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Abstract 

Purpose: This study aims to develop liquid biopsy assays for early HCC diagnosis and prognosis.  
Methods: Twenty-three microRNAs were first consolidated as a panel (HCCseek-23 panel) based on 
their reported functions in HCC development. Serum samples were collected from 103 early-stage HCC 
patients before and after hepatectomy. Quantitative PCR and machine learning random forest models 
were applied to develop diagnostic and prognostic models.  
Results: For HCC diagnosis, HCCseek-23 panel demonstrated 81% sensitivity and 83% specificity for 
identifying HCC in the early-stage; it showed 93% sensitivity for identifying alpha-fetoprotein 
(AFP)-negative HCC. For HCC prognosis, the differential expressions of 8 microRNAs (HCCseek-8 
panel: miR-145, miR-148a, miR-150, miR-221, miR-223, miR-23a, miR-374a, and miR-424) were 
significantly associated with disease-free survival (DFS) (Log-rank test p-value = 0.001). Further model 
improvement using these HCCseek-8 panel in combination with serum biomarkers (i.e. AFP, ALT, and 
AST) demonstrated a significant association with DFS (Log-rank p-value = 0.011 and Cox proportional 
hazards analyses p-value = 0.002).  
Conclusion: To the best of our knowledge, this is the first report to integrate circulating miRNAs, AST, 
ALT, AFP, and machine learning for predicting DFS in early HCC patients undergoing hepatectomy. In this 
setting, HCCSeek-23 panel is a promising circulating microRNA assay for diagnosis, while HCCSeek-8 
panel is promising for prognosis to identify early HCC recurrence. 

Key words: Hepatocellular carcinoma, miRNA fingerprints, Liquid biopsy, Machine learning, HCC diagnosis, HCC prognosis, 
hepatectomy 

Introduction 
Hepatocellular carcinoma (HCC) is a highly fatal 

cancer, accounting for nearly 830,000 deaths every 
year worldwide [1]. Traditionally, alpha-fetoprotein 
(AFP) is the most common serological biomarker for 
HCC detection. However, AFP detection is known to 
have a low specificity issue and low positive 

predictive value (PPV) [2–4]. Therefore, more reliable 
biomarkers for both HCC diagnosis and prognosis are 
needed.  

MicroRNAs are endogenously expressed small 
non-coding RNA first discovered by Ambros and 
Ruvkun groups in 1993. Circulating microRNAs have 
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been under the spotlight for diagnostic and 
prognostic applications because of their functions in 
various liver diseases such as viral hepatitis, alcoholic 
or non-alcoholic liver diseases, liver fibrosis, and 
cirrhosis [5,6]. Since miRNA has been reported to 
outperform AFP for HCC diagnosis [6–8], circulating 
microRNA is one of the emerging liquid biopsy 
technologies to complement AFP for HCC screening 
and prognosis [7–9]. 

The advent of machine learning enables us to 
analyze multi-dimensional data for clinical 
applications [10,11]. In HCC, Chaudhary et al applied 
machine learning to analyze the genetics of the tissue 
biopsies for clinical application [12]. However, 
whether machine learning can translate the molecular 
genetic profile from the liquid biopsy for HCC 
prognosis still needs to be examined. Previously our 
group compared different machine learning strategies 
such as regression-based (logistic regression), 
non-regression-based (neural network), and ensemble 
machine learning models (random forest and gradient 
boosting) using liquid biopsy miRNA profile for HCC 
diagnosis. We identified random forest as a promising 
model for identifying HCC. In this study, we aim to 
apply the random forest model for HCC prognosis. To 
do so, we analyzed multi-dimensional data, including 
microRNA expressions, dynamic change in miRNA 
levels before and after hepatectomy, and traditional 
serum biomarkers. 

This study sought to build a liquid biopsy 
microRNA (miRNA) assay for HCC diagnosis and 
prognosis. We began by consolidating 23 miRNAs 
(HCCseek-23 panel) essential for HCC development. 
Subsequently, we tested the diagnostic power of 
HCCseek-23 panel for early HCC diagnosis. After 
that, we narrowed down the miRNA panel to eight 
signature miRNAs (HCCseek-8 panel) based on their 
association with patient survival. Ultimately, we 
developed an integrated prognostic model with the 
HCCseek-8 panel in combination with the traditional 
serum biomarkers AST, ALT, and AFP.  

Methodology 
Patient enrolment criteria 

This is a retrospective study with all the data 
prospectively collected in a patient database. Patients 
with clinically diagnosed resectable HCC were 
included. All the patients had CT/MRI typical 
features of HCC. Patients who were diagnosed with 
HCC were discussed in the multidisciplinary meeting 
with oncologists, radiologists, and surgeons. Patients 
who were considered technically resectable by 
minimally invasive surgery and with good liver 
function reserved were included. Patients with the 

extrahepatic disease, Child C liver cirrhosis, and 
severe pre-existing medical conditions were excluded. 
A total of 103 HCC patients treated with hepatectomy 
at Queen Mary Hospital between January 2006 and 
October 2012 were included in this study (Table 1). All 
blood samples were obtained after written informed 
consent. Eighty-one patients were diagnosed with 
stage I and 17 patients were diagnosed with stage II 
based on The Hong Kong liver cancer (HKLC) staging 
system. 

 

Table 1. Clinical characteristics of HCC patients treated with 
hepatectomy 

98 patients (196 serum samples in total) 
Sex Male Female 

75 23 
AFP group AFP positive AFP negative 

53 45 
HCC stage Stage I Stage II 

81 17  
Mean Std Min Max 

Age(year) 60.94 10.5 28 82 
Body weight(kg) 63.71 12.5 31.5 107 
Body Height(cm) 162.65 7.63 144 179 
Pre-operation AST(u/L) 40.58 18.63 16 109 
Pre-operation ALT (u/L) 42.47 24.49 12 142 
Pre-operation platelet (10^9/L) 162.83 51.31 66 288 
Pre-operation AFP (ng/ml) 930.46 5458.68 1 53430 
Overall survival (month) 91.91 51.01 4.14 180.04 
Disease-free survival (month) 65.03 54.7 0.72 177.51 

AFP>= 20ng/mL= AFP positive group; AFP< 20ng/mL= AFP negative group  
 

Random forest model development 
Random forest is a modified version of the 

bagging tree-based machine learning technique. It 
avoids overfitting by sampling the samples and 
features randomly at first. Initially, the samples (i.e. 
HCC patients) are randomly subset to multiple 
training sets by bootstrapping. Then, in each training 
set, a decision tree is established by randomly 
extracting a part of the features from the features (i.e. 
microRNAs, AST, ALT, AFP) until an optimal 
solution is reached. The final prediction result is the 
classification result from the majority vote among all 
the decision trees in the random forest model. For the 
first section of developing an HCC diagnostic model, 
55 intermediate-stage HCC patients (Barcelona Clinic 
Liver Cancer system stage B) and 33 healthy 
individuals reported in our previous paper were used 
[13]. The microRNA expression qPCR results were 
split into a training dataset (n= 70) and a test dataset 
(n= 18), followed by random forest model 
development. After that, the HCCseek-23 random 
forest model's diagnostic performance was evaluated 
using 196 serum samples from the early HCC patients 
treated with hepatectomy (Table 1). For the second 
section of developing an HCC prognostic model, as 
mentioned in the enrolment criteria section, a total of 
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103 HCC patients treated with hepatectomy at Queen 
Mary Hospital between January 2006 and October 
2012 were included in this study. The samples were 
collected before (B1) and after the surgical operation 
(B2). Samples from five patients were removed due to 
poor quality (i.e. more than 10 miRNAs showed Ct 
value higher than 35. The clinical information of the 
subjects is summarized in Table 1. During the model 
development, we first classified the patients into two 
groups based on the median survival data (i.e. 86.2 
months for overall survival (OS) and 58.81 months for 
disease-free survival (DFS)). The long and short OS 
group has a mean OS of 135.9 and 47.3 months, 
respectively, while the long and short DFS group has 
a mean DFS of 110.3 and 19.7 months, respectively. 
After labeling the samples with the survival 
classification, we split the dataset (n=98) into the 
training dataset (n=68) and test dataset (n=30). 
Subsequently, the survival group classifications and 
the microRNA expression levels were subjected to 
random forest model development, followed by 
validation with Log-rank and Univariate Cox 
proportional hazards analyses.  

Sample preparation and miRNA isolation 
To ensure the quality of the serum sample, a 

two-step centrifugation was applied. First, we 
removed the blood cells with low-speed 
centrifugation, followed by high-speed centrifugation 
to remove residual impurities. A volume of 300 uL 
serum sample was transferred to a new 1.5mL 
centrifuge tube and the protein debris was 
precipitated with high-salt buffer for 1 min at room 
temperature. The supernatant containing RNA was 
then precipitated by isopropanol, followed by RNA 
purification using a column-based Silica membrane 
technology. After washing the columns with 
ethanol-based buffer, RNase-free H2O was added into 
the column, followed by 1-minute room temperature 
incubation and RNA elution. The eluted RNA was 
subjected to PolyA tailing reaction with PolyA 
polymerase and ATP and incubated for 60 minutes at 
37°C, followed by 5-minute deactivation at 70°C. 
Subsequently, cDNA synthesis was performed by 
adding oligo-dt adapter primer, miRNA-specific 
forward primer, reverse transcriptase, and incubate 
for 20 minutes at 42°C, followed by 85°C incubation 
for 5 minutes [13].  

MicroRNA analysis  
Roche Light-Cycler 480 was applied for qPCR 

reaction. The Ct values for microRNA were generated 
with the 2nd derivative maximum of fluorescence 
curve. For the microRNA with no Ct value after 
calculation, a Ct value of 45 was filled to facilitate 

further model development. The Ct values were 
converted to fold differences by the equation 2^(-ΔCt) 
normalized to the endogenous expression level of 
miR-451a. 

Statistical analysis and data visualization 
Clinicopathologic and genomic variables were 

tested for their effect on the survival probabilities of 
patients; the effect of these prognostic factors were 
estimated by the Kaplan-Meier method and compared 
between survival subgroups by Log-rank test and 
univariate Cox proportional hazards analyses. The 
effect size of univariate survival analysis was 
estimated based on p-values and hazard ratio with 
95% confidence intervals (95% CI); p-values < 0.05 
were interpreted as statistically significant associated 
with survival outcome. A hazard ratio >1 indicates 
that the variable associated with increased risk of 
death, while hazard ratio< 1 indicates the variable 
associated with decreased risk of death; hazard ratio= 
1 means that variable have no effect on the length of 
survival. Lifelines 0.25.7 in python (version 3.8.3) was 
used for statistical analyses. Student’s T test were 
performed using SciPy package in python 
environment, the effect size was estimated by the 
difference between two means divided by pooled 
standard deviation. Univariate Cox proportional 
hazards model and the Log-rank test were analyzed 
using lifelines.statistics package in python. The results 
were visualized in Kaplan-Meier curves and Cox 
proportional hazards model hazard ratio plot using 
matplotlib.pyplot and lifeline package in python. 

Results 
Establishing HCCseek-23 microRNA panel  

To design an HCC-specific microRNA panel, we 
reviewed the literature focusing on microRNAs' 
functions in HCC development. Twenty-three 
microRNAs were selected based on their reported 
functions in regulating cancer hallmarks in HCC 
(Supplementary Table 1). Quantitative PCR (qPCR) 
was performed to detect the expression levels of these 
23 microRNAs (HCCseek-23 panel) in the serum 
samples taken from 103 stage I and II HCC patients 
before and after hepatectomy. After quality control 
filtering, 98 HCC patients were available for analysis. 
Seventeen microRNAs (miR-122-5p, miR-125a-5p, 
miR-125b-5p, miR-145-5p, miR-148a-3p, miR-191-5p, 
miR-192-5p, miR-214-3p, miR-22-5p, miR-223-3p, 
miR-23a-3p, miR-30c-5p, miR-320d, miR-365a-3p, 
miR-423-5p, miR-424-5p, miR-574-3p) were signifi-
cantly up-regulated after surgery (p-value < 0.05, 
Figure 1, Supplementary Figure 1, Supplementary 
Table 2-3). As expected, the negative control 
microRNA miR-451 showed no difference comparing 
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pre- and post-surgical operations (Supplementary 
Figure 1).  

HCCseek-23 miRNA random forest model can 
identify early HCC  

Before we develop an HCC prognostic model, 
we attempted to test if the HCCseek-23 microRNA 
panel could identify early-stage HCC patients. To do 
so, we applied the random forest model we reported 
previously [13] to this HCCseek-23 miRNA panel 
(detailed in the methodology section). As expected, 
the HCCseek-23 random forest model provided good 
performance for identifying stage I and II HCC 
patients (n=196, 81% sensitivity, 83% specificity, and 
0.79 AUC) and identifying early-stage AFP-negative 
HCC patients (n= 45, 93% sensitivity and 83% 
specificity, Supplementary Table 4). Collectively, 
these results suggested miRNA's clinical utility for 
early HCC diagnosis. 

HCCseek-23 miRNA random forest model is 
not associated with patient survival 

Next, we test if the HCCseek-23 random forest 
model is associated with patient survival. To do so, 
we applied the Log-rank test and univariate Cox 
proportional hazards analyses. In the Log-rank test, 
no significant association was found between the 
predicted HCC probability and the OS and DFS of the 
early-stage HCC patients (n=98) (p-values are 0.09 
and 0.25; Supplementary Table 5). In univariate Cox 
proportional hazards analysis, we separated the 
patients into two categories (long-term and short-term 
survival groups) based on the median OS and DFS for 
evaluation. Again, no significant association was 

found between the predicted HCC probability and the 
survivor classification (Supplementary Figure 2-3). To 
sum up, although the HCCseek-23 random forest 
model can identify early-stage HCC patients, it is 
unsuitable for HCC prognosis. It is necessary to 
narrow down the microRNA panel specifically for 
prognosis purposes. 

Identification of signature miRNAs for OS and 
DFS prognosis 

To tailor-make a microRNA panel for early-stage 
HCC prognosis, we first narrowed down our 
microRNA list by the Log-rank and Cox proportional 
hazards analysis. To do so, we calculated the 
differential microRNA expression pattern comparing 
post-operation versus pre-operation time points 
(B2-B1). These differential expressions, together with 
the expression data at both pre-operation (B1) and 
post-operation (B2) time points were subjected to the 
Log-rank and Univariate Cox proportional hazards 
tests. Eight microRNAs (HCCseek-8 panel i.e. 
miR-145, miR-148a, miR-150, miR-221, miR-223, 
miR-23a, miR-374a, miR-424) showed significant 
association with DFS in either Log-rank test or 
univariate Cox proportional hazards analysis (Table 
2). When analyzing OS, four microRNAs (HCCseek-4 
panel i.e. miR-125a, miR-223-3p, miR125b, miR-150) 
showed significant association (Table 2). The 
KM-curves, p-values, and cumulative hazard ratio 
plots were shown in Supplementary Figures 4-17. In 
summary, we narrowed down the microRNA panel to 
8 microRNAs and 4 microRNAs for further prognostic 
model development. 

 
 

 
Figure 1. MiRNAs expressions before and after hepatectomy. When comparing the miRNA expressions before surgery (blue bars) and after surgery (orange bars), eighteen 
miRNAs showed statistically significant results. For simplicity, five miRNAs are shown (i.e. miR-145-5p, miR-148a-3p, miR-223-3p, miR-23a-3p, miR-424-5p). Expressions of all 
the miRNAs can be found in supplementary Figure 1. * indicates p-values<0.05 in Student's t-test. 
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Table 2. Eight miRNA panel selected for DFS prognosis and Four 
miRNA panel selected for OS prognosis 

Eight miRNA panel 
MiRNA Univariate Cox analysis 

(p-value) 
Hazard Ratio 
(HR) 

Log-rank 
(p-value) 

miR-145-5p (B2-B1) 0.71 0.97 0.02* 
miR-148a-3p (B1) 0.54 0.00 0.04* 
miR-150-5p (B2) 0.64 0.01 0.01* 
miR-150-5p (B2-B1) 0.47 1.00 0.01* 
miR-221-3p (B1) 0.84 0.00 0.04* 
miR-223-3p (B1) 0.41 0.00 0.00* 
miR-23a-3p (B2-B1) 0.05* 1.02 0.46 
miR-374a-5p (B1) 0.04* 0.00 0.53 
miR-374a-5p (B2-B1) 0.02* 1.05 0.32 
miR-424-5p (B2-B1) 0.96 1.00 0.01* 

Four miRNA panel 
miR-125a-5p (B1) 0.94 0.03 0.05* 
miR-125b-5p (B1) 0.61 1.00 0.04* 
miR-150-5p (B1) 0.33 1.00 0.00* 
miR-223-3p (B1) 0.25 0.00 0.01* 

Note: * p-value ≤ 0.05; B2-B1: differential microRNA expression pattern comparing 
post-operation versus pre-operation time points; B1: pre- operation; B2: 
post-operation 

 

Signature miRNA panel predicts DFS but not 
OS  

To develop a prognostic model for DFS, the 
expression data of the 8 miRNA panel (HCCseek-8) 
shown in Table 2 were input into the Random Forest 

model. During the model development, the 
early-stage HCC patients (n=98) were split into the 
training dataset (n= 68) and the testing dataset (n= 30) 
using the 70:30 ratio. To evaluate the prognostic 
performance of the HCCseek-8 miRNA model, we 
analyzed the predicted survival probability with 
Log-rank and Univariate Cox proportional hazards 
tests. A significant association was observed between 
the predicted survival probability and the patient 
survival (p-value = 0.001) in Log-rank test, 
meanwhile, marginal significance was observed in 
Univariate Cox proportional hazards analysis 
(p-value = 0.056, Figure 2A). To develop a prognostic 
model for OS, the expression data of the 4 miRNA 
panel shown in Table 2 were input into the Random 
Forest model. However, no association between the 
predicted survival score and patient survival was 
observed (Log-rank p-value = 0.497; Cox analysis 
p-value = 0.138) (Figure 2B). To sum up, the signature 
miRNAs HCCseek-8 panel is correlated with DFS, 
suggesting a potential application for predicting DFS. 
Further model improvement is needed for HCC 
prognosis. 

 

 
Figure 2. Survival analyses for the signature miRNA prognostic model. (A) Prognostic models developed from 8 miRNA panel (HCCseek-8). The log-rank test showed significant 
association between the predicted survival probability score and the DFS (p-value = 0.001), while the univariate COX proportional hazards model showed marginal association 
(p-value=0.056). (B) Prognostic models developed from 4 microRNA panel (HCCseek-4). The log-rank test and the univariate COX proportional hazards model showed no 
significant association between the predicted survival probability score and the OS. The hazard ratios are shown in the forest plots (left panel). The orange lines and blue lines in 
the Kaplan-Meier curve (right panel) shows the survival probabilities of the long-term survival group and the short-term survival group predicted by the prognostic models. 
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Integrating HCCseek-8 and serum biomarkers 
for developing HCC prognosis model 

To further improve the prognostic model for 
predicting DFS, we integrated the model with the 
traditional serum biomarkers (AST, ALT, and AFP). 
AST and ALT are liver function-damage indicators, 
while serum AFP is a serological biomarker for HCC 
diagnosis [14]. These routinely used biomarkers could 
be meaningful for introducing an additional data 
dimension to improve our prognostic model. 
Therefore, we inputted the miRNA, AST, ALT, and 
AFP data into the random forest model development. 
During the model development, the stage I and II 
HCC patients treated with hepatectomy (n=98) were 
split into the training dataset (n= 68) and the testing 
dataset (n= 30). We tested two integration models: 1) 
HCCseek-8 + AFP + AST; and 2) HCCseek-8 + AFP + 
AST +ALT. The “HCCseek-8 + AFP + AST +ALT” 
model showed a more significant association with 
DFS (Log-rank p-value= 0.011, Cox p-value= 0.010, 
HR= 0.002, 95% CI: 0.000-0.233), compared to 
“HCCseek-8 + AFP + AST” model (Log-rank p-value= 
0.0003, Cox p-value= 0.015, HR= 0.038, 95% CI: 

0.003-0.527) (Table 3, Figure 3A , Figure 3B). Notably, 
when we remove HCCseek-8 from the model 
development, the negative control model “AFP+AST” 
and “AFP+AST+ALT” did not show any significant 
association with DFS (Table 3). This illustrated the 
essential role of the microRNA panel in predicting 
DFS in patients undergoing hepatectomy. Taken 
together, we provided solid evidence demonstrating 
the prognostic power of integrating novel HCCseek-8 
microRNA panel and traditional serum biomarkers 
for prognosis in early HCC patients treated with 
hepatectomy. 

 

Table 3. Log-rank and Cox analyses for the integrated prognostic 
models and negative control 

Model Biomarkers Cox 
(p-value) 

Log rank 
(p-value) 

HR (95% CI) 

Integrated 
Model 

HCCseek-8 + AFP + 
AST 

0.015* 0.0003* 0.038 
(0.003-0.527) 

HCCseek-8 + AFP + 
AST + ALT 

0.010* 0.011* 0.002 
(0.000-0.233)  

Negative 
control 
Model 

AFP + AST 0.657 0.664 0.405 (0.07-2.128) 
AFP + AST + ALT 0.716 0.475 0.292 

(0.036-2.354)  
Note: * p-value<0.05 

 
 

 
Figure 3. Survival analyses for the integrated models. (A) Prognostic models integrating HCCseek8- panel, AFP, and AST. The log-rank test and the univariate COX proportional 
hazards model showed significant association between the predicted survival probability score and the DFS (log-rank p-value = 0.0003, Cox p-value = 0.015, HR (95%CI) = 0.038 
(0.003-0.527)). (B) Prognostic models integrating HCCseek-8 panel, AFP, AST, and ALT. The log-rank test and the univariate COX proportional hazards model showed significant 
association between the predicted survival probability score and the DFS (log-rank p-value = 0.011, Cox p-value = 0.010, HR (95%CI) = 0.002 (0.000-0.233)). The orange lines 
and blue lines in the Kaplan-Meier curve indicate predicted long-term survival group and predicted short-term survival group, respectively.  
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Discussion 
In summary, this study highlighted four key 

findings: 1) We developed an HCC diagnostic model 
using the expression profile of twenty-three miRNAs 
(HCCseek-23 panel), which demonstrated 81% 
sensitivity and 83% specificity for identifying 
early-stage HCC patients; 2) HCCseek-23 panel also 
exhibited 93% sensitivity for identifying AFP-negative 
HCC; 3) We further identified eight microRNAs 
(HCCseek-8 panel) that was significantly associated 
with DFS in the Log-rank test (p-value = 0.001), 
suggesting a potential application for HCC prognosis; 
4) When integrating HCCseek-8 panel and serum 
biomarkers, a significant association between the 
prediction result and DFS was found in both Log-rank 
test (p-value = 0.011) and Cox proportional hazards 
analysis, illustrating an outstanding performance for 
predicting DFS in early-stage HCC patients 
undergoing surgical operations. 

Functional roles of the HCCseek-8 microRNAs in 
the progression of HCC have been previously 
documented [15–24]. The miR-145-5p [15], 
miR-148a-3p [16], miR-150-5p [17], miR-223-3p [19], 
and miR-424-5p [22] were found to be 
down-regulated in HCC. The down-regulated 
expressions appear to potentiate cancer cell migration 
and invasion in HCC patients. These microRNAs 
serve as HCC suppressors by targeting transcription 
factors and oncogenes associated with cancer cell 
growth, migration, and metastasis. For instance, 
miR-145-5p targets the ARF6 pathway to inhibit 
invasion and metastasis. Downregulation of these 
miRNAs is known to promote HCC invasion and 
metastasis [15–17,19,22]. Besides regulating invasion 
and metastasis, the loss of miR-145-5p, miR-150-5p, 
and miR-223-3p expressions has been identified to 
promote HCC proliferation [15,17,19]. The 
miR-148a-3p is critical in controlling hepatic 
differentiation by regulating c-Met oncogene [16]. In 
addition, the decreasing level of miR-148a-3p in the 
blood of HCC patients had an inverse relationship 
with the profibrogenic cytokine TGF-β, associated 
with the progression from cirrhosis to HCC, and 
linked to poorer survival outcomes [24]. MiR-221-3p 
[18], miR-23a-3p [20], and miR-374a-5p [21] are 
involved in tumor cell proliferation, genomic stability, 
and growth suppressor evasion in HCC.  

Although some microRNAs in the HCCseek-8 
panel have been linked to HCC detection and survival 
[5,7,18,23,24], analyzing multi-dimensional data could 
improve the prediction model [10–12]. In this study, 
we integrated multi-dimensional data such as the 
microRNA expressions, dynamic change of miRNA 
levels before and after surgery, and the traditional 

serum biomarkers for the prognosis of early HCC 
patients undergoing hepatectomy (Supplementary 
Figure 18). In addition, we demonstrated the 
diagnostic performance of the microRNA panel for 
identifying early-stage HCC patients. Although a 
large-scale and multi-center investigation is still 
needed to translate these models into clinical 
application, this study demonstrated promising 
results for further model development in the future. 

Supplementary Material 
Supplementary figures and tables. 
https://www.jcancer.org/v14p0480s1.pdf 
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