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Abstract 

Colon adenocarcinoma (COAD) is one of the most common carcinomas worldwide. The main causes of 
cancer-related mortality of COAD are metastases. The fundamental processes for how angiogenesis and 
neutrophil extracellular traps (NETs) contributing to tumor progression and metastasis are still 
uncertain. In our study, The Cancer Genome Atlas (TCGA)-COAD dataset (train set) and GSE17536 
(test set) were analyzed. Angiogenesis potential index (API) and NETs potential index (NPI) based on 
angiogenesis and NETs-related genes were respectively built using bioinformatic methods and machine 
learning algorithms. Subjects were split into groups with low API/NPI or high API/NPI. Survival analysis 
showed the high API and high NPI patients with the worst survival compared with the others. Between 
the high API/NPI group and the other groups, differentially expressed genes (DEGs) were found. A 
four-gene signature (TIMP1, FSL3, CALB2, and FABP4) was included in a risk model based on least 
absolute shrinkage and selection operator (LASSO) analysis. Additionally, the model displayed a 
significant association with many immune microenvironment characteristics. Finally, we verified the 
clinical significance of CALB2 expression and its role to promote the invasion and migration of colon 
cancer cells in vitro. 

Keywords: Colon adenocarcinoma, Angiogenesis, Neutrophil extracellular traps (NETs), Tumor microenvironment (TME), 
Prognosis 

Introduction 
Colon adenocarcinoma (COAD) is one of the 

most common carcinomas worldwide. The most 
significant prognostic variables for poor outcomes in 
COAD patients are invasion and metastases[1]. 
Because of the lack of identifiable early indications 
and the absence of an efficient early diagnostic 
method, over half of COAD patients have an 
advanced stage at diagnosis. Nowadays, great 
progress has been made against COAD. Apart from 
surgery and traditional chemotherapies, novel 
treatment strategies are available for COAD patients 

with advanced stages, including targeted therapy and 
immunotherapy[2,3]. Unfortunately, side effects and 
drug resistance emerge, which impedes recovery. 
New prognostic signatures and potential therapeutic 
targets for the treatment of COAD may be discovered 
by research of important molecules and mechanisms 
contributing to cancer progression and metastasis. 

Angiogenesis is an important mechanism for 
initiating the invasion and metastasis of malignant 
tumors. Angiogenesis in tumor tissues provides 
sufficient nutrients and oxygen to the infinitely 
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proliferating tumor cells, which is an important 
fundament for tumor proliferation and metastasis[4]. 
In the presence of metabolic stress, immune/inflam-
matory response, and genetic mutations, some tumors 
acquire the ability to induce and maintain 
angiogenesis, which is referred to as the "angiogenic 
switch"[5,6]. It is generally accepted that angiogenic 
vessels formed in primary tumors are structurally 
abnormal and functionally poor[7]. Nevertheless, the 
nutrition required for tumor growth and the 
provision of conduits for metastatic spread of the 
escaping tumor cells depends on this seemingly 
compromised vascular system[8]. Therefore, 
abnormal tumor vascular architecture may mark the 
metastasis of tumor cells [9]. Angiogenesis is 
regulated by multiple pathways, such as FGF, Notch, 
angiopoietin, VEGF, PDGF, and HGF signaling[10]. 
Blocking neovascularization has the potential to 
inhibit tumor progression, and "anti-angiogenesis" 
has been applied in cancer treatment. 

In 2004, the discovery of a fascinating 
phenomenon of neutrophils caught great attention 
from academia. The structure known as neutrophil 
extracellular traps (NETs) is generated when 
neutrophils recondense their lobulated nucleus and 
release chromatin into the extracellular environment 
in response to specific stimuli[11]. The main defense 
function of NETs was thought to be the capture and 
eradication of bacteria and other pathogens, a variety 
of other pathological processes, including immuno-
deficiency, autoimmunity, diabetes, atherosclerosis, 
cystic fibrosis, and cancer, were discovered to have 
close relationships with NETs[12]. NETs have recently 
been found to play significant roles in the 
development of tumors, angiogenesis, metastasis, and 
tumor-associated thrombosis[13-16]. Besides, tumors 
can prime neutrophils to form NETs in the absence of 
infection or external stress to promote metastatic 
progression[17]. The NETs score was associated with 
a poor survival in patients with the major types of 
cancer, according to a recent study that developed a 
marker for pan-cancer prognosis centered on 
NETs[18]. A combined analysis of NETs with other 
metastasis-related phenotypes may lead to new 
discoveries.  

To estimate clinical practice and describe the 
difference in survival, it is crucial to discover prog-
nostic indicators linked with invasion and metastasis. 
In this study, key prognostic genes and a prognostic 
model were found to provide an understanding of the 
molecular mechanisms behind the impacts of 
angiogenesis and NETs in COAD. A stepwise 
approach was applied. First, utilizing TCGA COAD 
dataset, angiogenesis and NETs-related DEGs 
between COAD and normal tissues were identified. 

Prognostic genes were identified among these DEGs. 
Second, these prognostic DEGs were utilized to 
establish the API and NPI, respectively. Thirdly, 
DEGs between the high API /NPI and the other 
groups were screened. Then a prognostic model was 
created through LASSO regression analysis. Lastly, 
enriched pathways, immune microenvironment, drug 
sensitivity as well as tumor mutational burden (TMB) 
were investigated. In addition, we chose CALB2 as a 
target for experimental validation and discovered that 
it might influence colorectal cancer (CRC) cell 
invasion and migration in vitro. The flowchart was 
displayed (Fig. 1). 

Materials and Methods 
Gene Expression Data Acquisition and 
Processing 

The RNA-seq transcriptome data, somatic 
mutation information, copy number variation (CNV), 
and clinicopathological information for COAD 
patients were downloaded from TCGA and the Gene 
Expression Omnibus (GEO) database (GSE17536)[19]. 
Patients with no other malignant tumors, within the 
age of 18 - 80 years old, who had not received 
chemotherapy and/or radiotherapy before surgery 
were enrolled. Patients with incomplete clinico-
pathological data were excluded. The Sva Package 
was applied to remove batch effects (version 
3.42.0)[20]. 

Establishment of API and NPI 
82 genes associated with angiogenesis were 

selected from the Molecular Signatures Database v7.0 
(MSigDB, www.gsea-msigdb.org), 271 NETs-related 
genes were obtained through the GeneCards 
(https://www.genecards.org) (Supplementary Table 
1). The limma package was employed to examine the 
DEGs between COAD and normal colon tissues[21]. 
|Log2(Fold Change (FC)) | >0.848, P < 0.05 were set 
as the cutoffs. By applying univariate Cox regression 
analysis of the "survival" tool, prognostic DEGs were 
identified. Principal component analysis (PCA) was 
applied with these prognostic DEGs. Like previous 
studies[22], the API and NPI were separately defined: 
API or NPI = ∑(PC1i+PC2i), where i represented the 
expression of angiogenesis and NETs-related genes.  

Identification of Key high API/NPI Related 
Genes 

Subjects were split into low or high API/NPI 
groups. DEGs between the high API/NPI group and 
the other three groups were examined through the 
limma package. |Log2FC| > 0.8 and P<0.05 were 
used. Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis of 
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DEGs were carried out utilizing the "clusterProfiler" 
software[23]. 

Development of API/NPI-related Prognostic 
Model 

Prognostic API/NPI-related genes were 
identified with univariate Cox regression analysis 
(P<0.05). The glmnet package (version 4.1-3) was 
applied to incorporate the best candidate genes into 
the LASSO regression approach, which was then 

employed to create the API/NPI-related prognostic 
model[24]. The LASSO regression method was 
applied to establish the optimum penalty parameters 
through 1000 times of cross-validation, and the 
correlation coefficient criterion was based on the 
minimum criterion. The expression and coefficient of 
putative API/NPI-related genes were utilized to 
determine each subject's risk score. The formula was 
as follows: risk score = ∑ coef(n) ∗ expr(n)𝑛𝑛

𝑖𝑖=1  , where 
coef(n) represented the coefficient value and expr(n) 

 

 
Figure 1. The flowchart of overall study methods and results.  
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represented the gene expression. Afterward, the 
subjects were grouped into high- and low-risk groups 
depending on the median value. To assess the 
predicted sensitivity of the formula, Receiver 
Operating Characteristic (ROC) curves were 
presented utilizing the "survivalROC" package. Using 
the same coefficients and cutoff settings as the train 
set, the model's performance was assessed on the test 
set. Using the "Rtsne" and "ggplot2" tools, the subjects 
were presented in two dimensions via PCA and 
t-distributed stochastic neighbor embedding (t-SNE) 
techniques. The univariate and multivariate Cox 
regression analyses were done to find the 
independent predicting variables through "survival" 
packages. A nomogram was formed by "rms" tools to 
evaluate the probability that COAD patients would 
survive. 

Assessing the Immunological Profile of the 
Tumor Microenvironment (TME) 

MCPcounter algorithms and Timer 2.0 
(cistrome.shinyapps.io/timer/) was capable of 
identifying immune cell infiltration[25]. According to 
distinctive characteristics of the transcriptional 
profiles, the Estimation of STromal and Immune cells 
in MAlignant Tumours using Expression data 
(ESTIMATE) might well be able to infer the cell 
composition and tumor purity. The single-sample 
gene set of the enrichment analysis (ssGSEA) was 
processed by the "gsva" tools to detect the activity 
state of 16 immune cells and 13 immunoregulatory 
functions. Depending on the findings of a recent 
analysis, immune-checkpoint genes were chosen[26]. 
In addition, each sample's expression of immune 
checkpoints was measured, as well as that of human 
leukocyte antigen (HLA) genes. 

Immunohistochemistry (IHC) 
80 paired CRC and adjacent normal tissues were 

collected from CRC patients in our hospital. The 
Ethics and Research Committees of Nanjing Medical 
University authorized this work. All patients 
provided informed consent after being properly 
informed about the research. The patients included in 
our study met the following criteria: (1) patients who 
received radical surgical resection in our hospital; (2) 
patients older than 18 years old;(3) patients who had 
received no chemotherapy and/or radiotherapy 
before surgery; (4) patients with complete 
clinicopathological data. The patients with multiple 
primary CRC or with a history of any other 
malignancy were excluded. IHC was performed as 
previously described[27]. The IHC staining was 
inspected by an experienced pathologist and analyzed 
with Aipathwell Software (Servicebio, Wuhan, 
China). H-SCORE was used to quantify the 

expression level of CALB2 (Supplementary Table 2). 
H-SCORE was calculated as follows: H-SCORE=∑ 
(pi×i) = (percentage of weak intensity ×1) + 
(percentage of moderate intensity ×2) + (percentage of 
strong intensity ×3)[28,29].  

Cell Culture and Transfection 
Human CRC cell lines (DLD-1 and SW480) were 

obtained from the Cell Center of Shanghai Institutes 
for Biological Sciences. Cells were cultured in 
Dulbecco modified Eagle medium supplemented with 
10% fetal bovine serum, 100 U/ ml penicillin, and 100 
μg/ml streptomycin at 37 °C with 5% CO2. The 
CALB2 overexpression plasmid was applied by 
genomeditech (Shanghai, China). Cell transfection 
was performed by Lipofectamine™ 3000 Transfection 
Reagent (Thermo Fisher Scientific, US) as instructed 
by the manufacturer.  

Transwell and Wound-healing Assay 
The transwell migration assay was conducted 

with Millipore cell culture inserts (24-well insert, 8 μm 
pore size). 2*104 cells were plated with 200 μL of 
serum-free medium. The well below was filled with 
800 μL of 10% serum-containing culture medium. 
After 48 hours, migratory cells were stained with 
crystal violet solution while cells remained on the 
polycarbonate membrane were removed with swabs. 
Cells in each well were counted by three random 
views under a microscope. For the transwell invasion 
experiment, Matrigel (BD Biosciences, US) was coated 
onto the membrane, and the other steps were 
performed as described above.  

For the wound-healing assay, 1*106 cells were 
seeded into each well in 6-well plates, and after the 
formation of a confluent cell monolayer, a gap was 
made using a 200-μL pipette tip. Then, serum-free 
media were used to cultivate the cells. Under a 10x 
microscope, pictures were taken at the beginning and 
after 48 hours. The diminishing area was measured 
and normalized to the area at 0 h.  

Western Blotting (WB) Assay 
Cells were lysed by Radio Immunoprecipitation 

Assay (RIPA) Lysis buffer (Beyotime, Shanghai, 
China), and the quantity of protein was determined 
using a bicinchoninic acid (BCA) Protein Assay Kit 
(Beyotime, Shanghai, China). Extracted proteins were 
loaded, separated by SDS-PAGE, and blotted onto 
PVDF membranes (Millipore, MA, USA). Membranes 
were then blocked using 5% non-fat dry milk and 
incubated with primary antibody at 4°C overnight. 
The following primary antibodies were used: anti- 
E-cadherin (1:2000; #60335-1-Ig, Proteintech, Wuhan, 
China), anti-CALB2 (1:2000; #66496-1-Ig, Proteintech, 
Wuhan, China), anti-MMP9 (1:2000; #10375-2-AP, 
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Proteintech, Wuhan, China), and anti-GAPDH 
(1:5000; #5174, Cell Signaling Technology, MA, USA). 
The membranes were then exposed to the secondary 
antibody. Finally, using the Omni-ECL chemilumi-
nescent reagent (#SQ201, epizyme, Shanghai, China), 
protein blots were identified with the Tanon 5200 
Multi Chemiluminescent Imaging System (Tanon, 
Shanghai, China). 

Statistical Analysis 
R V.4.1.3 and its relevant packages were utilized 

for statistical methods. Zero-mean normalization was 
applied to standardize the train and test sets. We used 
the Kaplan-Meier (KM) analysis to evaluate the 
statistical significance of differential groups through 
log-rank test. Nomogram construction and validation 
made it possible to visualize and perceive the multi-
variable Cox regression analysis by incorporating 
multi-forecast indicators. The Wilcoxon test was 
performed to identify DEGs. Using Spearman 
correlation analysis, the relationships between the 
stromal, stemness, and immune scores and the risk 
score were examined. In vitro experiments were all 
carried out independently in triplicate. For all, a 
P-value <0.05 was considered statistically significant. 

Results 
Differentially Expressed Angiogenesis and 
NETs-related Prognostic Genes 

We preliminarily screened 82 angiogenesis- 
related genes and 271 NETs-related genes through 
GSEA and GeneCards websites (correlation>10). The 
locations of 82 angiogenesis (Supplementary Fig. 1A) 
and 271 NETs-related genes (Supplementary Fig. 1B) 
were plotted by the package "Rcircos"[30]. In the 
TCGA-COAD set, 33 of 82 angiogenesis-related DEGs 
and 105 of 271 NETs-related DEGs were screened 
between COAD tissues (n = 480) and adjacent normal 
colon tissues (n = 41). DEGs were displayed in the 
heat map (Fig. 2A) (Fig. 2B). Through univariate Cox 
regression analysis, five angiogenesis-related DEGs 
(SCG2, SPHK1, TNNI3, JAG2, and TIMP1) and six 
NETs-related DEGs (CD36, TIMP1, NOS3, TERT, 
SERPINE1, and BGN) were identified with prognostic 
values (Fig. 2C) (Fig. 2D), serving as risk genes for the 
prognosis of COAD patients. TIMP1 was identified in 
both groups. The TCGA-COAD data showed higher 
expressions of SPHK1, TNNI3, JAG2, TIMP1, NOS3, 
TERT, SERPINE1, and BGN and lower expressions of 
SCG2, CD36 in COAD tissues than in the normal 
colon tissues (Fig. 2E) (Fig. 2F). 

Definition of API and NPI for COAD Patients 
The API and NPI were predicted according to 

the expression of the five angiogenesis-related DEGs 

(SCG2, SPHK1, TNNI3, JAG2, and TIMP1) and six 
NETs-related DEGs (CD36, TIMP1, NOS3, TERT, 
SERPINE1, and BGN) by PCA method (Fig. 3A-B). A 
strong correlation between API and NPI was 
identified (R=0.63, P<2.2e-16, Fig. 3C). COAD patients 
were grouped into high and low API /NPI groups 
depending on their median values. Four groups were 
categorized as follows: high API + high NPI group; 
high API + low NPI group; low API + high NPI 
group; low API + low NPI group. As expected, the 
high API + high NPI group of COAD patients 
exhibited a prominent survival disadvantage 
compared with the other three groups, illustrating 
that angiogenesis and NETs both contributed to a 
poor prognosis (Fig. 3D-E). The high API and high 
NPI molecular features defined a poor prognostic 
subgroup of COAD patients, which was worth further 
exploration.  

Characteristics of Immune Infiltration and 
TME in API and NPI Groups 

The COAD patients were split into two groups, 
one with high API and the other with low API, 
according to the median API. We analyzed the overall 
survival of patients with high and low API, and the 
survival curve (Supplementary Fig. 2A) illustrated 
that patients with high API had a noticeably worse 
prognosis. Next, we utilized the ESTIMATE package 
to analyze the immune and stromal scores in these 
two groups. The outcomes demonstrated that the 
stromal score (Supplementary Fig. 2B) and immune 
score (Supplementary Fig. 2C) were higher in the high 
API group, which meant that the tumor tissues with 
high API scores had more abundant immune and 
stromal cells. Then, we applied the ssGSEA algorithm 
to assess the abundance of immune cells and 
functions in high and low API groups. In COAD, we 
discovered that the scores of 12 different types of 
immune cells and 13 different types of immune 
functions were higher in the high API group. 
Additionally, we identified ten widely accepted 
immune checkpoints, and we discovered that the high 
API group had a considerably increased expression of 
all ten immune checkpoints. Finally, we examined 
three types of cells limiting T-cell infiltration in 
tumors, namely, cancer-associated fibroblasts (CAF), 
myeloid-derived suppressor cells (MDSCs), and 
tumor-associated macrophages (TAMs). It was 
revealed that the low API group had a higher 
abundance of MDSCs and M2-TAMs, while the high 
API group had a higher infiltration of CAF. 
Additionally, T cells in the high API group had 
significantly higher scores for dysfunction and 
exclusion than T cells in the low API group.  
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Figure 2. Differentially expressed angiogenesis-related and NETs-related genes with prognosis. Heatmaps of 33 differentially expressed angiogenesis-related genes (A) and 105 
NETs-related genes (B) between tumor and normal tissues (P<0.05). Forest plots of five prognostic angiogenesis-related genes (C) and six prognostic NETs-related genes (D) by 
univariate Cox analysis (P < 0.05, coef > 0). The differential expression box plot of five prognostic angiogenesis-related genes (E) and six prognostic NETs-related genes (F) in 
COAD. *P < 0.05; **P < 0.01; ***P < 0.001.  
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Figure 3. Construction of API and NPI with positive correlation. PCA analysis of five prognostic angiogenesis-related genes (A) and six prognostic NETs-related genes (B). (C) 
Scatter plot displaying the Spearman correlation of API and NPI. The KM plots displaying overall survival in four groups (D) and two newly defined groups (E).  

 
We then analyzed NPI according to the same 

method and get similar results. The high NPI group 
had a worse prognosis (Supplementary Fig. 3A), 
higher stromal score (Supplementary Fig. 3B), and 
higher immune score (Supplementary Fig. 3C). The 
abundance of 13 immune cells (Supplementary Fig. 
3D), 13 immune functions (Supplementary Fig. 3E), 
and 10 kinds of immune checkpoints (Supplementary 
Fig. 3F) were higher in the high NPI group. Lastly, the 
outcomes of the TIDE analysis (Supplementary Fig. 
3G) were similar to those of API. 

Functional Analysis of high API/NPI Related 
DEGs 

According to the above results, API and NPI had 
a great correlation with prognosis and immune 
infiltration. The prognosis of the high API/NPI group 
was significantly different from the other three 
groups. Therefore, we wondered if it was practicable 
to build a prognosis model closely related to API and 
NPI at the same time. Then we analyzed the DEGs (| 
Log2FC |>0.8, P<0.05) of the high API + high NPI 
group compared with the other groups. The other 
three groups were referred to as the control group, 
while the high API + high NPI group was designated 

as the subject group. In the TCGA-COAD set, 258 
DEGs were found to differ between the two groups. 
Functional enrichment analysis of these DEGs was 
performed. The top 30 significant terms of GO 
analysis illustrated that DEGs were mainly associated 
with the extracellular matrix, suggesting that these 
DEGs might function as vital regulators in the 
extracellular matrix of COAD. The outcomes of GO 
enrichment analysis were displayed by barplot (Fig. 
4A), bubble chart (Fig. 4B), and chord diagram (Fig. 
4C). The top significant terms of KEGG analysis 
revealed that DEGs were primarily connected with 
the phagosome, focal adhesion, and PI3K-Akt 
signaling pathway. The barplot, bubble chart, and 
cluster circle diagram (Supplementary Fig. 4A-C) 
were utilized to display the outcomes of the KEGG 
enrichment analysis. 

Construction and Validation of Risk Model 
Among the 258 DEGs, 18 prognostic DEGs were 

identified (P<0.05). Using Cox regression analysis, the 
hazard ratio (HR) of 18 identified DEGs was 
determined (Fig. 4D). Through 1000 cross-validation, 
we determined the optimal penalty parameter λ (Fig. 
4E) (Fig. 4F). Four genes (TIMP1, FSL3, CALB2, and 
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FABP4) were selected in the risk score model with 
LASSO regression analysis. Risk score = TIMP1 × 
0.0772652299695025 + FSL3 × 0.0472024839756706 + 
CALB2 × 0.128855340694661 + FABP4 × 
0.0425233469315407. The median risk score was 
applied as the cutoff value when separating the 
COAD patients in the train set into the high-risk 
group (n = 226) and low-risk group (n = 226). A 
significantly better prognosis was found in the 
low-risk group than in the high-risk group (Fig. 5A). 
Based on the cut-off value of the train set, patients in 
the GSE17536 were also grouped into a high-risk 
group (n=92) and a low-risk group (n=85). Survival 
analysis of the test set (Fig. 5B) also revealed that a 
higher risk score was associated with a worse 
prognosis. The log-rank test was used to calculate the 
P-value for the train set (P=0.018) and test set 
(P<0.001). The test set's HR was 2.430 with a 95% 
confidence interval of 1.535 to 3.848, while the train 
set's HR was 1.612 with a 95% confidence interval of 
1.084 to 2.398. The TCGA-COAD dataset had AUCs of 
0.632, 0.621, and 0.609 for predicting 1-, 3-, and 5-year 

survival. While the AUCs of the GSE17536 set were 
0.626, 0.640, and 0.667. We also visualized the risk 
plot, survival state map, and gene heat map of the 
train set (Fig. 5C) and the test set (Fig. 5D) 
respectively. The PCA and t-SNE plots indicated that 
subjects in these two groups occupied relatively 
different dimensions both in the TCGA (Fig. 6A-B) 
and the GEO set (Fig. 6C-D), suggesting that this 
model was able to differentiate patients in these two 
groups. 

Establishment of Nomogram 
The TCGA-COAD set was adopted to evaluate 

the connection between the risk score and other 
clinical indicators (age, gender, TNM stage, and 
histological grade). Factors other than gender were all 
found to be strongly related to a bad prognosis 
through a univariate Cox analysis of overall survival 
(Fig. 7A). Age, stage, and risk score each contributed 
independently to a bad prognosis according to the 
multivariate analyses (Fig. 7B). In the GSE17536, the 
risk score was as well validated as an independent 

 

 
Figure 4. Gene Set Enrichment Analysis and Construction of the novel risk model. The results of GO enrichment analysis of the DEGs between two groups showing by barplot 
(A), bubble chart (B), and chord diagram (C). (D) Forest plot of 18 prognostic angiogenesis and NETs-related genes by univariate Cox analysis (P < 0.05). (E) 1000 cross-validation 
to determine the optimal penalty parameters lambda. (F) Lasso regression of the 18 prognostic angiogenesis and NETs-related genes.  
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predictor of poor survival (Fig. 7C-D). A nomogram 
was formed utilizing meaningful indicators of 
univariate Cox analysis (Fig. 7E). The calibration 
curves were graphed (Fig. 7F). We also performed 
decision curve analysis (DCA) (Fig. 7G) and found 

that the curve of the nomogram was the farthest from 
the extreme curve. As a result, we concluded that the 
nomogram was more accurate in predicting survival. 
In the train set, the AUC of the nomogram was 
considerably larger than other features (Fig. 7H). 

 

 
Figure 5. Validation of the prognostic risk model. The KM plots showing overall survival in train set (A) and test set (B). Scatter plots illustrating risk score distribution of the 
high-risk and low-risk groups and the relationship between survival time and risk score of the train set (C) and test set (D), as well as gene heat maps of these two sets.  
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Figure 6. PCA analysis and survival analysis of clinicopathological features. The 3D scatter plots of PCA results of train set (A) and test set (C). The t-SNE analyses of train set 
(B) and test set (D). (E) KM plots in subgroups including age, gender, and tumor stages.  
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Figure 7. Forest plots and construction of a nomogram. Univariate Cox regression analyses displaying the association between the overall survival of patients and 
clinicopathological parameters along with the risk score in train set (A) and test set (C). Multivariate Cox regression analyses revealing independent prognostic factors in train 
set (B) and test set (D). (E) Nomogram depending on the risk score and other clinicopathologic features predicting the 1 -,–3 - and 5-year overall survival for COAD patients. 
(F) Calibration curves uncovering the consistency between predicted and observed 1-, 3- and 5-year overall survival rates in COAD patients based on the nomogram. DCA curve 
(G) and ROC curve (H) of nomogram, risk and other clinicopathologic features in COAD.  
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Correlation with Immune Microenvironment 
The correlations between the risk score and 

tumor immune microenvironment were investigated 
in the train set. The immune score, stromal score, 
ESTIMATE score, and tumor purity between the high 
and low-risk score groups were analyzed. The risk 
score was highly associated with the immune traits in 
the COAD patients. Significant differences were 
found concerning tumor purity, stromal score, and 
immune score between the two groups (Fig. 8A). The 
high-risk score was related to decreased tumor purity, 
increased stroma score, and increased immune score. 
Then, we utilized the ssGSEA package, finding that 
there were 16 immune cells and 13 immune functions 
upregulated in the high-risk group in the train set 
(Fig. 8B). In the test set, the high-risk group had six 
immune cells and seven immune functions 
upregulated compared with the low-risk group (Fig. 
8C). Ten common immune checkpoints were 
analyzed, finding that all these immune checkpoints 
were considerably upregulated in the high-risk group 
(Fig. 8D). Finally, we applied TIDE tools to calculate 
tumor immune dysfunction and exclusion (Fig. 8E). 
We discovered that the CAF was higher in the 
high-risk group, while the abundance of MDSCs and 
M2 macrophages was higher in the low-risk group. 
Furthermore, the dysfunction and exclusion scores in 
the high-risk group were considerably higher. 
Moreover, the risk score and the quantity of some 
immune cells in the tumor microenvironment were 
highly associated. The abundance of nine types of 
cells in the tumor microenvironment were 
significantly higher in the high-risk group (Fig. 9A). 
Lastly, we found that the abundance of 24 MHC 
molecules was significantly higher in the high-risk 
group than in the low-risk group (Supplementary Fig. 
5). 

Drug Sensitivity, TMB and Microsatellite 
Instability (MSI) Analysis 

The half-maximal inhibitory concentration 
(IC50) values of shikonin, gefitinib, and camptothecin 
were higher in the low-risk group (Fig. 9C), revealing 
that patients in the high-risk group might be more 
sensitive to these three medicines. The "maftools" 
package depicted the mutation status[31]. We plotted 
the waterfall maps of the top 20 genes with the 
highest mutation degree in the low-risk (Supple-
mentary Fig. 6A) and high-risk groups 
(Supplementary Fig. 6B). The relationship between 
the risk score and TMB was proved to be modest but 
significant (Fig. 10A). The TMB score was higher in 
the high-risk group (Fig. 10B). In comparison to the 
MSS and MSI-L groups, the risk score in the MSI-H 
group was substantially higher (Fig. 10C). The risk 

score and tumor stem cells had a strong negative 
correlation (Fig. 10D). 

Experimental Verification of CALB2 in Vitro 
Among the model genes (TIMP1, FSL3, CALB2, 

and FABP4), the P-value of CLAB2 was 0.001 which 
was the lowest compared with those of the others and 
the role and function of CALB2 in CRC were rarely 
reported. So we tried to discover the function of 
CALB2 in CRC. The risk model described above was 
closely related to metastasis, we used the stage 
information of the COAD database and found that 
CALB2 was positively related to the tumor TNM 
stage (Supplementary Fig. 7A-B). Then we verified the 
expression of CALB2 protein in 80 paired normal and 
CRC tissues with IHC analysis (Supplementary 
Figure 8). CALB2 expression was significantly higher 
in stage III/IV CRC tissues than in stage I/II tissues, 
indicating a connection between CALB2 and tumor 
metastasis (Fig. 11B). Afterwards, we focused on how 
the clinicopathological features of the CRC patients 
related to the expression of CALB2 protein. We 
concluded that CALB2 protein level was significantly 
correlated with serum CEA level, tumor differenti-
ation, lymphatic metastasis, distant metastasis, and 
TNM stage (Supplementary Table 3). Patients with 
high CALB2 showed considerably reduced disease- 
free survival and overall survival compared to those 
with low CALB2, according to the Kaplan-Meier 
analysis (Supplementary Fig. 7C). Then the function 
of CALB2 in CRC cells was analyzed in vitro. The 
overexpression of CALB2 was confirmed by WB after 
plasmid transfection. Transwell and wound-healing 
assays revealed that CALB2 overexpression 
significantly improved the migration and invasion of 
CRC cells (Fig. 11C-D). WB analysis showed that 
CALB2 overexpression promoted the upregulation of 
MMP9 and downregulation of E-cadherin in these 
CRC cells (Fig. 11E). 

Discussion 
In this study, we focused on angiogenesis and 

NETs to interpret the invasion and metastasis of 
COAD. A novel prognostic model for COAD patients 
based on genes related to angiogenesis and NETs was 
developed with a stepwise approach. Firstly, differ-
entially expressed and prognosis related angiogenesis 
and NETs-related genes were selected. A combination 
analysis of angiogenesis and NETs-related genes, 
reflecting the synergistic effects of angiogenesis and 
NETs, might have the potential to create a novel 
prognostic model of COAD. These prognostic DEGs 
were utilized to establish the API and NPI through the 
PCA method, respectively.  
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Figure 8. Immune infiltration analysis of the prognostic risk model. (A) The box-violin plots displaying the difference of the tumor purity, stromal score and immune score in two 
groups. The infiltrating levels of 16 immune cell types and the infiltrating levels of 13 immune functions in train set (B) and in test set (C) estimated by ssGSEA. (D) The expression 
box plots of 10 common immune checkpoints between low- and high-risk groups. (E) TIDE analysis revealing the difference of tumor immune dysfunction and exclusion in two 
groups. *P < 0.05; **P < 0.01; ***P < 0.001.  
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Figure 9. MCPcounter and drug sensitivity analyses of low-risk and high-risk group. (A) The violin diagrams showing the abundance of nine types of differentially expressed 
immune and stromal cells between two groups using MCPcounter. (B) Sensitivity difference of three common chemotherapeutic drugs in two groups. *P < 0.05; **P < 0.01; ***P 
< 0.001.  

 
A subgroup of patients characterized by high 

API and high NPI were identified with an apparently 
poor survival. Secondly, the high API + high NPI 
group and the other three groups were defined. DEGs 
between these two groups were screened and 
functional analyses were conducted. GO and KEGG 

analysis revealed that those DEGs were correlated 
with extracellular matrix organization and 
cell-substrate adhesion, which was consistent with 
functions of NETs and angiogenesis and revealed the 
crosstalk between NETs and angiogenesis. 18 key 
DEGs were used as the targets of Lasso regression 
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analysis and genes, including TIMP1, FSL3, CALB2, 
and FBAP4, were chosen to develop the risk score. 
The PCA and t-SNE analyses could differentiate 
between the high and low-risk patients based on their 
significantly different survival probabilities. Thirdly, 
a thorough exploration was performed to identify 
roles of the risk score with respect to clinicopatho-
logical characters, tumor immune infiltrates, et al. The 
multivariate Cox regression analysis suggested that 
the risk score was an independent prognostic factor. 
After the inclusion of clinical features, including age 
and stage, the nomogram established showed better 

prognosis predictability than the risk score alone, 
suggesting the importance of clinical features. To 
verify the predictive value of the risk model created, 
we applied it to the test set GSE17536 and obtained 
similar results. Increased mutation burden and 
immune system activity were characteristics of the 
high risk score, which meant an immune-inflamed 
tumor microenvironment. Many tumor infiltrating 
immune cells had higher levels in the high-risk group, 
which meant crosstalk between NETs and 
angiogenesis might promote an overall activation of 
immune function. 

 
 

 
Figure 10. TMB and MSI analysis of the low- and high-risk groups. (A)Correlation scatter graph of TMB and Risk score. (B) The box-violin plot displaying the difference of the 
TMB score in two groups. (C) The risk scores in patients with different MSI statuses and the percentages of different MSI statuses in different risk score groups. (D) The 
correlation scatter plot between risk score and RNAss. *P < 0.05; **P < 0.01; ***P < 0.001.  
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Figure 11. CALB2 promoted invasion and migration of CRC. (A) Representative immunohistochemical images of CALB2 in stage I/II and stage III/IV CRC tissues. Scale bar: 
50um. (B) The expressions of CALB2 in stage III/IV CRC tissues were higher than those in stage I/II CRC tissues. (C) Transwell migration and invasion assays showed that CALB2 
overexpression significantly promoted migration and invasion of DLD-1 and SW480 cells. The number of migratory and invasive cells were counted and plotted. (D) 
Wound-healing assay showed that CALB2 overexpression promoted wound area recovery. The wound area was measured and plotted. (E) CALB2 overexpression promoted 
upregulation of MMP9 and downregulation of E-cadherin as shown by western blot analysis.VE: Vehicle control; OE: Overexpression. * P < 0.05, ** P < 0.01, *** P < 0.001. 

 
The exploration of key genes and their roles and 

functions that influence patient survival may promote 
the development of novel makers and treatment 
strategies for cancer patients. In this study, four key 
genes, TIMP1, FSL3, CALB2, and FABP4, were 
selected and included in constructing the prognostic 
model of COAD patients. All these genes were 
previously reported to play important roles in 
carcinogenesis. TIMP1 encodes a protein acting as a 
natural inhibitor of the matrix metalloproteinases 
(MMPs) and modulating tissue homeostasis. TIMP1 
can promote tumor cell proliferation, inhibit 
apoptosis, influence angiogenesis, and facilitate 
tumor growth and metastasis[32]. According to an 
earlier study, aggressive tumor phenotypes were 

strongly associated with the abnormal expression of 
TIMP1 in COAD[33]. COAD tissues and metastatic 
lymph nodes possessed high levels of TIMP1 
compared with normal colon tissues. For COAD 
patients, TIMP1 was an independent prognostic 
variable for both overall and disease-free survi-
vals[34]. TIMP1 is a secretory protein that can be 
identified using the enzyme-linked immunosorbent 
assay (ELISA) in body fluids like blood, which makes 
it a candidate serum tumor marker[34]. High levels of 
systemic TIMP-1 were recognized as a bad prognostic 
factor[35]. 

As a member of the follistatin-module protein 
family, follistatin-like 3 (FSTL3) is a secretory 
glycoprotein. FSTL3 in tumors was correlated with 
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lymph node metastasis, clinical stage, tumor size, and 
intravascular emboli. FSTL3 was also discovered to be 
considerably expressed in COAD tissues compared to 
normal colon tissues. Patients with COAD who had 
increased FSTL3 expression would have a poor 
prognosis[36]. Increased FSTL3 expression promoted 
CRC cells to migrate and invade through β-catenin- 
mediated epithelial-mesenchymal transition (EMT) 
and aerobic glycolysis[37]. A recent bioinformatics 
study had identified FSTL3 as a key prognostic gene 
related to both immune status and lymph node 
metastasis in CRC[36]. 

CALB2 is a subtype of the EF-hand family of Ca 
(2+)-binding protein. By altering the intrinsic 
apoptotic pathway, CALB2 controlled 5-fluorouracil 
sensitivity in colorectal carcinoma[38]. In COAD cells, 
butyrate may act as a negative regulator of 
CALB2[39]. It has been reported that CALB2 was 
significantly related to metastasis and prognosis in 
patients with hepatocellular carcinoma (HCC). HCC 
cell metastasis could be induced by CALB2 by 
activating the TRPV2-Ca2+-ERK1/2 signaling path-
way[40]. However, there were few researches 
available regarding the role of CALB2 role in COAD. 
So we looked into how CALB2 influenced clinical 
outcomes in this study. Additionally investigated was 
the function of CALB2 on cell migration and invasion 
in vitro. 

Fatty acid-binding protein 4 (FABP4), a fatty acid 
carrier protein, is involved in lipid transport, 
metabolism, and intracellular signal transduction[41]. 
According to a prior study using IHC, FABP4 protein 
expression was substantially higher in CRC tissues 
than in paracancerous tissues[42]. The differentiation, 
stage, and lymph node metastasis of tumors were all 
positively correlated with FABP4 protein expression 
in CRC tissues. When FABP4 was overexpressed, 
EMT was activated in COAD cells[43,44]. 

The main cause of cancer-related deaths 
continues to be metastatic disease, which makes 
treating COAD extremely challenging. Angiogenesis 
and NETs were both thought to be important factors 
in metastasis and survival. The angiogenesis and 
NET-related genes were combined in the present 
research to construct a prognostic model for COAD. 
We believed that this study was the first to combine 
these gene signatures in order to predict overall 
survival with COAD patients. Four genes were 
chosen and included in the risk model for COAD 
prognosis centered on the investigation of the 
angiogenesis and NET-related genes. The risk score 
had shown a reliable predictive value in the GSE17536 
validation set, and overall survival in the high-risk 
group was significantly lower than it was in the 
low-risk group. Compared to those of previous 

studies, we have developed an innovative prognostic 
model that differs from previously developed models, 
but its predictive value is not entirely the same. For 
example, in Xia et al.'s article[45], the AUC value of 
the column line was only 0.7749, while our column 
line chart has a much higher predictive value than 
theirs. Furthermore, in Ping et al.'s article[46], they 
constructed a prognostic model based on pyroptosis- 
related lncRNA, and the AUC value of the column 
line chart was 0.880, while our model has a relatively 
lower predictive value compared to theirs. 

This study also had some limitations. Firstly, all 
the analyses were from public databases, and we 
needed more prospective studies to confirm our 
results. Second, the ethnic group of TCGA does not 
match that of our Chinese people. Using data of 
Caucasian to predict the prognosis of Chinese COAD 
patients would have genetic background differences. 
Thirdly, the numbers of evaluated NETs-representing 
genes and angiogenesis-representing genes were so 
small that may lack certain reliability. Fourthly, the 
average AUC value of the train set of the constructed 
prognosis model was less than 0.65, which was 
obviously inferior to other models in terms of 
accuracy. Moreover, although the AUC value of the 
nomogram was 0.790, there was a large difference 
between the calibration curve and the standard curve. 
Finally, the in vitro experiment of CALB2 proved that 
it could promote the invasion and metastasis of 
COAD cells. In vivo experiments might verify the 
findings.  

Conclusion 
In summary, this study put forward new indexes 

(API and NPI) via the PCA method and established a 
novel four-gene prognostic risk score for COAD based 
on DEGs of the high API + high NPI group and the 
other groups. The risk score was independently 
associated with overall survival and some 
clinicopathological characteristics in COAD patients. 
Furthermore, we proved that the risk score was 
strongly correlated with immune infiltration and drug 
sensitivity. Finally, we selected CALB2 as a target for 
experimental verification and found that it could 
promote the invasion and migration of CRC cells in 
vitro.  
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