Journal of Cancer 2023, Vol. 14 1809

ﬂf,;\'”"“;ﬁ [IVYSPRING .
v§ INTERNATIONAL PUBLISHER douv“ul of cu“cet‘

2023; 14(10): 1809-1836. doi: 10.7150/jca.84454

Research Paper

An Integrated Analysis Identified TAGLN2 As an
Oncogene Indicator Related to Prognosis and Immunity
in Pan-Cancer

Teng Pan, Shubin Wang, Zhiyu Wang™

Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.

P4 Corresponding author: Zhiyu Wang. drwangzhiyu@hebmu.edu.cn

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https:/ /creativecommons.org/licenses/by/4.0/).
See http:/ /ivyspring.com/terms for full terms and conditions.

Received: 2023.03.20; Accepted: 2023.06.03; Published: 2023.06.19

Abstract

Background: Transgelin-2 (TAGLN2) has long been regarded as an actin-binding protein that
modulates actin gelation and controls actin cytoskeleton dynamics. However, recent studies have
reported that TAGLN2 can directly or indirectly participate in multiple cancer-related processes,
including cell migration, proliferation, differentiation, and apoptosis. To further investigate the role of
TAGLN?2 in carcinogenesis, a comprehensive analysis was launched to evaluate the expression status and
prognostic value of TAGLN2 in pan-cancer.

Methods: Herein, data was retrieved from publicly online websites and databases, including The Cancer
Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE),
UCSC Xena, cBioPortal, Human Protein Atlas (HPA), TIMER2.0, CancerSEA, GDSC, and ImmuCellAl.
Gene expression pattern and its correlation with prognosis were assessed across cancer types.
Moreover, an analysis was conducted to explore the relationships between TAGLN2 and methylation,
copy number values (CNVs), tumor microenvironment (TME), immune cell infiltration,
immune-relevance genes, tumor mutation burden (TMB), microsatellite instability (MSI), and 1C50.
Additionally, R package “clusterProfiler” was utilized to perform enrichment analysis on TAGLN?2. Finally,
the ability of TAGLN2 as an oncogene was preliminarily verified in vitro in UCEC.

Results: Our findings revealed that TAGLN2 was specifically overexpressed and related to an
unfavorable prognosis in most cancers. There was a significant connection between TAGLN2 expression
and methylation and CNVs. Besides, we identified TAGLN2 correlated to TME, immune cell infiltration,
immune-relevant genes, TMB, and MSI, suggesting an immunoregulatory role in cancers. Notably,
TAGLN?2 expression showed a positive correlation with macrophages, and cancer-associated fibroblasts,
whereas a negative correlation with the infiltration degree of B cells. Mechanically, the results obtained
from Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) provided
theory-supportive evidence that TAGLN2 interlinkages with immunity and programmed cell death.
Overall, anti-tumor drugs were overtly associated with TAGLN2 dysregulation among diverse cancers.
At last, UCEC cell lines with TAGLN2-depleting had an inhibition of the migration and invasion ability.

Conclusions: These findings enriched the knowledge about the role of TAGLN2 in tumorigenesis and
progression, revealing TAGLN2 may serve as a potential therapeutic strategy for various malignancies.
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Introduction

The global cancer burden continues to increase  been developed, depending on the type and the stage
with substantial mortality[1]. Cancer treatment has  of the tumor[2]. Targeted and immune-based ther-
been always considered one of the most critical and  apies have already transformed the standard-of-care
vital themes of clinical issues. Many approaches have  for several malignancies[3]. However, there are still
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important challenges in the field of cancer therapy, on
the one hand, druggable genomic alterations are
diverse, and tumor heterogeneity and acquired
resistance are probably the main limitations for
effective targeted therapy. Besides, the long-term
survival benefits of immune checkpoint inhibitors are
restricted to a minority of patients[4]. Therefore,
predictive markers with robustly validated are
needed to help us optimize treatment delivery and
selection.

Actin-binding proteins (transgelins, TAGLNSs)
are regulated by alternative splicing, producing
multiple transcripts, consisting of TAGLN1, TAGLN2,
and TAGLN3[5]. Transgelins are a kind of protein that
regulates actin polymerization, aggregating (or
bundling), or cross-linking[6]. Of note, as a protein
affecting dynamics of the actin cytoskeleton via
stabilization of actin filaments, TAGLN?2 is also both
directly and indirectly involved in many cancer-
related processes such as migration, proliferation,
differentiation, or apoptosis[7]. A previous report
revealed that TAGLN2 could promote the prolife-
ration, invasion, migration, and epithelial-mesen-
chymal transition(EMT) of colorectal cancer cells by
activating STAT3 and regulating ANXA2 expres-
sion[8]. In Wang's study, TAGLN2 may promote the
invasion of papillary thyroid cancer cells via the
Rapl/PI3K/AKT signaling pathway. More import-
antly, the existing study provided important evidence
that hypoxia-inducible TAGLN2 was involved in the
selection of cancer cells with enhanced EMT
properties to overcome the detrimental environment
of cancer cells[9]. What is more, TAGLN2 was
interlinked with the function of dendritic cells[10],
cytotoxic T cells[11], and macrophages[12]. In recent
years, the TAGLN2 gene has attracted much interest
and attention, leading to further exploration and
investigation into its possible applications. However,
thorough research on TAGLN2 is lacking in
pan-cancer.

The emergence of high-throughput omics data
and the development of bioinformatics have revealed
a large number of potential biomarkers and patterns.
Bioinformatics technology has been rapidly deve-
loped and applied, which has greatly improved the
level of physiological mechanism research, the
accuracy of disease diagnosis and treatment, and the
targeting of drug application, making biomedical
research and application enter the era of digitalization
and simulation.

In our study, utilizing bioinformatics methods,
we carried out an in-depth pan-cancer analysis on
TAGLN2, comprising of expression level, prognostic
traits, alteration, DNA methylation, and functional
enrichment analysis. At the same time, the

correlations between TAGLN2 expression and
immune-related genes, immune cell infiltration, and
drug sensitivity were further evaluated. Overall, the
results indicated a higher expression of TAGLN2 in
most malignancies, which indicated a poor prognosis.
Its possible oncogenic mechanisms in cancer
development might be relevant to the tumor immune
microenvironment, programmed cell death, and drug
resistance. The detailed flow diagram of the research
can be found in Figure 1. To sum up, our pan-cancer
analysis of TAGLN?2 identified that it might function
as a unique indicator for clinical prognosis prediction
and is inextricably connected with the tumor immune
microenvironment.

Materials and Methods

Data Collection and Processing

The TCGA, GTEx, and CCLE transcriptome
profiling and associated clinical data were obtained
from UCSC XENA website (https://xenabrowser
.net/datapages). We evaluated the expression levels
of TAGLN2? in 31 normal tissues, 33 tumor tissues,
and multiple cancer cell lines by exploiting the
downloaded data. Further, to effectively address the
shortcoming of limited normal tissue data in many
TCGA cohorts, we combined the normal tissue data
from GTEx database and TCGA tumor tissue data to
explore the differential expression of 33 tumors. We
incorporated all available tumor tissue samples from
the TCGA database, and the detailed information for
each of the tumor tissues can be found on the website
(https:/ /xenabrowser.net/datapages/ ?dataset=Survi
val_SupplementalTable_S1_20171025_xena_sp&host=
https %3A %2F %2Fpancanatlas.xenahubs.net&remove
Hub=https %3A %2F %2Fxena.treehouse.gi.ucsc.edu%
3A443). Subsequently, we selected samples with
transcriptome data available, resulting in a final
sample size presented in Table S2. TAGLN2
expression data were normalized by log2 conversion.
Next, the expression of TAGLN2 in different cancer
types across different pathological stages according to
the World Health Organization (WHO), as well as its
paired differential expression, has been visualized in
the form of violin plots and box plots. Subsequently,
immunohistochemistry (IHC)-based protein expres-
sion images of TAGLN2 protein expression in clinical
specimens of cancer patients were collected from the
HPA database (https://www.proteinatlas.org/). In
addition, the HPA database had prepared us with the
gene-location cell pattern map to acknowledge the
TAGLN2 distribution.

Genetic Alteration Landscape

The cBioPortal (http://www.cbioportal.org/)
was a comprehensive cancer genomics resource
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database that provided a wealth of useful
information, such as the “Cancer Types Summary”,
which provided an overview of the types and
frequencies of mutations in the cancer genome; the
“mutations” panel displayed mutation sites in the
Pfam protein domain of the target gene; “View 3D
Structure” allowed us to view the location of mutation
sites in the three dimension (3D) structure, and the
“Plots” module displayed the findings of mRNA
expression and RSEM (batch normalized from
[Mlumina HiSeq RNASeqV2) throughout all TCGA
tumors. Download gene mutation data of each tumor
from the UCSC XENA database and use the R
package "maftools" to construct waterfall plots to
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Figure 1. A study workflow of systematic pan-cancer analysis of TAGLN2.

display the somatic mutation landscape based on
TAGLN2 expression, as well as forest plots to show
the difference of gene mutation.

Besides, CNVs and promoter methylation data
were also retrieved from the cbioportal database, the
Pearson correlations between TAGLN2 expression
and CNVs/promoter methylation in each kind of
tumor were calculated, at last, the correlations in
pan-cancer were visualized in the lollipops.
Furthermore, the effect of methylation on prognosis
was also checked by applying the “survival” R
packages to plot the Kaplan-Meier curves, which set
medium cutoff as the cutoff value.

ﬁart&lmmunity \

Immun'er”Ce‘II Infiltration

TMB and MSI /

\Immune-ReIated Genes

GSEA analysis‘
based on GO and KEGG

GSVA analysis

Single-cell Sequencmg Sensitive Durg Predlctlon
Analysis of TAGLN2

https://lwww.jcancer.org



Journal of Cancer 2023, Vol. 14

1812

Correlation Analysis of Prognosis

To evaluate the relationship between TAGLN2
expression and patients’ prognosis, the pan-cancer
samples were separated into TAGLN2 high- and low-
expression groups with the medium cutoff as the
cutoff value. The R-packages “survival” and
“forestplot” were employed to conduct univariate
Cox analysis, namely overall survival (OS), disease-
free interval (DFI), disease-specific survival (DSS),
and progression-free interval (PFI). Subsequently, the
R-packages “survminer” and “survival” were
adopted to generate Kaplan-Meier curves.

Relevance Between TAGLN2 Expression and
Tumor Microenvironment

The constant interactions between tumor cells
and the tumor microenvironment play decisive roles
in tumor initiation, progression, metastasis, and
response to therapies[13]. Therefore, TAGLN2 expre-
ssion and TME-related gene signature scores were
examined using R packages according to a previously
reported method[14]. Based on R packages
“ESTIMATE”, Stromalcore and ImmuneScore
specified the presence of stromal cells and the level of
infiltrating immune cells in each tumor sample,
forming the basis of ESTIMATEScore to evaluate the
tumor purity[15].

Immune Cell Infiltration Analysis

The tumor immune microenvironment (TIME)
mainly consists of distinct immune cell populations in
tumor islets and is highly associated with the
antitumor immunological state in the TME[16]. We
performed Pearson correlation analysis on immune
cell infiltration fetched from a total of 3 data sources,
one was Table S1 in the published article[17], and
another from the ImmuCellAl database (http://
bioinfo.life.hust.edu.cn/ImmuCellAl#!/), both of
which were analyzed with the CIBERSORT tool.
Eventually, = TIMER2.0(http://timer.cistrome.org/)
provided a more robust estimation of immune
infiltration levels for TCGA tumor profiles using six

state-of-the-art algorithms, namely, CIBERSORT,
CIBERSORT_ABS, EPIC, MCPCOUNTER,
QUANTISEQ, TIMER as well as XCELL[18].

Together, a comprehensive analysis and visualization
of tumor-infiltrating immune cells were provided.

Association Between TAGLN2 and
Immune-Related Genes

For the aim of identifying the relevance between
TAGLN2 expression and immune-associated genes,
such as immune-activating genes, immunosup-
pressive genes, chemokine genes, chemokine-receptor
genes as well as major histocompatibility complex

voou

(MHC) genes, R packages “limma”, “reshape2”, and
“RColorBreyer” were applied to conduct the investi-
gation. Simultaneously, co-association TAGLN2 with
the major immune checkpoint genes was performed
and ultimately presented in the form of chord
diagrams.

Correlation of TAGLN2 With TMB and MSI

The somatic mutation data of tumor mutation
burden were acquired from the Genomic Data
Commons (GDC) data portal website (https://portal
.gdc.cancer.gov/) of the UCSC Xena repository and
then managed with R package “mafTools” for
statistical analysis. And the microsatellite instability
data were obtained according to a previously
published report[19]. Finally, the results were
visualized in the form of radar plots, and scatter plots.

Functional Enrichment Analysis

Enrichment analysis helps researchers discover
novel biological functions, genotype-phenotype
relationships and disease mechanisms[20]. To gain a
comprehensive understanding of the underlying
mechanisms of TAGLN2, GSEA was launched to
investigate the potential signal paths of TAGLN2 in
the tumor process by using “clusterProfiler”. The 20
highest-ranked terms from Gene Ontology(GO) and
Kyoto Encyclopedia of Genes and Genomes(KEGG)
pathways with adjusted P<0.05 were displayed. With
regard to GSVA, the MSigDB database (https://
www.gsea-msigdb.org/gsea/msigdb/index.jsp) was
consulted to calculate the 50 best-characterized
pathway scores of each sample.

Regulated cell death (RCD) or programmed cell
death (PCD) is not only essential in embryonic
development but also plays an important role in the
occurrence and progression of diseases, especially
cancers. Escaping of cell death is one of the hallmarks
of cancer[21]. Hence, we performed correlation
analysis of TAGLN2 with key genes in multiple cell
death modalities to explore the possible connections
between TAGLN2 and programmed cell death
programs, such as autophagy, ferroptosis, and
pyroptosis.

Functional States Analysis

The relevance of TAGLN2 across 14 functional
states in distinct cancers was plotted at a single-cell
level through the “correlation plot” module of the
CancerSEA  website (http://biocc.hrbmu.edu.cn/
CancerSEA /home.jsp). And correlations between
TAGLN2 and functional states in indicated single-cell
datasets were depicted. T-SNE diagrams were
obtained to describe the distribution of cells, every
point represented a single cell, and the color of the
point represented the expression level of TAGLN2 in
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the cell.

Drug Sensitivity Analysis

On the basis of Spearman correlation analysis,
the relationship between TAGLN2 expression and the
half-maximal inhibitory concentrations (IC50) of 192
compounds was evaluated through the GDSC
(https:/ /www.cancerrxgene.org/) portal. Further,
the expected medication response differences for each
drug in the TAGLN2 high- and low-expression
groups were elucidated.

Clinical specimens

Six cases of UCEC tissues and paired adjacent
non-tumor tissues were collected from the Fourth
Affiliated Hospital of Hebei Medical University. All
the patients received a UCEC diagnosis with the
results of the histopathological examination. The
hospital ethics committee approved the ethical
consent.

Cell Culture

UCEC cell lines hEEC, ISHIKAWA, and KLE
were purchased from the China Center for Type
Culture Collection (CCTCC) and were cultivated in
DMEM (11995, Solarbio) with 10% FBS (Invitrogen) at
37°C incubator filled with 5% CO:x.

Immunofluorescence Assay

Cell immunofluorescence staining is a technique
used to identify specific proteins in cells. The process
began by fixing the cells on a slide and permeabilizing
the cells with a detergent (T8200, Solarbio). An anti-
body specific to the desired protein (1:50, sc-373928,
SANTA CRUZ) was then added and bound to the
protein. After washing away unbound antibodies, a
fluorescently labeled secondary antibody (1:600, Cat#:
A23310, Abbkine) was added and bound to the
primary antibody. Next, cells were stained by DAPI
(52100, Solarbio) for 30s, away from dark. The slide is
then washed and viewed under a fluorescent
microscope (Nikon, Tokyo, Japan).

RNA extraction and qRT-PCR assay

According to TRIzol reagent instructions
(SolarBio), total RNA was extracted from cells and
tissues. Following the guidelines of Transcriptor First
Strand c¢cDNA Synthesis Kit (Takara), RNA was
reverse-transcribed into complementary DNA
(cDNA). The real-time reverse-transcription poly-
merase chain reaction(qRT-PCR) was carried out by
the use of the GoTaq® qPCR Master Mix (Promega).
The GAPDH was used as endogenous control, and an
optimized comparative Ct (2-°°<t) value method was
used to measure the relative expression level. The
samples were tested in triplicate. The sequences of

primers were as follows: TAGLN2: F: AGTGACAT
TCCCAGAGAGCC; R: GGCCCCTAAATTTTGGT
CCC. GAPDH: F: TGTGGGCATCAATGGATTTGG;
R: ACACCATGTATTCCGGGTCAAT.

Cell transfections

ISHIKAWA cells were grown to 80%-90%
confluence in 6-well plates and then transfected with
Si-TAGLN2-1 and Si-TAGLN2-2 to knock down
TAGLN2 expression according to the manufacturer’s
protocol using Lipofectamine 2000 (Invitrogen). The
SiRNAs of TAGLN2 were synthesized by Gene-
pharma and the sequences for TAGLN2 SiRNAs were
as follows: Si-TAGLN2-1: GCAAGAACGUGAUCG
GGUUTT; Si-TAGLN2-2: CUGAGCGCUAUGGCA
UUAATT; Si-NC: UUCUCCGAACGUGUCACGUTT.
Fluorescence microscopy was used to calculate the
fluorescein-labeled cells. The western blot was
performed to verify the transfection downregulating
the level of TAGLN2 protein.

Wound-healing assay

A wound was made by scratching the cell
culture surface with a 200 pl pipette 24 hours after
transfection. Phase contrast images of the wound
were measured at Oh and 24h after the scratch. Three
separate experiments were performed, with cells
transfected with Si-NC serving as the control.

Transwell assay

The transfected cells were inoculated in 1x105
cells into the upper chamber, supplemented with 200
pl serum-free medium and 600 pl medium containing
10% FBS in the lower compartment. After 24 h of
incubation at 37°C, the cells in the upper chamber
were wiped off, while the invasive cells located in the
lower chamber were fixed with 4% paraformaldehyde
and stained with 1% crystal violet for 20 min. Of note,
depending on the experimental design, matrigel could
be present or absent. Count invading cells in five
randomly selected microscope fields.

Western blotting analysis

The total protein was collected in RIPA buffer
(Beyotime, Shanghai, China), and after that
centrifuged at 4°C for 10 min. Then we would collect
the supernatant and calculate the protein concen-
tration using a BCA kit (Beyotime, Shanghai, China).
The protein samples were electrophoresed on sodium
dodecyl sulfate-polyacrylamide (SDS-PAGE) gel and
then transferred to a polyvinylidene fluoride (PVDEF)
membrane. At room temperature, 5% milk powder
was sealed for 2 h and incubated with primary
antibody overnight at 4°C. The antibodies used were
as follows: GAPDH (1:10000, 10494-1-AP, Protein-
tech); TAGLN?2 (1:500, sc-373928, SANTA CRUZ). On
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the next day, after washing three times with TBST,
they were incubated with secondary antibodies for 1 h
at room temperature. The signal was visualized using
an enhanced ECL reagent (Multi Sciences).

Statistical Analysis

All gene expression data were normalized
through a log2 transformation for the subsequent
analyses. We calculated the correlation between two
variables utilizing Spearman’s or Pearson’s method.
The differences between two groups were analyzed
via Student’s t-test or Wilcoxon rank sum test.
One-factor Analysis of Variance(One-way ANOVA)
analyses of variance was used to calculate statistical
significance more than two groups. The Kaplan-Meier
curves and univariate Cox proportional hazard
regression models were applied to all survival
analyses. R (Version 4.1.2) and Rstudio software were
exploited to perform statistical analysis of the
bioinformatics results. And graphs were plotted using
GraphPad Prism9.0. Quantitative data analysis was
performed with the open-source software “Image]”. A
two-tailed P value of <0.05 indicated statistically
significant. *, P < 0.05; **, P < 0.01; and ***, P < 0.001,
respectively.

Results

Abnormal Expression Levels of TAGLN2 in
Various Malignancies

To begin with, we attempted to analyze the
expression pattern of TAGLN2 in various normal/
tumor tissues and cancer cells. The physiological gene
profiles of TAGLN2 generated by the GTEx project
reported the highest expression in lung tissues among
various normal tissues, but most other normal
samples had low levels of TAGLN2 expression
(Figure 2A). However, according to the TCGA
dataset, TAGLN2 mRNA expression was highly
expressed in a variety of malignancies, including
HNSC, CESC, LUAD, and CHOL, but low in LGG
(Figure 2B). Moreover, in the CCLE database, mRNA
expression data across 30 cancer cell lines were
examined. Cancer cells had approximately two-fold
increase in TAGLN2 expression compared with
corresponding normal tissues (Figure 2C). Besides,
given the limited number of normal samples in TCGA
dataset, and to enhance the comparison, we merged
the normal tissue data from GTEx database and
TCGA tumor tissue data to explore the expression of
33 tumors (Figure 2D). The results revealed that the
TAGLN2 mRNA expression was significantly
increased in 23 distinct types of tumors, including
BLCA, BRCA, CESC, CHOL, COAD, DLBC, ESCA,
GBM, HNSC, KIRC, KIRP, LGG, LIHC, LUAD, OV,

PAAD, PCPG, READ, SKCM, STAD, THCA, and
UCEC. Oppositely, TAGLN2 expression level was
downregulated in KICH, LAML, PRAD, and THYM.
Nevertheless, the expression of TAGLN2 in ACC,
LUSC, MESO, SARC, TGCT, UCS, and UVM did not
differ significantly.

Following that, we examined the association
between TAGLN2 expression and the pathological
stages of different cancers and found that TAGLN2
expression varied across different stages of BLCA,
KICH, KIRC, LIHC, LUSC, PAAD, TGCT, and THCA
(Figure 2E), though no significant correlation was
observed in other tumor types (Figure S1A). We
proceeded to perform paired differential expression
analysis of TAGLN2 between tumor and normal
tissues within TCGA and discovered that TAGLN2
was upregulated in BLCA, BRCA, CHOL, COAD,
ESCA, HNSC, KIRC, KIRP, LIHC, READ, STAD,
UCEC, and THCA when compared to their matched
normal samples (Figure 2F), and decreased
expression in PRAD and KICH was further confirmed
(Figure 2G). Next, we evaluated TAGLN2 protein
expressions based on the HPA database, which
displayed the IHC staining results of TAGLN2 protein
in tumor and normal tissues. The analysis revealed
that TAGLN2 expression in normal breast, stomach,
skin, kidney (Figure 2H), cervix, colon, endometrium,
nasopharynx, liver, lung, ovary, pancreas, and
urinary bladder (Figure S1B) tissues were weak or
negative, whereas in the corresponding tumor tissues,
such expressions were moderate or strong.
Furthermore, a diagram of the cellular distribution of
TAGLN2 indicated that TAGLN2 protein was mainly
localized to the cytosol, with some additional
localization to the actin filaments (Figure 2I). Thus,
the results suggested that TAGLN2 expression was
elevated at both mRNA and protein levels in most of
the cancers surveyed.

The Genetic Alteration Landscape and
Methylation Analysis of TAGLN2 in Multiple
Cancers

Through the publically online database
cBioPortal, we curated a pan-cancer analysis of
TAGLN2 genetic alteration in various tumor samples
from TCGA datasets (Figure 3A). We discovered that
genetic changes of TAGLN2 were mostly of the
“amplification” type, which were significantly
observed in almost all TCGA cancer cases. Mutations
were likewise distributed in multiple cancers.
Cholangiocarcinoma had the highest alteration
frequency (13.89%), followed by bladder urothelial
carcinoma (10.95%), liver hepatocellular carcinoma
(9.95%), and breast invasive carcinoma (8.95%), with
“amplification” as the prevalent alteration type.
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and paired tumor(right) tissues from HPA database. (I) Schematic diagram of distribution of TAGLN2 from HPA database. * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001,

and *¥** p-value < 0.0001.
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Figure 3. Mutation feature of TAGLN2 in different tumors revealing by use of the cBioPortal tool. (A) The alteration frequency with mutation type. (B) The alteration frequency
of mutation site. (C) The mutation site with the highest alteration frequency X153_splice/K153N in the 3D structure of TAGLN2. (D-F) Waterfall plots of tumor somatic
mutation in the high- and low-risk groups in BRCA(D), LIHC(E), and KIRC(F). * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, and **** p-value < 0.0001.
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It is worth noting that “mutation” was the
predominant alteration type in the UCEC samples
(1.51%). Moreover, “deep deletion” of TAGLN2 was
observed in prostate adenocarcinoma cases (0.81%)
and all kidney renal papillary cell carcinoma cases
(0.35%). Furthermore, “multiple alterations” were
detected in breast invasive carcinoma and lung
squamous cell carcinoma, with alteration frequencies
of 0.18% and 0.21%, respectively. The types, sites, and
case numbers of the TAGLN2 gene modification were
further depicted in Figure 3B. The total somatic
mutation frequency was 0.3%, with missense
mutations constituting the majority. Among, the
X153_splice/K153N alteration was detected in 1 GBM
case, 1 UCEC case, and 1 LUAD case, which could be
clearly observed in the 3D structure of the TAGLN2
protein (Figure 3C). And as stated in Figure S2A, the
types of TAGLN2 gene alterations were diverse,
resulting in changes in gene expression. As illustrated
in Figure 3D-F and Figure S2B, the patients were
categorized into two groups based on the median of
TAGLN2 expression: the high-expression group and
the low-expression group. We then analyzed the
differently mutated genes between the two groups,
and the results showed the top mutations occurred in
BRCA, LIHC, KIRC, ESCA, PAAD, and UCEC.
Intuitively, TTN, TP53, and MUC16 were the most
commonly mutated genes.

We then demonstrated the Pearson correlation
between TAGLN2 CNVs and mRNA expression.
Copy number variations (CNVs) are a form of genetic
variation, characterized by the variable number of
DNA fragments in the human genome. CNVs
generally range from a kilo base pairs to a mega base
pairs in length, and have been found to have a
significant impact on cancer biology and drug
treatment[22]. As shown in Figure 4A where the
numbers in the circles represented correlation scores,
in BRCA, BLCA, THYM, CHOL, LUSC, CESC, ESCA,
PAAD, KIRC, KICH, SARC, HNSC, LUAD, UCEC,
UVM, READ, UCS, KIRP, COAD, MESO, SKCM,
THCA, STAD, PRAD, LGG, and LIHC, there is a
substantial positive connection between TAGLN2
CNVs and mRNA expression. On the contrary, this
connection was not significant in ACC, DLBC, TGCT,
LAML, OV, PCPG, and GBM. Figure 4B showed the
top six with the highest correlation scores.

Similarly, the TAGLN2 DNA methylation
landscape in pan-cancer was sketched. DNA
methylation, as an epigenetic mechanism, occurs by
adding a methyl group of cytosines in position 5 by
DNA methyltransferases and abnormal methylation
is well-known hallmark of cancer development and
progression[23]. As illustrated by the lollipop chart in

Figure 4C, it reflected a significant correlation
between TAGLN2 expression and methylation in a
total of 30 tumors. Among the vast majority of the
tumors studied, the expression of TAGLN2 was
Pearson negatively linked with gene promoter
methylation, with the exception of LAML, KICH, and
OV. Figure 4D showed the top six with the highest
correlation scores.

In order to further explore the relationship
between promoter methylation and prognosis of
survival, we conducted Kaplan-Meier analysis (OS,
DSS, PFI, DFI) in pan-cancer. It was observed that in
patients diagnosed with HNSC, promoter hyper-
methylation was associated with a poorer OS (Figure
4E). On the other hand, for KIRC, LGG, LIHC, MESO,
THYM, and UVM, promoter hypermethylation was
linked to better survival. Additionally, the DFI
analysis showed that TAGLN2 methylation acted as a
protective marker in KIRC, PAAD, and THCA
patients, whereas a detrimental factor for BLCA and
STAD (Figure 4F). Besides, for PFI analysis, enhanced
TAGLN2 methylation was a protective factor for
KIRC, LGG, and THCA, although it was a harmful
factor for GBM and STAD (Figure 4H). What's more,
in terms of DSS, a higher TAGLN2 methylation level
distinctly tended to a better prognosis in patients
experiencing KIRC, LGG, and UVM (Figure 4G).

Prognostic Significance of TAGLN2

By analyzing the available data, we investigated
the prognostic significance of TAGLN2 in pan-cancer.
We assessed the OS, DSS, DFI, and PFI, solely. OS is
defined as the time from initial diagnosis to date of
death (due to any cause). Our Cox regression analysis
of OS revealed that high expression of TAGLN2 was
associated with shorter survival times in LGG, UVM,
LAML, LIHC, BRCA, MESO, KICH, GBM, PAAD,
KIRC, THYM, and ACC (Figure 5A). Interestingly,
similar results were obtained when we conducted the
Kaplan-Meier analysis, suggesting that TAGLN2
could be a risk factor in LGG, UVM, LAML, LIHC,
MESO, KICH, and ACC (Figure S3A).

DFI is defined as the period between the date of
diagnosis to the date of the first new tumor
progression event after the patient’s disease-free
status (after initial diagnosis and treatment). Our
analysis of DFI revealed that TAGLN2 was a high-risk
gene in PAAD, KIRC, LIHC, and CHOL (Figure 5B).
Additionally, Kaplan-Meier plotter results showed
that among individuals with PAAD, KIRC, and
CHOL (Figure S3B), those with high TAGLN2
expression were observed to have shorter survival
times.
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Figure 4. The correlation between TAGLN2 expression and CNVs and methylation. (A) The correlation between TAGLN2 expression and CNVs. (B) The top 6 with the
highest pearson correlation scores between TAGLN2 and CNVs. (C) The correlation between TAGLN2 expression and methylation. (D) The top 6 with the highest pearson
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correlation scores between TAGLN2 and methylation. (E-H) Kaplan-Meier curves illustrating the relationships between TAGLN2 methylation levels with OS(E), DFI(F), DSS(G),

and PFI(H) in the indicated cancers, respectively.
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Figure 5. The correlation between TAGLN2 expression and prognosis by Cox regression. (A-D) Forest plots revealing the relationship between TAGLN2 and OS(A), DFI(B),

DSS(C), and PFI(D) in indicated tumors, solely.

DSS is defined as the length of time between
initial diagnosis and date of death due to the
diagnosed type of cancer. For DSS, Cox regression
indicated that high TAGLN2 was a risk factor for
LGG, UVM, BRCA, LIHC, KIRC, KICH, PAAD,
MESO, GBM, KIRP, and THYM, while individuals
with DLBC had a longer survival time (Figure 5C). In

the Kaplan-Meier analysis, patients with increased
TAGLN2 levels had poorer DSS than those with
decreased TAGLN2 levels in LGG, READ, KIRC,
KICH, UVM, and PAAD (Figure S3C), whereas
higher TAGLN2 expression was associated with
better DSS in BRCA.
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Figure 6. The role of TAGLN2 in tumor microenvironment. (A) Heatmap depicting the correlation strength between TAGLN2 expression and TME-related terms in
pan-cancer. (B-D) The correlation of TAGLN2 expression with ESTIMATEScore(B), ImmuneScore(C), and StromalScore(D) in various cancers. * p-value < 0.05, ** p-value <

0.01, *** p-value < 0.001, and **** p-value < 0.0001.

Finally, PFl is defined as the period from the date
of diagnosis until the date of the first occurrence of a
novel tumor event, which includes progression of the
disease, local recurrence, distant metastasis, new
primary tumor, or death due to tumor. Our PFI
analysis using Cox regression identified that higher
TAGLN2 expression was a risk factor for LGG, KIRC,
UVM, PAAD, GBM, LIHC, KICH, THYM, BRCA,
KIRP, ACC, and MESO (Figure 3D). Moreover, highly
expressed TAGLN2 was associated with reduced PFI
in these cancers (Figure S3D). Based on the above
results, TAGLN2 expression 1is differentially
correlated to the survival prognosis of patients
bearing diverse cancers.

TAGLN2 is Correlated with TME in
Pan-cancer

Accumulating evidence shows that cellular and
acellular components in tumor microenvironment can

reprogram tumor initiation, growth, invasion,
metastasis, and response to therapies[24]. Therefore, it
was essential to explore the roles that TAGLN2
affected TME play in tumor development. The
heatmap provided in Figure 6A showed the
correlation grade between TAGLN2 expression and
the various TME terms, wherein antigen processing
machinery, DNA replication, base excision repair,
nucleotide excision repair, mismatch excision repair,
and DNA damage response had a strong positive
correlation with TAGLN2 expression levels in most
cancers.

To further validate the involvement of TAGLN2
in TME, we calculated the ESTIMATEScore,
ImmuneScore, and StromalScore in 33 cancer types
based on expression data profiles (Figure 6B-D). The
results of the ESTIMATE algorithm indicated that
TAGLN2 expression was positively correlated with
ESTIMATEScore, ImmuneScore, and StromalScore in
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KICH, PRAD, UVM, LGG, SARC, THCA, PCPG,
KIRC, DLBC, GBM, LIHC, KIRP, and BLCA. Yet
remarkable inverse correlations were observed
between TAGLN2 and ESTIMATEScore, Immune-
Score, and StromalScore in STAD and UCEC.

Furthermore, concerning Pearson’s r, the five
cancers with the most prominent positive correlations
of TAGLN2 expression and TME-relevant scores were
identified, for instance, KICH, PRAD, UVM, LGG,
and SARC (Figure S4A, sorted by ESTIMATEScore);
KICH, PRAD, UVM, LGG, and UCS (Figure S4B,
sorted by ImmuneScore); KICH, LGG, PRAD, TGCT,
and UVM (Figure S4C, sorted by StromalScore),
respectively. Collectively, we postulated that
TAGLN2 might be involved in remodeling the TME
in certain types of cancer.

The Relevance of TAGLN2 Expression and
Immune Cell Infiltration in Pan-cancer

Tumor-infiltrating immune cells play a
significant role in the promotion or inhibition of
tumor growth, such as tumor-infiltrating B lympho-
cytes (TIBs), CD8* T cells, and macrophages as
integral components of the tumor microenvironment,
exist in all stages of cancer and play important roles in
shaping tumor development[25-28]. Aiming to
investigate the correlation between immune cell
infiltration and TAGLN2 expression at the pan-cancer
level, we explored various publicly available data
repositories to analyze the relationship between these
two variables. According to the data published and
evaluated by the “CIBERSORT” algorithm, TAGLN2
expression was intuitively found to be positively
correlated with the infiltration levels of multiple
immune cells, namely macrophages, dendritic cells,
CD4* T cells, and neutrophils. Conversely, it was
observed to be negatively correlated with B cells,
naive T cells, and NK cells (Figure 7A). Furthermore,
an analysis of the potential relationship between
TAGLN2 expression and the infiltrating levels of
different immune cells in various cancer types was
conducted using the TIMER2.0 portal. As expected, a
significant positive correlation between TAGLN2 and
macrophages infiltrating, as well as a negative
association between TAGLN2 and the infiltration
level of B cells was observed (Figure 7B). The full
analysis results can be found in Figure S8. Notably,
we also proved a positive correlation between
cancer-associated fibroblasts and TAGLN2 expression
in most cancer types, excluding THYM and UCEC.
Consistent with the above findings, the data obtained
from the ImmuCellAl database revealed the same
results, displaying a positive correlation between
TAGLN2 expression and the level of macrophages in
pan-cancer (Figure 7C), while a converse association

was observed with B cells (Figure 7D). In short, these
results suggested that TAGLN2 may be implicated in
its tumorigenic role in most tumor types by regulating
the infiltration levels of immune cells such as
macrophages and B cells.

Association of TAGLN2 With Immune-related
Genes Across Multiple Cancers

Succeeding, the correlations of expression levels
between TAGLN2 and immune-related genes that
encode chemokines (Figure 8A), chemokine receptors
(Figure 8B), immune-activating genes (Figure 8C),
immunosuppressive genes (Figure 8D), and MHC
genes (Figure 8E) were probed across different
cancers. As evidenced by the findings, it can be clearly
established that almost all immune-related genes
were co-expressed with TAGLN2, with the omission
of CHOL. Specifically, chemokine receptors such as
CCR1, CCR5, and CXCR2, as well as chemokines such
as CXCL16, CXCL8, CXCL1, CCL20, and CXCL3,
were found to be strongly positively correlated with
TAGLN2 expression, particularly in THCA, PRAD,
KICH, OV, and UVM. In KICH, PRAD, OV, UVM,
and DLBC, the heatmap exhibited a close positive
relationship between TAGLN2 expression and
immune-activating and immunosuppressive genes. In
addition, we also itemized the correlations between
TAGLN2 and the major immune checkpoints in
pan-cancer, including LAG3, PDCD1, CTLA4, CD274,
and TIGIT (Figure S5). Moreover, a high degree of
correlation between TAGLN2 and MHC genes was
observed in most tumor types. Taken together, the
outcomes of these studies showed that TAGLN2 was
deeply involved in tumor immunity.

The Relationships Between TAGLN2
Expression and TMB and MSI

The TMB and MSI are known to contribute to the
neoantigen load in tumors, thereby promoting the
infiltration of immune effector cells, which has
become a major predictive marker for the effective-
ness of immune checkpoint blockade in recent years.
Thus, we evaluated the connection between TAGLN?2
and TMB, as well as MSI across 33 cancer types and
depicted the data in the form of Rader graphs and
scatter plotters. Accurately, a statistically significant
positive correlation between TAGLN2 expression and
TMB was observed in 6 cancer types, including ACC,
THYM, SARC, SKCM, LGG, and BRCA, but TAGLN2
was negatively correlated to TMB in LUAD, and
LAML (Figure 9A). Furthermore, significant
correlations between the expression of TAGLN2 and
MSI were found in 8 cancer types, namely SARC,
THYM, STAD, BRCA, LUAD, HNSC, OV, and DLBC,
in which LUAD, HNSC, OV, and DLBC patients were
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negatively correlated to TAGLN2 expression,
the other cancer types showed the opposite trend
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Figure 7. Relationship of TAGLN2 expression with immune cell infiltration analysis. (A) Heatmap depicting the relationship between TAGLN2 expression levels and the levels
of infiltration of 26 immune-related cells. (B) Heatmap depicting the correlation between TAGLN2 expression and macrophages, cancer-associated fibroblasts, and B cells
infiltration levels by using TIMER2.0 database. (C-D) Scatter plots displaying the pearson correlation between TAGLN2 expression and macrophage infiltration score(C) and B
cell infiltration score(D) by using ImmuCellAl database. * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, and **** p-value < 0.0001.
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Figure 8. Relationship of TAGLN2 expression and immunoregulators. Co-expression of TAGLN2 and 150 immune moderator genes of five immune pathways, including
chemokines(A), chemokine receptors(B), immune-activating genes(C), immunosuppressive genes(D), and MHC genes(E). * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001,
and *¥** p-value < 0.0001.
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Functional Enrichment Analysis of TAGLN2 in
Multiple Cancers

To investigate the potential functional
mechanism of TAGLN?2 in carcinogenesis, we carried
out GSEA and GSVA analyses in pan-cancer subjects
and the results of six tumors were presented in Figure
11-13.

In GO terms, we revealed that TAGLN2 mainly
focused on the immune regulation-related mecha-
nisms, especially for the neutrophil mediated
immunity, immune effector process, and multiple
cells activation involved in immune response.
Besides, we noticed that TAGLN2 was closely linked
to cell cycle or mitosis regulation in some certain
cancer types (Figure 11). Moreover, KEGG analysis
suggested that the role of TAGLN2 in the
pathogenesis of cancer may be related to programmed
cell death (such as apoptosis, and necroptosis),
epstein-barr virus infection, human immuno-
deficiency virus 1 infection, and cell junction (such as
“Tight junction” and “Focal adhesion”), etc. (Figure
12). Subsequent to the GSEA analysis, correlation
heatmaps between TAGLN2 and other programmed
cell death-related key genes (e.g. autophagy,
ferroptosis, and pyroptosis) were further generated,
which revealed a strong association between them in
a variety of tumors (Figure 10).

Afterward, GSVA analysis of different hallmark
pathways enrichment scores with TAGLN2 expres-
sion levels was displayed in the form of a heatmap
from the MsigDB database (Figure 13A). We
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amplified that TAGLN2 was positively correlated
with most cancer-promoting pathways, such as
glycolysis, apoptosis, hypoxia, EMT, PI3K AKT
MTOR signaling, and angiogenesis. Likewise, the
inflammatory response of cell immune factors, such as
interferon-gamma response, interferon-alpha res-
ponse, IL6, and TGF-beta, showed a strong positive
correlation with TAGLN2 in most tumors. These were
further corroborated by the results of Figure 13B.
These results suggested the possibility that TAGLN2
regulated tumor progression from various perspect-
ives, with the immunity and cell death/cycle-related
aspects being the focus.

Single-cell Functional Analysis of TAGLN2
Across Human Cancers

Here we verified that at single-cell resolution by
mining the CancerSEA database, there was positive
relativity between TAGLN2 expression and func-
tional states, including EMT, metastasis, invasion,
DNA damage, DNA repair, and hypoxia in multiple
cancers (Figure 14A). After that, we itemized the
correlation between TAGLN2 and the various
functional status in individual datasets (Figure 14B).
In agreement with the aforementioned results,
TAGLN2 positively correlated with metastasis in
AML-EXP0047, BRCA-EXP0052, and HNSCC-
EXP0063 single-cell datasets; with DNA repair in
LUAD-EXP0066, and NSCLC-EXP0068 single-cell
datasets. Moreover, the t-SNE diagram illustrated the
TAGLN2 expression profiles on a single cell basis
within these datasets (Figure 14C).
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Figure 9. The correlation between TAGLN2 expression and TMB, and MSl in cancers. (A) Rader map illustrating the correlations between TAGLN2 expression and TMB. (B)
Rader map illustrating the correlations between TAGLN2 expression and MSI. * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, and **** p-value < 0.0001.
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Figure 13. GSVA of TAGLN2 in pan-cancer. (A) Heatmap for different hallmark pathway enrichment scores with TAGLN2 expression level. (B) GSVA data of TAGLN2 in the
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Figure 14. The tumor-related biological functional status of TAGLN2 at a single-cell level according to CancerSEA database. (A) Average correlations between TAGLN2 and
functional states in different cancers. (B) The correlation between TAGLN2 expression and different tumor functional status in indicated datasets. (C) T-SNE diagram presenting
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Study on Correlation Between Drug
Sensitivity (IC50) and TAGLN?2 Expression

Gene alterations strongly influence clinical
responses to treatment and in many instances are
potent biomarkers for response to drugs[29]. As a
result, we incorporated large drug sensitivity and
genomic datasets (GDSC database) to explore the
association between mRNA expression levels of
TAGLN2 and IC50 to antitumor drugs. We conducted
correlation analysis for 192 drugs, and eventually, 130
drugs were proved to be correlated with TAGLN2, of
which 127 were positively correlated and 3 were
negatively correlated (Table S1). Besides, there was
no significant relevance between TAGLN2 and 1C50
in a total of 62 compounds. We exhibited the top 8
drugs with the strongest positive correlations, includ-
ing Daporinad, Sorafenib, Sabutoclax, Cytarabine,
Vorinostat, Oxaliplatin, TAF1_5496, and Nutlin-3a(-)
(Figure 15A), together with the only 3 drugs with the
negative correlations, namely Dasatinib, Stauro-
sporine, and Sapitinib (Figure 15B). The results of the
complete drug sensitivity analysis were unveiled in
Table S1. According to incomplete statistics, the
commonly used anti-tumor drugs in the clinical
treatment of carcinoma, such as 5-fluorouracil,
cisplatin, gemcitabine, paclitaxel, crizotinib, oxalipla-
tin, niraparib, and tamoxifen, had higher IC50 values
(worse efficacy) in patients with high TAGLN2
expression (Figure S7). Overall, these results hinted
that the expression level of TAGLN2 had an impact
on the sensitivity of anti-tumor drugs.

TAGLNZ2 was highly expressed and influenced
the migration, and invasion of UCEC cells

According to the aforestated analysis results, we
recognized the potential role of TAGLN2 in
pan-cancer, especially in UCEC. Therefore, we
selected UCEC as a representative type, with in vitro
experiments to further validate the expression pattern
and biological function of TAGLN2 in UCEC. In line
with the aforestated analysis results, our result in
Figure 15F demonstrated that the TAGLN2 protein
was distributed in the whole cells and the abundance
in the cytoplasm by immunofluorescence experi-
ments. Subsequently, we confirmed that TAGLN2
was highly expressed in UCEC cells, including
ISHIKAWA, and KLE, when compared to the normal
human uterine endometrial epithelium cell line
(hEEC) (Figure 15C). The result of qRT-PCR and
western blot demonstrated that TAGLN2 was
remarkably upregulated in UCEC tissues with the
peritumoral tissues (Figure 15D-E). Next, according
to the expression level of TAGLN2 in 2 UCEC cell
lines, we chose the cell line with the highest

endogenous expression, ISHIKAWA, to conduct
knockdown analysis and subsequent cell functional
experiments.

As evidenced in Figure 15G-H, the results of
fluorescence microscopy and western blot indicated
Si-TAGLN2-1 had more excellent efficiency in the
knockdown of the TAGLN2 expression. By perform-
ing wound healing and transwell assays, the
migration and invasion capacities were suppressed of
the si-RNA-transfected cells (Figure 15I-J). All in all,
consistent with previous studies, in UCEC, TAGLN2
was upregulated in cell lines and tumor tissues and
led to a pro-tumorigenic effect.

Discussion

Cancer is a serious and life-threatening disease
that affects millions of people around the world. In
recent years, advancements have been made in the
treatment of cancer, however, the current treatments
for cancer are not always effective. By exploring the
genetic, epigenetic, and other molecular components
that cause cancer, such as identifying specific genes or
proteins involved in the cancer process, novel
candidates for improved cancer treatments can be
uncovered.

TAGLN2, located on the human chromosome
1g23.2 region, is a member of the transgelins family
and encodes a 199 amino acid protein. Studies on
TAGLN2 in the context of tumor progression have
garnered considerable interest due to its ability to
modulate the tumor microenvironment and promote
tumor angiogenesis[30, 31], invasion, and meta-
stasis[32, 33]. Nevertheless, the exact mechanism of
TAGLN2 in cancers remains largely unknown and
research into it is still in its early stages. Thus, on the
premise of the available public platforms, we
operated a pan-cancer analysis, which provided
valuable insights into the impact of TAGLN2 on
multiple cancer types.

We first monitored in detail the expression levels
of TAGLN2 mRNA and protein in human organs,
tissues, and cell lines and compared them with those
found in various cancers. Our findings revealed that
TAGLN2 was extensively upregulated in 23 cancers,
while presenting lower expression in KICH, LAML,
PRAD, and THYM as compared to adjacent and
normal tissues. The tumor cell lines expression levels
from the CCLE confirmed the TAGLN2 mRNA
expression discrepancy. Our results were further
reinforced by the IHC analysis from HPA. These
results were in accordance with previous reports
regarding colorectal cancer[8], gastric cancer[30],
bladder cancer[34], clear cell renal cell carcinoma[35],
glioma[36], and breast cancer[37]. Meanwhile, in
patients having BLCA, KICH, KIRC, LIHC, LUSC,

https://lwww.jcancer.org
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PAAD, TGCT, and THCA, TAGLN2 expression was  might serve as an oncogene for tumor development
analyzed to be correlated with the advanced cancer = and progression.
stage. Together, these results indicated that TAGLN2
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Figure 15. The correlation between drug sensitivity and TAGLN2 expression levels, as well as the validation of TAGLN2 effects on UCEC. (A) The top 8 with the positively
highest spearman correlation scores. (B) The only 3 with the negatively highest spearman correlation scores. (C, D) TAGLN2 mRNA expression in UCEC cell lines(C) and paired
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tissues(D). (E) Western blot validation of TAGLN2 protein expression in UCEC paired tissues. (F) Protein distribution of TAGLN2 in ISHIKAWA and KLE cell lines. Blue
fluorescence, DAPI, a specific dye staining DNA to localize the cell nucleus; red fluorescence, DyLight, combines with primary antibody, showing the distribution of target protein.
(G-H) The fluorescence images(G), and western blot result(H) presenting the TAGLN2 knockdown efficiency of transfection in ISHIKAWA cells. (I) Wound healing assays in
TAGLN2-knockdown ISHIKAWA cells following transfection with the Si-TAGLN2-1. (J) Transwell assays in TAGLN2-knockdown ISHIKAWA cells following transfection with
the Si-TAGLN2-1, invasive cell numbers in the lower panel. * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, and **** p-value < 0.0001.

Later on, we evaluated the prognostic traits of
TAGLN2 in 33 types of cancers which was a
meaningful study to facilitate the translation of basic
science to clinical studies. To get multifaceted results,
four prognostic indexes (OS, DSS, DFI, and PFI) and
two methods of statistics (Cox proportional hazard
models and Kaplan-Meier survival curves) were used
to analyze the data. In terms of OS, TAGLN2 was a
hazard factor in several cancers, including LGG,
UVM, LAML, LIHC, MESO, KICH, and ACC, and
was correlated with shorter survival times.
Simultaneously, high TAGLN2 showed as a risk
factor in PAAD, KIRC, and LIHC, for DFI, DSS, and
PFI. Existing evidence also suggested that TAGLN2
can be used as a single indicator to explain the
survival probability of patients with KIRC[35].

Likewise, Zhou et, al. proposed TAGLN2 was a
novel target gene for the diagnosis, treatment, and
prognosis of cervical cancer[38]. According to a
published report, patients with high TAGLN2 mRNA
expression were correlated with unfavorable overall
survival, especially in estrogen receptor(ER)-negative
breast cancer patients[37]. Additionally, a new 4-gene
molecular marker that incorporated TAGLN2 was
identified as an independent predictor of prognosis in
patients with diffuse gliomas[39]. These results
implied that elevated TAGLN2 expression may be
related to increased mortality in these cancers and
TAGLN2 tends to be an excellent prognostic value of
several cancer types.

Gene alterations play a prominent role in driving
cancer initiation and progression[40]. Initially, we
displayed the genetic alteration landscape of
TAGLN2 across all cancer types in the TCGA cohort,
depicting that the most frequent alteration was
amplification. And correlation analysis of CNVs
levels of TAGLN2 and TAGLN2 expression levels
showed a significant association between the two in
26 cancers. Huang et, al. clarified the transcriptional
deregulation of TAGLN2 could be ascribed partially
to their genomic aberrations in human hepatocellular
carcinoma[41]. Of note, although TAGLN2 expression
has been clarified in several cancers hitherto, its
related research about TAGLN2 gene alteration in
human cancers should be deeply explored in the
future.

Epigenetic deregulation is a hallmark of cancer,
and there has been increasing interest in therapeutics
that target chromatin-modifying enzymes and other
epigenetic regulators[42]. As one of the most

abundant and well-studied epigenetic modifications,
DNA methylation plays an essential role in normal
development and cellular biology. Global alterations
to the DNA methylation landscape contribute to
alterations in the transcriptome and deregulation of
cellular pathways[43]. Our study revealed that
TAGLN2 expression was significantly inversely
correlated with DNA methylation in various
malignancies. Zhang et al. unearthed that lysine-40
succinylation ~of TAGLN2 induces glioma
angiogenesis and tumor growth through regulating
TMSB4X[31].

Following that, promoter hypermethylation in
TAGLN2 was strongly associated with tumor
prognosis. Among them, TAGLN2 promoter
hypermethylation resulted in better OS in patients
diagnosed as KIRC, LGG, LIHC, MESO, THYM, and
UVM, whereas the opposite was true for HNSC
patients. However, additional evidence is merited for
the potential role of TAGLN2 DNA methylation in
tumorigenesis, which certainly offers new ideas and
directions for future studies. These observations led
us to hypothesize that mutations and epigenetic status
of TAGLN2 in the genome might be involved in
tumorigenesis.

TME is an integral part of cancer. Recognition of
the essential nature of the TME in cancer evolution
has led to a shift from a tumor cell-centered view of
cancer development to the concept of a complex
tumor ecosystem that supports tumor growth and
metastatic dissemination[44]. The interaction of TME
with cancer cells is responsible for tumor develop-
ment, progression and drug resistance[45].

The present research findings demonstrated that
TAGLN2 expression in 33 malignancies had a positive
correlation with TME involving antigen processing
machinery, DNA damage, and repair; the latter two of
these accounted for the majority. Interestingly, cancer
cells are often characterized by abnormalities in DNA
damage response including defects in DNA
repair[46]. Deficiency in DNA damage response
(DDR) genes leads to impaired DNA repair functions
that will induce genomic instability and facilitate
cancer development[47]. Consequently, TAGLN2
may influence DNA damage and repair and contri-
bute to carcinogenesis. We calculated StromalScore
and ImmuneScore to predict the level of infiltrating
stromal and immune cells, which form the basis for
the ESTIMATEScore to infer tumor purity in tumor
tissue. And on the whole, higher StromalScore,
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ImmuneScore, and lower tumor purity were observed
positive correlation with tumor stage and poor
OS[48]. Concerning the ESTIMATEScore, Immune-
Score, and StromalScore, we observed that TAGLN?2
had a considerably positive association in a variety of
cancers, but only a negative association in STAD and
UCEC when employing the TCGA cohort.

Immune cells, a key component of the TME, can
protect us against tumor cells by inducing an anti-
tumor immune response, such as tumor-infiltrated B
cells that play an important role in humoral
immunity[49]. On the other hand, they can also be
pro-tumorigenic, as exemplified by tumor-associated
macrophages that promote tumor progression
through angiogenesis and lymphangiogenesis,
immune suppression, hypoxia induction, tumor cell
proliferation, and metastasis[25, 50]. In our investi-
gation, we measured the quantity of immune cells
infiltrating the 33 malignancies, which highlighted
that TAGLN2 expression had a positive correlation
with macrophages, dendritic cells, CD4* T cells, and
neutrophils and an inverse relationship with the
infiltration level of B cells. Based on the positive
correlation between TAGLN2 and tumor-associated
macrophages, we can speculate that the tumor-
promoting effect of TAGLN2 is partially due to the
immunosuppressive phenotype of tumor-associated
macrophages. At the same time, we also found a
positive correlation between TAGLN2 and cancer-
associated fibroblasts in most tumors examined,
cancer-associated fibroblasts within the TME have
been shown to play several roles in the development
of a tumor, including the secretion of growth factors,
inflammatory ligands, and extracellular matrix
proteins that stimulate cancer cell proliferation,
therapy resistance, and immune exclusion[51]. Fur-
thermore, our study also uncovered the co-expression
correlation of TAGLN2 with immune-related genes,
including chemokine, chemokine receptor, MHC,
immunostimulatory, and immunosuppressive genes,
and the outcomes altogether showed that TAGLN2 is
broadly involved in cancer immunity.

TMB and MSI are approved for clinical use to
predict response to immunotherapy with immune
checkpoint inhibitors in cancer patients[52]. Studies
have shown a sustained clinical response to immune
checkpoint inhibitors with dramatic clinical improve-
ment in patients with MSI-H[53]. MSI as a predictive
factor for treatment outcome of gastroesophageal
adenocarcinoma[54]. For most cancer histologies, an
association between higher TMB and improved
survival was observed[55]. The present study found
that TAGLN2 had a remarkable correlation with TMB
in 8 cancers and MSI in 8 cancers. To this, these results
suggested that TAGLN2 seemed to be capable of

guiding the treatment of cancer to a certain degree.

After constructing a robust link between
TAGLN2 and TME, we continued to use the GSEA
analysis and GSVA analysis to explore the regulatory
mechanism of TAGLN2 in the context of pan-cancer.
GO analysis displayed the role of TAGLN2 in
immune regulation-related mechanisms. Supporting
this, Jun’s team declared that TAGLN27/- DCs
exhibited significant defects in their abilities to home
to draining lymph nodes(LNs) and to form optimal
contacts with cognate CD4* T cells to prime T cells,
and these changes were associated with a failure to
suppress tumor growth and metastasis of B16F10
melanoma cells in mice[10]. They also revealed a
novel function of TAGLN2 in enhancing T cell
activation by stabilizing the immunological syn-
apse[56]. Besides, TAGLN2-deficient macrophages
showed defective phagocytic functions of IgM- and
IgG-coated sheep red blood cells as well as
bacteria[12]. KEGG analysis and programmed cell
death-related key genes analysis uncovered another
major portion of the possible mechanisms through
which TAGLN2 operates, namely related to program-
med cell death, such as apoptosis, necroptosis,
autophagy, ferroptosis, and pyroptosis. Over the past
decades, cancer drug discovery has significantly
benefited from the use of small-molecule compounds
to target classical modalities of cell death such as
apoptosis, while newly identified cell death pathways
has also emerging their potential for cancer drug
discovery in recent years[57-61]. GSVA analysis
further supplemented the above results, demons-
trating the correlation between TAGLN2 and
glycolysis, apoptosis, hypoxia, EMT, PI3K AKT
MTOR  signaling, inflammatory response, and
angiogenesis. The above results provided the
theoretical basis for TAGLN2 as a therapeutic target
from different angles, making it a promising strategy
for cancer therapy.

Although high functional heterogeneity of
cancer cells, single-cell sequencing technology
provides an unprecedented opportunity to decipher
diverse functional states of cancer cells at single-cell
resolution[62]. We identified that, at single-cell
resolution, a positive correlation existed between
TAGLN2 expression and functional states, such as
EMT, metastasis, invasion, DNA damage, DNA
repair, and hypoxia, across multiple cancers.

In terms of drug sensitivity to TAGLN2, 127 out
of 192 antitumor drugs, including many common
drugs, were less effective in the TAGLN2 high-
expression group. Consistently, the inhibition of
TAGLN2 expression with small interfering RNA
sensitizes a paclitaxel-resistant human breast cancer
cell line (MCF-7/PTX) to paclitaxel[63]. Phenolic
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compounds such as paeonol and salvianolic acid A
can reverse the paclitaxel resistance in MCF-7/PTX
cells as these compounds can both decrease TAGLN2
expression[64-67]. In line with these findings, Liu et,
al. demonstrated TAGLN2 promotes paclitaxel
resistance and the migration and invasion of breast
cancer by directly interacting with PTEN and
activating the PI3K/Akt/GSK-3f pathway[68].
TAGLN2 may therefore be wuseful as a novel
therapeutic target to reverse the failure of treatments
for diverse malignancies to some extent.

At last, we tested TAGLN2 expression and
function in UCEC, which is a gynecological malignant
tumor with a low survival rate and poor progno-
sis[69]. Meanwhile, the function of TAGLN?2 in UCEC
has not been validated, hence we selected UCEC to
conduct further verification. Initially, we tested
TAGLN? distribution in cancer cells, and in line with
our results, we unraveled that TAGLN2 was indeed
abundant in the cytoplasm. TAGLN2 was also
reported to be localized in the cytoplasm in Xiao's
research[70]. And in accordance with our findings, we
discovered that TAGLN2 was indeed upregulated
both in UCEC cell lines and tumor tissues. More
importantly, blocking TAGLN2 could significantly
suppress the migration, and invasion of UCEC cells,
suggesting that TAGLN2 may exert an oncogenic
function in UCEC. However, the functional roles and
specific molecular mechanisms of TAGLN2 need to be
further clarified in UCEC.

Overall, our study is the first comprehensive
analysis of TAGLN2 at pan-cancer. The findings
presented in this study highlight the potential of
TAGLN2 as a valuable biomarker for prognosis and
immunotherapy and offer important implications for
the development of novel therapies. Of note, we
provide several unique perspectives on the potential
use of TAGLN2 as a therapeutic target for cancer
treatment. Firstly, our results reveal a potential role
for TAGLN2 in the regulation of diverse subroutines
of programmed cell death, including apoptosis,
necroptosis, autophagy, ferroptosis, and pyroptosis,
which have recently been reported to play significant
roles in the modulation of cancer progression and are
considered a promising strategy for cancer treatment.
Secondly, we suggest a strong correlation between
TAGLN2 expression and the composition and specific
function of the tumor microenvironment, which is
preponderant in regulating tumor progression and
modulating response to standard-of-care therapies.
Thirdly, emerging researches have established that
the phosphorylation and succinylation of TAGLN2
exerts a pivotal function during the onset and
progression of tumors. Our research, however,
focuses on a distinct yet significant epigenetic

modification - methylation - and presents compelling
evidence that methylation of TAGLN2 is closely
associated with the prognosis of certain types of
cancer. Owing to its selectivity and specificity,
targeted chemotherapy has emerged as a leading
approach for cancer treatment in recent years, which
allow for more effective treatment with fewer side
effects. We aim to provide a more diverse and solid
theoretical basis for utilizing TAGLN2 as a targeted
molecular through our study. Furthermore, it is now
clear that the TAGLN?2 status of the cancer cell has a
profound involvement on the cancer immunity.
Another important contribution of our study is that it
complements and enriches this conclusion from
various facets, such as immune cell infiltration,
immune-related genes, functional enrichment
pathways, TMB, MSI, and major immune checkpoints.
Nevertheless, there are a few shortcomings in the
current research, such as the data utilized may be
influenced by a systematic bias. The sample size of
clinical tissues is relatively small. And the mechanism
of TAGLN2 in cancer was mainly from bioinformatics
analysis without laboratory confirmation. Conseq-
uently, we are keen to further investigate more
functions, mechanisms, and potential therapeutic
objectives of TAGLN2 in diverse cancers by designing
a range of in vitro and in vivo experiments, and
finally incorporating them with clinical practice.

Conclusions

Collectively, we preliminarily illustrated the
oncogenic role and prognostic value of TAGLN2 in
pan-cancer. Further, TAGLN2 expression was
associated with gene methylation, TME, infiltration of
immune cells, immune-related genes, PCD, MSI,
TMB, and drug sensitivity. These discoveries
augmented the understanding of the functions of
TAGLN2 in tumor growth and advancement,
providing inspiration for clinical applications of
TAGLN2-targeted therapies down the line.
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