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Abstract 

Autophagy plays an important role in non-small cell lung cancer (NSCLC). We aimed to establish novel 
autophagy-related tumor subtypes to distinguish the prognosis of NSCLC. In this study, gene expression 
profiles, mutation data and clinical information obtained from the Cancer Genome Atlas. Kaplan 
Meier-plotter could evaluate prognostic value of autophagy-related genes. Consensus clustering revealed 
autophagy-related tumor subtypes. Gene expression profiles, mutation data and immune infiltration 
signatures were identified, oncogenic pathways and gene-drug interactions were performed according to 
the clusters. Finally, a total of 23 prognostic genes were screened and consensus clustering analysis 
divided the NSCLC into 2 clusters. The mutation signature showed that 6 genes are special. Immune 
infiltration signatures showed that higher fraction of immune cells was associated with cluster 1. The 
oncogenic pathways and gene-drug interactions also showed different patterns. In conclusion, 
autophagy-related tumor subtypes have different prognosis. Understanding the subtypes of NSCLC are 
helpful to accurately identify the NSCLC and personalized treatment. 
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Introduction 
Lung cancer remains the leading cause of 

cancer-related mortality worldwide, in which 
non-small cell lung cancer (NSCLC) account for 
nearly 85% of all the lung cancer [1,2]. Lung 
adenocarcinoma (LUAD) and lung squamous cell 
carcinoma (LUSC) are the main type of NSCLC [3,4]. 
There are improvements of therapy methods, such as 
chemotherapeutic drugs and immune therapy, while 
the 5-year survival rate of NSCLC patients is only 18% 
[5]. Furthermore, surgical resection is the most 
beneficial treatment for NSCLC, but most newly 
diagnosed patients are at the onset of advanced or 

metastatic stages and usually lost the chance for 
operation. For the clinical tumor-node-metastasis 
(TNM) stage IIIB NSCLCs, the 5-year survival rate is 
only 7%, and the 5-year survival rate of TNM stage IV 
NSCLC patients as low as 2% [6]. Hence, it is essential 
to manage the patients according to the biomarkers 
for early detection of NSCLC in order to improve the 
prognosis and reduce the mortality rates. 

Autophagy is a key biological process, it could 
maintain the cellular homeostasis by engulfing 
cytoplasmic proteins, complexes or organelles within 
the autophagosome [7,8]. Autophagosome is a 
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cytoplasmic double-membrane and it can be 
transported and fused with lysosome to generate the 
autolysosome [9]. Autophagy was reported to 
associated with tumorigenesis [10,11]. Over the past 
few years, a lot of studies have elucidated that 
autophagy take part in the development and 
progression of NSCLC [12,13]. In brief, autophagy has 
dual functions in the tumorigenesis, including 
positive and negative effects. Positive parts behaved 
as proper degree of autophagy could clear damaged 
proteins and organelles in the early stages of the 
tumor so as to inhibiting tumor development [14]. 
Negative effects are involved in the advanced stages 
of tumorigenesis, autophagy could promote rapid 
growth of tumor cells by degrading and recycling the 
damaged or aged organelles components [15].  

Up to date, there are increasing evidence 
indicated the role of autophagy-related genes in the 
development of cancer. Autophagy-related gene 
expression signature could serve as an independent 
prognostic indicator for serous ovarian cancer [16]. 
Eight autophagy-related genes (BCL2, BIRC5, 
EIF4EBP1, ERO1L, FOS, GAPDH, ITPR1 and VEGFA) 
were explored and the author found that these genes 
are significantly associated with overall survival in 
breast cancer [17]. The Beclin1 and LC3 genes were 
correlated with the tumor stage, metastasis conditions 
and mortality in pancreatic cancer [18]. There is also 
another one study proposed an autophagy-related 
gene prognostic signature and divided all the patients 
into high-risk and low-risk groups and the author 
concluded that autophagy-related gene prognostic 
signature is a promising biomarker for monitoring the 
outcomes of LUAD and LUSC [19]. These findings 
confirm the role of autophagy in cancers and suggest 
that autophagy-related genes maybe served as 
prognostic biomarkers.  

Although there are many studies focus on the 
relationship between autophagy-related gene expres-
sion signature and the prognosis of cancer, very few 
studies have studied the reason why the autophagy- 
related gene expression signature could influence the 
prognosis of NSCLC. The purpose of this study was to 
establish novel autophagy-related tumor subtypes to 
predict the prognosis of NSCLC. Meanwhile, we also 
want to explain possible reasons why the novel 
autophagy-related tumor subtypes could influence 
the prognosis of NSCLC. 

Materials and methods  
Data collection 

The gene expression profiles, mutation data and 
clinical information of NSCLC patients were 
downloaded from the Cancer Genome Atlas (TCGA) 

database (https://tcga-data.nci.nih.gov/tcga/). In 
detail, TCGA contains a total of 1102 patients 
(including 103 adjacent normal lung tissues and 999 
NSCLC tissues). The selected criteria were the 
followings: gene expression profiles, mutation 
expression profiles, studies compared adjacent 
non-tumorous lung tissues and NSCLC tissues in 
human. The excluded criteria were the followings: 
those studies that compared genes between lung 
cancer and benign disease in human, expression 
profiles using cell lines or serum, saliva, peripheral 
blood; patient had no survival time or survival status, 
patient had clinical information but no gene 
expression data. After screening according to the 
criteria, there are 990 NSCLC patients left, including 
486 LUAD patients and 504 LUSC patients (Table 1). 
The Human Autophagy Database (HADb; 
http://www.autophagy.lu) is the first human 
autophagy-dedicated database, it is a public 
repository containing information about the human 
genes described so far as involved in autophagy. A 
total of 232 genes from the HADb were identified as 
autophagy-related genes.  

 

Table 1. Clinical characteristics of lung adenocarcinoma (LUAD) 
and lung squamous cell carcinoma (LUSC) patients in TCGA 
database 

 LUAD Percentage LUSC Percentage 
Characteristic N=486 % N=504 % 
Age (years)     
 <65 209 43.00 170 33.73 
 ≥65 258 53.09 325 64.48 
 Unknown 19 3.91 9 1.79 
Gender     
 Female 264 54.32 131 25.99 
 Male 222 45.68 373 74.01 
T stage     
 T1 163 33.54 114 22.62 
 T2 260 53.50 295 58.53 
 T3+T4 60 12.35 95 18.85 
 Unknown 3 0.61 - - 
N stage     
 N0 312 64.20 320 63.49 
 N1 90 18.52 133 26.39 
 N2+N3 72 14.81 45 8.93 
 Unknown 12 2.47 6 1.19 
M stage     
 M0 333 68.52 414 82.14 
 M1 24 4.94 7 1.39 
 MX 125 25.72 79 15.68 
 Unknown 4 0.82 4 0.79 

 

Identification of differentially expressed 
autophagy-related genes 

Gene expression data from TCGA was analyzed 
by the R package limma package. The cut-off criterion 
was set as the p < 0.05 and absolute fold change > 2. In 
addition, the R package ggplot2 package was used to 
perform the volcano plots of all the autophagy-related 
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genes between adjacent normal lung tissues and 
NSCLC tissues. Heat maps for the differentially 
expressed autophagy-related genes was generated 
using the R package pheatmap package. Then Kaplan 
Meier-plotter (https://kmplot.com/analysis/) was 
used to evaluate the prognostic value of differentially 
expressed autophagy-related genes in NSCLC. 

Functional enrichment analysis and 
protein-protein interaction (PPI) network 
construction 

Kyoto Encyclopedia of Genes and Genomes 
(KEGG) is a knowledge base for systematic analysis of 
gene functions. Gene ontology (GO) enrichment 
analysis predicts the function of the target genes in 
three aspects, including biological processes, cellular 
components and molecular function. There are several 
ways to performed the functional enrichment analysis 
and clusterProfiler package was used in our study 
[20]. P<0.05 was the threshold for the identification of 
significant GO terms and KEGG pathways. The 
GOplot package was employed to visualize the 
enrichment terms. PPI network was constructed by 
the STRING database (https://string-db.org) [21] and 
cytoscape software [22]. 

Evaluation of tumor-infiltrating immune cells 
CIBERSORT is an algorithm that uses gene 

expression data to quantify specific cell types in 
mixed cell populations [23]. The CIBERSORT method 
is used to estimate the score of immune cells in LUAD 
and LUSC samples. The normalized gene expression 
data were prepared using standard annotation files 
and data were uploaded to the CIBERSORT, then the 
R package Genefilter package was utilized to screen 
each LUAD and LUSC sample. With the threshold of 
p<0.05, the result of the inferred score of immune cell 
populations were considered accurate. 

Statistical analysis 
All statistical analysis was performed using the 

R software, and p<0.05 was regarded as statistically 
significant. The unpaired t test was used to assess the 
expression level of the autophagy-related genes 
between cluster 1 and cluster 2. The Kaplan-Meier 
survival curve analysis and the log-rank test were 
used to analyze overall survival. The difference of 
infiltrating immune cells between cluster 1 and cluster 
2 was assessed by unpaired t test.  

Results 
Identification of differentially expressed 
autophagy-related genes and their prognostic 
value in NSCLC 

In this study, gene expression profiles from 

TCGA database in NSCLC were selected and the 
expression levels of differentially expressed 
autophagy-related genes were extracted. Genes with 
p<0.05 and absolute fold change>2 were considered 
as differentially expressed autophagy-related genes. 
A total of 232 autophagy-related genes were pooled 
from HADb. After screening process, there are 39 
autophagy-related genes were differentially 
expressed in NSCLC, including 14 down-regulated 
genes and 25 up-regulated genes (Table 2) (Figure 
1A-B). Then Kaplan Meier-plotter online database 
was used to evaluate the prognostic value of 39 
differentially expressed autophagy-related genes in 
NSCLC, and the results showed that only 23 
differentially expressed autophagy-related genes 
(Figure 1C) were related to the overall survival for 
NSCLC, including 7 down-regulated genes and 16 
up-regulated genes (Figure S1). 

 

Table 2. Differentially expressed 39 autophagy-related genes in 
NSCLC 

Gene log FC p  FDR 
DLC1 -2.674452952 9.20E-58 8.78E-56 
NRG3 -2.641312106 5.46E-53 1.64E-51 
NLRC4  -2.213490722 1.89E-57 1.20E-55 
DAPK2  -2.045550174 1.48E-52 3.53E-51 
MAP1LC3C -1.900957933 1.54E-43 1.40E-42 
CCL2 -1.894463992 2.32E-18 5.76E-18 
HSPB8 -1.890412952 5.99E-53 1.64E-51 
FOS -1.8678626 9.20E-32 4.39E-31 
PPP1R15A -1.673892269 2.70E-45 3.43E-44 
GRID1 -1.500483661 3.10E-45 3.70E-44 
DRAM1 -1.441257298 7.12E-44 6.80E-43 
PRKCQ -1.398259164 1.40E-45 2.06E-44 
DAPK1  -1.344133398 4.13E-43 3.59E-42 
ITPR1 -1.000224806 1.32E-38 1.01E-37 
ATG4D  1.001394367 2.46E-28 1.02E-27 
BAK1 1.053922698 6.60E-40 5.25E-39 
DDIT3 1.055361827 8.16E-20 2.29E-19 
EIF4G1 1.07484107 5.82E-34 3.37E-33 
IFNG 1.096213275 0.02578937 0.027214197 
HDAC1 1.133747556 1.69E-52 3.59E-51 
P4HB 1.161987407 2.06E-52 3.94E-51 
FADD 1.204458771 9.69E-42 8.04E-41 
EGFR 1.222356033 2.98E-07 4.42E-07 
PARP1 1.236206553 1.31E-50 2.27E-49 
ATIC 1.258107209 5.21E-56 2.49E-54 
SPHK1 1.276199145 1.53E-15 3.39E-15 
BNIP3 1.365963835 1.32E-33 7.41E-33 
TP73 1.474554334 9.12E-14 1.85E-13 
IKBKE 1.475598986 2.04E-45 2.79E-44 
PTK6 1.764962137 8.88E-19 2.32E-18 
ATG9B 1.979798346 2.42E-21 7.10E-21 
TMEM74 2.161296281 4.04E-08 6.28E-08 
GAPDH 2.346547707 3.42E-55 1.31E-53 
ITGB4 2.49728055 1.54E-33 8.43E-33 
EIF4EBP1 2.547118173 2.41E-44 2.42E-43 
NKX2-3 3.395091393 6.47E-10 1.12E-09 
CDKN2A 4.149641931 4.52E-20 1.31E-19 
BIRC5 4.429533634 1.28E-58 2.44E-56 
TP63 5.075495827 3.63E-09 6.08E-09 
NSCLC, non-small cell lung cancer. 
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Figure 1. Identification of differentially expressed autophagy-related genes in NSCLC. (A) Two-dimensional hierarchical clustering of the significant 39 differentially 
expressed autophagy-related genes in all samples. Genes are in rows; samples are in columns. Both up-regulated and down-regulated autophagy-related genes can be seen in 
tumors compared with normal tissues. (B) Volcano plots of the 232 autophagy-related genes analysis. There were 39 genes identified to be differentially expressed, including 14 
down-regulated genes and 25 up-regulated genes. X-axis: log 2-fold change; Y-axis: -log10 fdr for each probe. (C) The boxplot of the differentially expressed autophagy-related 
genes. The red color indicates tumor tissues and the green color indicated the non-tumor. NSCLC, non-small cell lung cancer. 

 

Functional enrichment analysis of differentially 
expressed autophagy-related genes  

The expression levels of 23 prognostic 
differentially expressed autophagy-related genes 
were visualized by violin plots (Figure 2A-C) and 
heatmap (Figure 2D). Besides, correlation of 23 
prognostic differentially expressed autophagy-related 
genes were also explored (Figure 2E). To determine 
biological functions of the prognostic 23 differentially 
expressed autophagy-related genes, gene ontology 
(GO) enrichment analysis was performed to predict 
the function of the 23 differentially expressed 
autophagy-related genes in biological processes, 
cellular components and molecular function. The 
results showed that the identified differentially 
expressed autophagy-related genes were mainly 
involved in biological processes were autophagy, 
process utilizing autophagic mechanism, intrinsic 
apoptotic signaling pathway, peptidyl-serine modifi-
cation and regulation of endopeptidase activity. The 
most significantly enriched molecular function 

concentrated on protein phosphatase binding, 
phosphatase binding, eukaryotic initiation factor 4E 
binding, translation initiation factor binding and 
calmodulin binding. It seems differentially expressed 
autophagy-related genes have no significant 
relationship to CC according to the p value (Figure 
3A-B). Further Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis was also performed to 
investigate the significance of differentially expressed 
autophagy-related genes in the development of 
NSCLC. The result showed that 23 differentially 
expressed autophagy-related genes were enriched in 8 
KEGG pathways (Figure 3C-E). According to the 
results of functional enrichment of differentially 
expressed autophagy-related genes, we found that 
differentially expressed autophagy-related genes was 
not only connected to autophagy but also involved in 
other biological processes. So, in this study, we hope 
to identify autophagy subtypes different biological 
characters based on 23 differentially expressed 
autophagy-related genes associated with of NSCLC. 
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Figure 2. Expression levels of differentially expressed autophagy-related genes. (A-C) Violin plots of 23 prognostic autophagy-related gene expression levels. X-axis: 
gene name; Y-axis: gene expression. (D) Two-dimensional hierarchical clustering of the significant 23 prognostic autophagy-related genes in all samples. Genes are in rows; 
samples are in columns. Both up-regulated and down-regulated autophagy-related genes can be seen in tumors compared with normal tissues. (E) Correlation of 23 prognostic 
differentially expressed autophagy-related genes. 

 
Figure 3. Functional enrichment analysis of differentially expressed autophagy-related genes. (A-B) The bar plot and bubble plot of significant GO terms. (C-D) 
The bar plot and heat map of enriched KEGG pathways. (E) KEGG circle of functional enrichment analysis of differentially expressed autophagy-related genes. The red circles 
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display up-regulation, and the blue ones display down-regulation. The higher the Z-score value indicated, the higher expression of the enriched pathway. GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes. 

 

 
Figure 4. The consensus clustering analysis and the principle components analysis. (A-C) The consensus clustering analysis of the prognostic autophagy-related 
genes, inferring the optimal number of clusters, the lowest proportion of ambiguous clustering and the best CDF value by taking the K value of 2. (D) The principle components 
analysis of the prognostic autophagy-related genes in NSCLC patients. E, Kaplan-Meier analysis of cluster 1 and cluster 2. CDF, cumulative distribution function; NSCLC, 
non-small cell lung cancer. 

 

Consensus clustering and principal 
components analysis of differentially expressed 
autophagy-related genes identified two 
clusters of NSCLC 

Autophagy may have different expression 
patterns among NSCLC patients, which partially 
affects the prognosis and gene expression signature. 
In this study, 23 differentially expressed autophagy- 
related genes were used to identify autophagy 
subtypes associated with overall survival of NSCLC. 
Consensus clustering was used to explore the 
similarity of 23 differentially expressed autophagy- 
related gene expression patterns. By selecting k value 
of 2, we obtained the optimal cumulative distribution 
function (CDF) value and classified the NSCLC 
patients into 2 clusters (Figure 4A-C). Principal 
components analysis (PCA) revealed two significantly 
different distribution patterns of NSCLC patients. The 
samples of cluster 1 and cluster 2 were distributed on 

the left side and right side, respectively (Figure 4D). 
Consensus clustering and principal components 
analysis suggested that autophagy may plays a role in 
the occurrence and development of NSCLC. Besides, 
to explore whether these 2 clusters will affect the 
clinical outcomes, we constructed a prognostic 
classifier using Kaplan-Meier analysis. The results 
showed that the prognosis of cluster 2 expression 
pattern is better than cluster 1 (p = 0.031) (Figure 4E). 
In detail, the five-year overall survival rate in cluster 2 
(43.2%) is better than cluster 1 (40.4%), cluster 2 also 
have better ten-year overall survival rate (29.1%) than 
cluster 1 (20.4%). There is a difference in fifteen-year 
overall survival for cluster 1 have 10.4% fifteen-year 
overall survival, while there is no clue about cluster 2. 
Besides, we also noticed that the survival curves of 
these two clusters crossed before year fifteen, which 
mean there are other factors affect prognosis and it 
should be further discussed in the future. 
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Figure 5. Functional enrichment analysis of DEGs between cluster 1 and cluster 2. (A) Volcano plot of the 109 DEGs, including 28 up-regulated genes in cluster 1 and 
81 up-regulated genes in cluster 2. (B-C) The bar plot and bubble plot of significant GO terms from 28 up-regulated genes in cluster1. (D) The bubble plot of enriched KEGG 
pathways from 28 up-regulated genes in cluster1. (E-F) The bar plot and bubble plot of significant GO terms from 81 up-regulated genes in cluster2. (G) The bubble plot of 
enriched KEGG pathways from 81 up-regulated genes in cluster2. (H-I) PPI networks of the DEGs from cluster 1 and cluster 2, respectively. DEGs, differentially expressed genes; 
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, Protein-protein interaction. 

 

Identification of differentially expressed genes 
(DEGs) and functional enrichment analysis 
between cluster 1 and cluster 2 

Since different clusters have shown variations in 
the autophagy-related genes and patient prognosis, 
we explored the DEGs in the cluster 1 and cluster 2. A 
total of 109 DEGs (28 up-regulated genes in cluster 1 
and 81 up-regulated genes in cluster 2) were screened 
and visualized (Figure 5A). To explore biological 
functions of the prognostic value of DEGs from these 
2 clusters, GO and KEGG enrichment analysis were 
performed. The results showed the identified DEGs in 
cluster 1 mainly involved in biological processes were 

nucleosome assembly, chromatin assembly and 
nucleosome organization. The most significantly 
enriched cellular components were nucleosome, DNA 
packaging complex and protein-DNA complex. As for 
molecular function, which were statistically 
concentrated on nucleosomal DNA binding, 
nucleosome binding and chromatin DNA binding 
(Figure 5B-C). KEGG analysis result showed that 
DEGs in cluster 1 were enriched in six pathways, 
including systemic lupus erythematosus, alcoholism, 
viral carcinogenesis, necroptosis, transcriptional 
misregulation in cancer and shigellosis (Figure 5D). 
While the functional analysis results in cluster 2 
showed the DEGs mainly involved in vascular 
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process in circulatory system, regulation of blood 
vessel size and regulation of tube size in biological 
processes. While in cellular components the DEGs 
mainly enriched in lamellar body, rough endoplasmic 
reticulum and multivesicular body. As for molecular 
function, the DEGs mainly involved in carbohydrate 
binding, G-protein coupled peptide receptor activity 
as well as peptide receptor activity (Figure 5E-F). The 
KEGG analysis result showed that the DEGs were 
only enriched in renin secretion (Figure 5G). Besides, 
the STRING database and Cytoscape software were 
used to construct the PPI networks for DEGs of each 
cluster (Figure 5H-I).  

Identification of the significant mutation 

profile signature between cluster 1 and 
cluster 2 

The accumulation of somatic DNA mutation 
plays an important role in the formation of tumor. In 
this study, we explored the difference of mutation 
profile signatures for LUAD and LUSC based on the 
different prognosis between cluster 1 and cluster 2. In 
these 2 clusters, the proportion of missense mutations 
is the major mutation, the most variant type is SNP 
both in LUAD and LUSC. In the cluster 1, C > A 
(58996) is the highest mutation mode of SNP in LUAD 
(Figure 6A), while C > A (29600) is the main mutation 
mode of SNP in LUSC (Figure 6B). The average 
number of mutations in each sample is 136 in LUAD 

 

 
Figure 6. Identification of mutation profile signature in cluster 1 and cluster 2 of LUAD and LUSC. Summary of mutation data in cluster 1 (A) and cluster 2 (B) of 
LUAD. Summary of mutation data in cluster 1 (C) and cluster 2 (D) of LUSC. E-H, Driver gene mutations in different autophagy-related subtypes of NSCLC. The top panel shows 
the mutation rates (number of mutations) per patient in cluster 1 (E, G) and cluster 2 (F, H) of LUAD and LUSC, respectively. LUAD, lung adenocarcinoma; LUSC, lung squamous 
cell carcinoma; NSCLC, non-small cell lung cancer. 
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and 181 in LUSC. As for cluster 2, C > A (4873 and 
58996) is the highest mutation mode of SNP in LUAD 
and LUSC, the average number of mutations in each 
sample is 243 in LUAD and 183 in LUSC (Figure 
6C-D). 

In LUAD, 8 genes (TTN, MUC16, CSMD3, RYR2, 
TP53, LRP1B, ZFHX4 and KRAS) were mutated in 
both cluster 1 and cluster 2 among top 10 mutated 
genes, which means that the mutation rate of these 8 
genes have no significant difference between cluster 1 
and cluster 2. While the mutated FLG (21%) and 
USH2A (28%) are special for cluster 1 (Figure 6E), 
meanwhile the mutated KEAP1 (42%) and COL11A1 
(30%) are special for cluster 2 (Figure 6F). In LUSC, 9 
of top 10 mutated genes were consistent in these 2 
clusters, while KMT2D (22%) are special for cluster 1 
and XIRP2 (25%) are special for cluster 2 (Figure 
6G-H). Besides, the most significant mutated genes 
(Figure 7), mutation mode of SNP (Figure 8A-D), and 
the somatic interactions among these significant 
mutated genes were also visualized (Figure 8E-H). 

Identification of immune cell infiltration 
signatures of each cluster based on tumor 
mutation burden (TMB) 

A lot of studies have showed that autophagy 
was involved in tumor microenvironment, and the 
autophagy-related genes could affect the immune 
responses. Based on the different prognosis between 
these 2 clusters and different TMB level for the 
samples in each cluster, we explored the difference of 
immune cell infiltration signatures for each cluster in 

both LUAD and LUSC according to the TMB levels. 
The fractions of infiltrating immune cells in tumor 
tissue were calculated by CIBERSORT algorithm. The 
cut-off of p value is 0.05. In LUAD, there are 436 
patients which including 205 low TMB samples and 
198 high TMB samples in cluster 1. In cluster 2, there 
are 17 low TMB and 13 high TMB samples. In LUSC, 
there are 128 and 97 low TMB samples, 124 and 94 
high TMB samples in cluster 1 and cluster 2, 
respectively. Immune cell infiltration signature of 
cluster 1 and cluster 2 both in LUAD and LUSC 
patients were displayed as boxplots (Figure 9A-D).  

The results shown that cluster 1 of LUAD have 
higher fraction of T cells CD8 (p < 0.001), T cells CD4 
memory resting (p < 0.001), T cells CD4 memory 
activated (p < 0.001), Macrophages M1 (p < 0.001), 
Dendritic cells resting (p < 0.001), Mast cells resting (p 
< 0.001), Monocytes (p = 0.001), Dendritic cells 
activated (p = 0.002), T cells follicular helper (p = 
0.003), NK cells resting (p = 0.004) and Plasma cells (p 
= 0.048) (Figure 9E-F). As for LUSC, both in cluster 1 
and cluster 2 have higher fraction of Macrophages M1 
(p = 0.003 and p = 0.038). Cluster 1 have a higher 
fraction of B cells memory (p = 0.020), Plasma cells (p 
= 0.010), T cells CD4 memory resting (p = 0.018), T 
cells follicular helper (p = 0.023), T cells regulatory 
(Tregs) (p = 0.009) and NK cells activated (p = 0.002). 
Higher fraction of Monocytes (p = 0.035) and 
Macrophages M0 (p = 0.018) seems associated with 
cluster 2 (Figure 9G-H). 

 

 
Figure 7. Visualization of mutation profile signature in cluster 1 and cluster 2 of LUAD and LUSC. Variant allele frequency (VAF) in cluster 1 (A, C) and cluster 2 
(B, D) of LUAD and LUSC, respectively. Gene cloud maps of mutant genes in cluster 1 (E, G) and cluster 2 (F, H) of LUAD and LUSC, respectively. Gene names size is 
proportional to the number of samples each gene mutation. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma. 
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Figure 8. Visualization of mutation profile signature in cluster 1 and cluster 2 of LUAD and LUSC. Mutation mode of SNP in cluster 1 (A, C) and cluster 2 (B, D) 
of LUAD and LUSC, respectively. Somatic interactions of significant mutated genes in cluster 1 (E, G) and cluster 2 (F, H) of LUAD and LUSC, respectively. LUAD, lung 
adenocarcinoma; LUSC, lung squamous cell carcinoma. 

 

Table 3. Drug-gene interactions of significant mutated genes in each cluster. 

Gene  Cluster Interaction types Drug name Drug claim name 
KEAP1 2 inhibitor BARDOXOLONE METHYL CHEMBL1762621 
KEAP1 2 inhibitor DIMETHYL FUMARATE CHEMBL2107333 
COL11A1 2 - OCRIPLASMIN CHEMBL2095222 
COL11A1 2 - COLLAGENASE CLOSTRIDIUM HISTOLYTICUM CHEMBL2108709 
FLG 1 - PROPIONIBACTERIUM  ACNES 
KMT2D 1 - BICALUTAMIDE Bicalutamide 

 
 

Significant oncogenic pathways and drug-gene 
interactions between cluster 1 and cluster 2 

For the DEGs from different clusters, significant 
mutation profile signature from LUAD and LUSC 
were screened. Besides, we also explored the 
oncogenic pathways between cluster 1 and cluster 2. 
After we visualized all the oncogenic pathways, we 
found that the mutated oncogenic pathways are 
mainly involved in WNT, RTK-RAS, PI3K, NOTCH 
and Hippo signaling pathways both in LUAD and 
LUSC according to the cluster classification (Figure 
10). The most significant difference of the same 
mutated signaling pathway between cluster 1 and 
cluster 2 is the numbers of mutated genes and 
mutated sample numbers. It seemed that cluster 1 
have more mutated samples and genes compared to 
cluster 2 both in LUAD and LUSC. 

After screening mutated oncogenic pathways, 
we also performed drug-gene interactions among the 
mutated top 5 genes in these 2 clusters (Figure 

11A-D). As the results displayed, the plot shows 
potential druggable gene categories along with up to 
top 5 genes (if any) involved in them. Besides, the 
overview of differentially mutated genes according to 
cluster classification were visualized (Figure 11E-F). 
Meanwhile, the mutated gene interaction to drugs 
according to cluster classification were further 
explored (Table 3). 

Discussion 
Autophagy underlying the initiation, 

progression, and metastasis of various cancers, 
including NSCLC. While aberrantly regulated 
autophagy in the prognosis of NSCLC and the 
mechanisms are less well defined. It reported that 
deregulation of UBE2C-mediated autophagy 
repression aggravates NSCLC progression [24]. 
TRIM59 could as a new molecular biomarker for 
predicting the prognosis of NSCLC patients [24]. The 
prognostic effect of circulating exosomes miR-425-3p 
on the response of NSCLC to platinum-based 
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chemotherapy [26]. In this study, we first screened 39 
differentially expressed autophagy-related genes, 
then according to their prognostic value, 23 of 39 were 
related to the overall survival for NSCLC. Differ from 
regular analysis of cox and logistic regression, we 
classified the NSCLC into 2 subtypes according to 
consensus clustering based on the 23 prognostic 
genes. Besides, Kaplan-Meier analysis showed 
different prognosis between cluster 1 and cluster 2 
subtypes. So according to these 2 clusters, DEGs of 
each cluster were identified to explore their biological 

functions. 
According to our present study, we identified 

two autophagy-related gene subgroups using 
consensus clustering analysis based on 23 prognostic 
autophagy-related genes, in which we found cluster 1 
have poor prognostic value in NSCLC. Considering 
the occurrence of mutation in NSCLC are very 
common, and the mutation site could be used as 
therapy target to improve the prognosis of NSCLC. At 
the same time, there are many studies focused on the 
relationship between mutation and immunotherapy, 

 

 
Figure 9. Identification of immune cell infiltration signatures of each cluster. The percent of 22 types of fractions of tumor infiltrating immune cell in cluster 1 (A) 
and cluster 2 (B) of LUAD. The percent of 22 types of fractions of tumor-infiltrating immune cell cluster 1 (C) and cluster 2 (D) of LUSC. Violin plots of immune cell infiltration 
signatures in cluster 1 (E, G) and cluster 2 (F, H) of LUAD and LUSC, respectively. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma. 
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such as the epidermal growth factor receptor (EGFR) 
mutations, which are the second most common 
oncogenic driver event in NSCLC [27]. Besides, 
Anti-PD1/PD-L1 immunotherapy has emerged as a 
standard of care for stage III-IV NSCLC over the past 
decade. Patient selection is usually based on PD-L1 
expression by tumor cells and/or tumor mutational 
burden. While mutations in oncogenic driver genes 
will modify the immune tumor microenvironment 
and may promote anti-PD1/PD-L1 resistance [28]. It 
is important to explore new mutation genes and 
investigated the biological functions to improve the 
prognosis. KMT2D mutation is associated with poor 
prognosis of NSCLC [29]. Patients with LUSC gain 
overall favorable survival advantage from TTN 
mutation type, and overall favorable survival and 
disease-free survival advantage from TTN/TP53 
double mutation [30]. Patients with TP53/EGFR 
double mutations, especially missense mutations, 
have shorter response rates and PFS when treated 
with EGFR TKI [31]. KRAS G12D and STK11 
mutations confer poor prognoses for patients with 
KRAS-mutant NSCLC [32]. In the current study, 
mutation profile signature showed that mutated FLG 
(21%), USH2A (28%) and KMT2D (22%) are special 
for cluster 1, mutated KEAP1 (42%), COL11A1 (30%) 
and XIRP2 (25%) are special for cluster 2. 

Autophagy was involved in tumor microen-
vironment and the autophagy-related genes could 
affect the immune responses. There is evidence that 
the microenvironment of NSCLC is rich in different 
types of immune cells which are associated with 
clinical outcomes [33,34]. The composition of the 
immune microenvironment differs across patients as 
well as in cancers of the same type. Early clinical 
studies revealed that immune cell infiltration had a 
major impact on the clinical course of several cancers 
[35-38]. Thus, we also pooled immune cell infiltration 
signatures for each cluster. In cluster 1, T cells CD8, T 
cells CD4 memory resting, T cells CD4 memory 
activated, Macrophages M1, Dendritic cells resting, 
Mast cells resting, Monocytes, Dendritic cells 
activated, T cells follicular helper, B cells memory, T 
cells regulatory (Tregs) and Plasma cells have 
significant different infiltration levels. While 
Monocytes (p=0.035) and Macrophages M0 seems 
associated with cluster 2. Combined with previous 
studies, CD8 T cells are an important immune cell in 
tumor immune microenvironment. In addition to 
CD8, the importance of other subtypes of immune 
cells, including CD4 T cell and macrophage has also 
been reported. It has been reported that increased 
CD4 and CD8 T cell abundance in tumor immune 
microenvironment is associated with better survival 
outcomes [39,40]. Macrophages are the most 

abundant cells, which performed several functions 
within the tumor microenvironment. Tumor-associ-
ated macrophages commonly refer to an alternative 
M2 phenotype, exhibiting anti-inflammatory and 
pro-tumoral effects. On the contrary, Macrophages 
M1 have pro-inflammatory effect and anti-tumoral 
effects [41]. In the current study, we identified 
immune cell infiltration signatures based on TMB. 
The results showed that higher fractions of T cells 
CD4 memory resting, T cells follicular helper and 
Plasma cells in cluster 1 both in LUAD and LUSC, 
which maybe the reason why cluster 1 have worse 
prognosis. According to the results, it seems that the 
different immune cell infiltration signatures between 
cluster 1 and cluster 2 could influence the prognosis of 
NSCLC. 

The oncogenic pathways involved in multiple 
cancers and related to the progression and prognosis 
of cancers, such as RTK−RAS, WNT, NOTCH, Hippo, 
PI3K, Cell Cycle, MYC, TGF−Beta and TP53 path-
ways. For instance, overexpression of Wnt-1, -2, -3, 
and -5a and of Wnt-pathway components Frizzled-8, 
Dishevelled, Porcupine, and TCF-4 is common in 
resected NSCLC and is associated with poor prog-
nosis [42]. Harmful NOTCH mutations are identified 
as new predictors of effective immunotherapy for 
NSCLC [43]. YAP1 is the main Hippo pathway 
effector and an effective oncogene. It is overexpressed 
in NSCLC and the loss of YAP1 could be used as a 
clinical indicator to predict neuroendocrine character-
istics and chemosensitivity [44]. G3BP1 may play a 
key role in activating the PI3K/AKT/mTOR pathway 
and can be used as a new prognostic biomarker for 
patients with NSCLC undergoing surgery [45]. 
KDM4A promotes the growth of NSCLC through 
Wnt/β-catenin signaling pathway and DLX5- 
mediated Myc expression [46]. In our study, we found 
that the mutated oncogenic pathways are mainly 
involved in WNT, RTK-RAS, PI3K, NOTCH and 
Hippo signaling pathways in each cluster. The main 
difference between cluster 1 and cluster 2 is the 
mutated sample numbers, mutated gene numbers and 
types. It seems that cluster 1 have more mutated genes 
and sample numbers, caused the different activity of 
oncogenic pathways compared to cluster 2, which 
may contribute to the different prognosis of each 
cluster. Gene-drug interactions mainly divided into 3 
categories, which including inhibitory interactions, 
induction interactions and phenoconversion interact-
ions. Among them, inhibitory and induction 
interactions could affect the pharmacokinetics of 
drugs. Besides, these interactions can occur with the 
administration of a perpetrator drug that alters the 
drug metabolism or transport, as well as with the 
presence of loss- or gain-of-function genetic variants 
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that alter function of enzymes [47]. In the current 
study, we identified the potential druggable gene 
categories along with up to top 5 genes (if any) 
involved in them and found that Keap1 in cluster 2, 
could inhibited pharmacokinetics of bradoxolone 
methyl and dimethyl fumarate both in LUAD and 

LUSC. However, this needs to be further verified in 
the future. We believe our findings could provide 
newly insight in both classification and personalized 
treatment strategy. 

 

 

 
Figure 10. Significant oncogenic pathways and drug-gene interactions in each cluster. The mutated oncogenic pathways are mainly involved in WNT (A-D), 
RTK-RAS (E-H), PI3K (I-L), Hippo (M-P) and NOTCH (R-U) signaling pathways both in cluster 1 and cluster 2 of LUAD and LUSC, respectively. LUAD, lung adenocarcinoma; 
LUSC, lung squamous cell carcinoma. 
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Figure 11. Drug-gene interactions among the significant mutated genes in these 2 clusters. Drug-gene interactions of top 5 mutated genes both in cluster 1 (A, C) 
and cluster 2 (B, D) of LUAD and LUSC, respectively. The plot shows potential druggable gene categories along with up to top 5 genes (if any) involved in them. Visualization of 
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differentially mutated genes in cluster 1 (E) and cluster 2 (F) among NSCLC patients. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; NSCLC, non-small cell 
lung cancer. 

 
In conclusion, based on autophagy-related gene 

expression characteristics, we used consensus 
clustering to identify 2 subtypes of NSCLC. These 2 
subtypes shown significant different mRNA 
expression signatures and different immune cell 
infiltration patterns and mutation signatures. These 
differences may affect the tumor progression and 
tumor prognosis. This study may be helpful to 
accurately classify NSCLC patients and provide 
newly insight in personalized treatment. 
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