treated patients.
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Figure 7. The distribution of clinical parameters between low-risk and high-risk subgroups. (A-C) The stacked bar plots of the GCB and ABC classified patients in low-risk and
high-risk subgroups in training dataset and validation datasets. (D-E) The stacked bar plots of IPl score in low- and high-risk subgroups in training dataset and validation datasets.
(G-l) The proportion of the stage of DLBCL in low- and high-risk subgroups in training dataset and validation datasets. Training dataset: GSE10846, validation datasets: GSE11318

and GSE87371.
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Table 3. The association among the risk score of the RibGs model and Clinical parameters.
Cohort GSE10846 GSE11318 GSE87371
Risk score Low High P-value Low High P-value Low High P-value
Age (y) 104/ 111 35/ 56 013 41/ 50 18/ 33 0.29 31/ 32 78/ 80 0.9
<60/ >60
Gender 128/ 86 43/ 48 0.045 55/ 36 21/ 30 0.035 31/ 32 85/ 73 0.55
Male/ Female
GCB/ ABC/ NA 111/ 73/ 30 22/ 52/ 17 <0.0001 46/ 33/ 13 14/ 26/ 11 0.020 37/ 15/ 12 48/ 68/ 42 0.0004
Stage 42/ 67/ 47/ 58 8/27/21/ 35 0.01 17/31/18/25  5/14/ 11/ 21 0.044 11/16/9/27 18/ 26/ 26/ 88  0.04
1/2/3/4
LDH 115/ 99 42/ 49 0.26 46/ 45 21/ 30 0.3 NA NA NA
<1/>1
ECOG 55/ 117/ 26/ 13/ 3 13/ 45/22/9/2 0.003 25/50/14/2/0 6/27/11/6/1  0.0037 NA NA NA
0/1/2/3/4
IPI 98/ 65/ 32/ 19 28/25/24/14  0.013 41/33/11/ 6 14/ 13/ 18/ 6 0.0024 25/14/15/9 49/31/38/40  0.073
0-1/2/ 3/ 45
Status 154/ 60 29/ 62 <0.0001 54/ 37 8/ 43 <0.0001 58/ 5 110/ 48 0.0002
Alive/ Death
A B Cc
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Figure 8. The RibGs model discriminated the prognosis of DLBCL patients accurately. (A-C) The K-M curves of patients of different IPI scores in training dataset and validation
datasets. (D-F) The K-M curves of the no significance patients in the IPl score were based on the risk score of the RibGs model in training dataset and validation datasets. Training

dataset: GSE10846, validation datasets: GSE11318 and GSE87371.

RibGs model acted as a supplement to the IPI
score

The IPI score is used mostly in clinical to assess
the prognosis of DLBCL patient. However, the IPI
score couldn’t discriminate each patient accurately,
for example, the K-M curves of the IPI score of 2 and 3
were overlapped in GSE10846, but the risk score of the
RibGs model distinguished the survivals of these
patients significantly (Figure 8A and 8D). Similarly,
the IPI score of 3 and 4-5 couldn’t predict the survival
accurately, in contrast, these patients assessed by the
risk score of the RibGs model had an outstanding
predictive ability in GSE11318 (Figure 8B and 8E). In
addition, the K-M curves of GSE87371 of different IPI
scores and risk score had the similar results (Figure
8C and 8F). Above data showed that the RibGs model
predicted the prognoses accurately of patients with
less distinction by IPI, therefore, this model could be
acted as a supplement to the IPI in the future.

Establishment of the Nomogram

The nomogram is a useful tool, which combines
some key clinical factors to predict the prognosis
accurately. Therefore, we constructed the nomogram
using the age, gender, IPI score and risk score to
predict the survival probability of 1, 3, and 5 years
(Figure 9A) in training dataset. The risk score of our
prognostic model contributed to the total points more
largely. Then we validated the nomogram by the
calibration curves, which suggested a reliable
prediction of OS compared with actual OS at 1, 3 and
5 years (Figure 9B-D). Furthermore, we established
the nomogram by age, gender and IPI and validated
its’ predictivity by the calibration curves (Figure
S5A-S5C). Comparing these calibration curves from
figure 9B-D and figure S5A-S5C, we found that the
nomogram containing the risk score performed better
than the nomogram only including IPI to predict the
prognoses of DLBCL patients.
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Enrichment of pathways

In order to analyze the different cellular
pathways between high-risk patients and low-risk
patients, we performed gene differentially expressed
analysis by limma package in training dataset. There
were 231 genes upregulated and 175 genes
downregulated under the condition of p < 0.05,
Log2FC > 0.5 or < -0.5 in high-risk group compared
with low-risk group (Figure 10A). We conducted the
gene ontology (GO) analysis using the upregulated
genes in high-risk patients by the clusterprofiler
package. The pathways included immune response,
glycoprotein metabolic process and reactive oxygen
species metabolic process (Figure 10B). The GSEA
analyze the pathways using the upregulated and
downregulated genes simultaneously, so we applied
the GSEA to analyze the different pathways using
genes with p < 0.05. The interferon gamma response,
complement, inflammatory response and IL6-JAK
-STAT3 pathways were on the top of the analyses
(Figure 10C-10G and S6A-S6E). These data indicated

that the high-risk DLBCL patients had more active
innate immune response.

Responses to the common anti-tumor drugs
between low-risk and high-risk patients

To improve the prognosis of the DLBCL patient,
we predicted each patient’s response to a range of
drugs basing on their gene expression profiling by the
pRRophetic package in training set. The low-risk
patients were more sensitive to AKT inhibitor,
Bortezomib, Docetaxel and Pazopanib than high-risk
patients (Figure 11A-D). However, the high-risk
patients had a lower half maximal inhibitory
concentration  (IC50) in a  number  of
chemotherapeutics such as 5-Fluoroucacil,
Doxorubicin, Methotrexate and lenalidomide (Figure
11E-H), as well as a lot of targeting inhibitors
including Gefitinib, Mitomycin C, Ruxolitinib and
veliparib (Figure 11I-L). These data suggested that
these drugs may improve the treated outcomes of
DLBCL patients potentially.
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Figure 9. The nomogram was constructed using gender, age, IPI score and risk score to predict the OS. (A) The prognostic nomogram predicted the OS in 1, 3 and 5 years in
training dataset. (B-D) The calibration curves for internal validation of the nomogram predicting 1-, 3-, and 5-year OS.
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Figure 10. The enriched pathways in high-risk score group. (A) The volcano plots of differentially expressed genes in high-risk group compared with low-risk group. (B) The bar
plots of GO upregulated pathways in high-risk score in training dataset. (C-G) The GSEA of upregulated pathways in high-risk score group in training dataset.

Immunohistochemistry Staining of the
prognostic proteins between normal and
patients’ nodes tissue

Most of genes were based on their proteins to
work in many biological processes finally. Therefore,
we compared some proteins of the RibGs model
including NLE1, PNPT1 and PRMT1 between normal
and DLBCL patients’ nodes, which exhibited higher
level of these proteins in patients than healthy donors
(Figure 12A-C), for each protein choosing the same
antibody between health and patients from the HPA
database. These data indicated that the prognostic
genes and their proteins were highly expressed in
DLBCL patients, which implied the unfavorable
prognoses.

CRISPR Screening the essential genes

In order to seek the promising target gene of
DLBCL patient, we screened the dependency of these
prognostic genes in DLBCL cells by DepMap
database. We found the DLBCL cell lines were
extremely dependent on these genes such as NLEI,
PNPT1 and PRMT1 (Figure 13A), so we knocked out

the NLE1 to validate the reliability by CRISPR
mediated sgRNA in the DLBCL cell lines OCI-Ly7
and DOHH2. The proliferation was inhibited
prominently in cells of knocking out the NLE1(Figure
13B -C). In conclusion, these experiments declared
that we could target the prognostic gene NLE1 to
therapy the DLBCL patient, especially in high-risk
patient.

Discussion

DLBCL is a heterogeneous disease including
therapeutic response and OS time. At present, we
have some criteria to stratify DLBCL patients of
different risks, such as IPI score (29), GCB or ABC
based on cell-of-origin (COO)[29] and whether
belonging to high-grade DLBCL[6]. However, these
criteria ignore the abundant gene-expression
information that is highly related to therapeutic
responses and survival time. In this study, we
constructed a prognostic model using the RibGs,
which could discriminate the outcome of each DLBCL
patient regardless of IPI score, GCB or ABC and
treatment of CHOP or R-CHOP. It is the first time to
combine prognosis of DLBCL with RibGs. We
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selected 15 RibGs to build the prognostic signature
through Cox regression and lasso analyses. The
functions of thel5 RibGs include cell development,
ribosome assembly and transcription, which are all
associated with survival probability significantly.
Moreover, the signature stratified survival time in
training dataset as well as in validation datasets
powerfully.

Recently, many reports revealed the correlation
between the gene expressed profiling and survival
time in DLBCL[30, 31] or other tumors[32, 33], but
they only used one or two biological functions.
However, ribosome participates in numerous
bioprocesses such as translation, proliferation and
tumorigenesis, we chose the RibGs to develop the
prognostic model including these many cellular
functions. Moreover, we found that the RibGs model
could distinguish survival of some patients, whom
the IPI score discriminated difficultly. Then the GSEA
enriched pathways showed that the innate immune
responses such as interferon, complement and
inflammatory responses, were upregulated in
high-risk group. Besides, we screened some drugs
including methotrexate, lenalidomide and parpl
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inhibitor that were more sensitive to high-risk DLBCL
patients. Importantly, knocking out the upregulated
gene NLE1 inhibited cell proliferation markedly,
which provided a gene to target in the future therapy
of DLBCL patient.

Nevertheless, we should take several limitations
of our prognostic model into consideration. On the
one hand, the clinical information of these cohorts
was limited and incomplete, for example the reaction
to therapy didn't illustrate. Therefore, we couldn’t
compare the consistency between the risk and
responses to clinical treatments. On the other hand,
the risk of the prognostic model needs to further
validate. Importantly, the target of the NLE1, should
study comprehensively.

Come into a conclusion, we constructed a
reliable prognostic RibGs signature that associated the
risk of each DLBCL patient with survival time
significantly, which could be an ideal complement to
the IPI score. Furthermore, our finding provided new
therapeutic strategy such as targeting NLE1 gene or
functions associated with ribosome for relapsed or
refractory DLBCL patient.
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Figure 11. Sensitivity to drugs. (A-D) The drugs were more sensitive to low-risk score patients in the training dataset. (E-L) The drugs were more sensitive to high-risk score

patients in the training dataset.
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Figure 12. The proteins level of the prognostic genes. (A-C) The immunohistochemical of the NLEI, PNPT1 and PRMT1 from The Human Protein Atlas database.
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Figure 13. The dependency of the prognostic genes. (A) The bar plots of the NLEI, PNPT1 and PRMT 1 genes’ effect in DepMap database. (B-C) The analysis of proliferation by
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