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Abstract 

Background: Endometrial carcinoma is a life-threatening and aggressive tumor that affects women 
worldwide. ceRNAs and carcinoma-infiltrating immunocytes can be associated with tumor formation and 
progression. Therefore, investigating the unique mechanisms underlying endometrial carcinoma is crucial. 
Methods: Prognostic nomograms were constructed based on the differentially expressed genes 
between normal and tumor tissues. Twenty types of tumor immune infiltrating cells in uterine corpus 
endometrial carcinoma (UCEC) were examined using CIBERSORT. To identify the potential signaling 
pathways, the associations among essential ceRNA network genes and important immunocytes were 
investigated using the co-expression assay. 
Results: Differential analysis identified 3636 mRNAs, 249 miRNAs, and 252 lncRNAs unique to UCEC. 
The ceRNA network was constructed using the interplays between 19 lncRNA–miRNA pairs and 434 
miRNA–mRNA pairs. Furthermore, CIBERSORT and ceRNA integration analysis revealed that immune 
cells, including dendritic cells and natural killer cells, and associated ceRNAs such as LRP8, HDGF, 
PPARGC1B, and TEAD1 can appropriately predict prognosis. A receiver operating characteristic curve 
was constructed to predict patient outcomes. 
Conclusions: Using a nomogram, we predicted the outcomes of patients with UCEC Furthermore, we 
revealed its significance in improving clinical management. 
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Introduction 
Endometrial cancer (EC) is clinically 

heterogeneous and the most common gynecological 
malignancy worldwide [1]. Since 2008, the incidence 
of EC has increased by 21%, with the fatality rate 
increasing by >100% in the past two decades [1, 2]. As 
of right now, endometrial cancer ranks second in 
frequency among gynecological cancers in China [3]. 
In 2015, there was an annual growth rate of 3.7 
percent with approximately 69,000 new cases of 
endometrial cancer detected and 16,000 fatalities [3]. 
Furthermore, the prevalence of EC continues to 
significantly increase. At present, no clear and 

effective therapy is available for EC [4]. Although 
surgery can cure several patients with EC, many 
women with EC have a dismal prognosis [1, 2, 4]. 
Furthermore, owing to their aggressive disposition 
and a lack of reliable indicators, distant metastasis is 
common [5]. Therefore, investigating the molecular 
processes and establishing prognostic markers for EC 
are vital [6]. 

Although noncoding RNAs (ncRNAs) are 
frequently used to represent nonprotein-encoding 
RNAs such as long noncoding RNAs (lncRNAs) and 
microRNAs (miRNAs), this does not indicate that 
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such RNAs do not have any functions [7-9]. For the 
first time in 2011, Salmena et al. suggested the 
competitive endogenous RNA (ceRNA) network and 
demonstrated a novel mechanism underlying the 
interactions among miRNAs, lncRNAs, and mRNAs. 
This network is crucial for cancer development and 
many other biological processes [10]. However, the 
mechanism of the ceRNA network in EC remains 
unknown [11]. Furthermore, there are no studies on 
ceRNA and immune cells in EC [10, 12]. 

In the present study, using the expression profile 
information of The Cancer Genome Atlas uterine 
corpus endometrial carcinoma (TCGA-UCEC) 
samples, a UCEC prognosis-associated ceRNA 
network was constructed. TCGA contains the gene 
expression profiles of miRNAs, lncRNAs, and 
mRNAs and the clinical data for UCEC. 
Bioinformatics methods were used to identify 
associated differentially expressed genes (DEGs) and 
construct ceRNA networks. In addition, using the 
CIBERSORT algorithm, which estimates relative RNA 
transcript subsets by clarifying cell types, the 
immunocytes and their percentages in UCEC were 
elucidated. Lastly, to determine the novel therapeutic 
approaches and channels for patient treatment and 
lengthen their survival times, the interaction between 
immune cells associated with UCEC and ceRNA 
networks was examined. Immune cells and ceRNA 
were used to establish nomograms that may predict 
the prognosis of patients with UCEC. Using this 
network, the underlying signaling pathways may be 
used to predict the survival of patients with UCEC. 

Materials and Methods 
Data Collection and Analysis 

The relevant UCEC clinical, miRNA sequencing, 
and RNA sequencing (RNA-seq) data were obtained 
from TCGA (https://portal.gdc.cancer.gov/). The 
profiles of 575 samples, including 552 UCEC samples 
and 23 tumor-free tissue samples, were mapped using 
fragments per kilobase of exon per million reads and 
HTseq-count. Furthermore, the demographic and 
survival data of all patients were collected from 
TCGA. Patients with insufficient clinical data were 
excluded from the study. Therefore, 87 individuals 
without any tumors and 461 individuals with UCEC 
were enrolled in the present study. The 
clinicopathological information of the 548 individuals 
is presented in Table 1. 

Analysis of DEGs 
Using the edgeR method [13], the differentially 

expressed miRNAs, mRNAs, and lncRNAs were 
clarified using the following criteria: logFC (fold 
change) < −1.0 or > 1.0 and false discovery rate (FDR) 

p < 0.05 [14]. To construct heatmaps and volcano 
plots, the R package ggplot2 was used [15]. 

 

Table 1. Patient information of Uterine Corpus Endometrial 
Carcinoma cohort. 

Clinical features TCGA-UECE(N=548) 
No % 

OS   
0 461 84.12 
1 87 15.88 
Age   
<=60 209 38.35 
>60 336 61.65 
Stage   
I 339 62.20 
II 52 9.54 
III 124 22.75 
IV 30 5.50 
Grade   
I 99 18.07 
II 122 22.26 
III 316 57.66 
IV 11 2.01 

 

Establishment of a ceRNA Network-Based 
Prognostic Model  

Using TCGA, survival time and status were 
retrieved using the clinical information of patients 
with UCEC as the base data. By combining clinical 
information with ceRNA network node information, 
the prognostic roles of the node genes were evaluated 
using Kaplan–Meier (K–M) plots and univariate Cox 
analysis [16]. Next, after eliminating overlapping 
components using Lasso regression (accomplished 
using the “glmnet” tool in R), a ceRNA 
network-based prognostic model was constructed via 
multivariate Cox regression analysis [16]. 

Construction of the ceRNA Regulatory 
Network 

Based on previous statistical analysis, data on 
the retrieval of lncRNA–miRNA and miRNA–mRNA 
pairs and interplays were collected from miRTarBase 
(https://mirtarbase.cuhk.edu.cn/) and PITA 
(https://genie.weizmann.ac.il/pubs/mir07/mir07_e
xe.html) [17]. Thereafter, Cytoscape 3.7.1 was used to 
generate the miRNA–mRNA and miRNA–lncRNA 
interaction pairs [18]. The lncRNA–miRNA–mRNA 
ceRNA regulatory network is based on 
miRNA-targeting genes and expression [19]. 

Survival Assessment and Nomograms in the 
ceRNA Network 

The associations between biomarker levels and 
prognosis depicted in the ceRNA network and the 
survival status of patients with UCEC were 
demonstrated using K–M plots [20]. Then, a 
nomogram based on Lasso regression and univariate 
and multivariate Cox analyses was developed for the 
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prognostic prediction of patients with UCEC [16]. 
Based on the correlation between biomarker 
expression and prognosis, the scores for each 
biomarker can be obtained; these scores can be added 
to obtain the final score, representing the likelihood of 
survival for 1, 2, and 3 years [21]. To determine the 
sensitivity and accuracy of the nomogram, the 
receiver operating characteristic (ROC) using the 
survival ROC R package and calibration curves were 
simultaneously used [22]. 

CIBERSORT Estimation 
Using CIBERSORT, an analytical method, it is 

possible to determine the diversity and percentages of 
various cell types within a heterogeneous cell 
population [23]. Furthermore, each cell category and 
its quantity per sample can be instantly assessed. In 
addition, the cytological factors for chief biomarkers 
in the molecular processes of the ceRNA network can 
be investigated. To estimate the percentage of 22 
different immunocyte categories in UCEC, 
CIBERSORT was used as previously described [11]. 
Data were deemed appropriate for subsequent study 
only when CIBERSORT p < 0.05. 

Statistical Analysis 
R ver. 3.5.1 (Institute for Statistics and 

Mathematics, Vienna, Austria; www.r-project.org) 
was used to conduct statistical analyses. Statistical 
significance was evaluated at a p-value of <0.05. 

Results 
Recognition of the Significant DEGs in UCEC 

Figure 1 schematically describes the methods 
and findings of the present study. TCGA was used to 
extract the general characteristics of each patient, 
which are presented in Table 1. We examined the 
RNA-seq data of 22 paracancerous samples and 546 
UCEC samples in TCGA. In total, 252 UCEC-specific 
lncRNAs (130 downregulated and 122 upregulated) 
(Figures 2A, B), 249 miRNAs (103 downregulated and 
146 upregulated) (Figures 2C, D), and 3636 mRNAs 
(1946 downregulated and 1690 upregulated) (Figures 
2E, F) were identified as differentially expressed 
RNAs from TCGA-UCEC and normalized using the 
following thresholds: FDR < 0.05 and log FC < −1.0 or 
> 1.0. 

ceRNA Network Creation and Survival 
Assessment in UCEC 

To construct the ceRNA network comprising 247 
genes, the interplays between 19 lncRNA–miRNA 
pairs and 434 miRNA–mRNA pairs were used (Figure 
3A, Supplementary Tables 1, 2). The associations 
between the biomarkers in the UCEC-based ceRNA 
network and prognosis were determined using K–M 
plots, the log-rank test, and Cox regression analysis. 
K–M analysis of the ceRNA network revealed the top 
10 significant genes, including LRP8 (p = 2.68E-05), 
COL4A4 (p = 6.75E-05), DLC1 (p = 0.000260844), 
SCML2 (p = 0.000313436), C14orf28 (p = 0.00035164), 

 
 

 
Figure 1. The flow diagram of the whole analytical procedure. 
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NR3C1 (p = 0.000351683), FAM13C (p = 0.0004065), 
and HOXA5 (p = 0.000492153), and hsa-miR-93-5p (P 

= 0.00049857) (Figures 3B-J). Supplementary Table 3 
lists all the significant genes. 

 
 

 
Figure 2. Identification of the differentially expressed mRNAs, lncRNAs, miRNAs between UCEC and normal tissue. The cutoffs which we set was log(fold-change) > 1.0 or < 
-1.0 and FDR < 0.05. (A) The heatmap of genome-wide differentially expressed lncRNAs. (B) The volcano plot showed that a total of 122 upregulated lncRNAs and 130 
downregulated lncRNAs were screened out. (C) The heatmap of genome-wide differentially expressed miRNAs. (D) The volcano plot showed that a total of 146 upregulated 
miRNAs and 103 downregulated miRNAs were screened out. (E) The heatmap of genome-wide differentially expressed mRNAs. (F) The volcano plot showed that a total of 
1690 upregulated mRNAs and 1946 downregulated mRNAs were screened out. Green and red represents downregulated and upregulated mRNAs, respectively. 
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Establishment and Evaluation of the ceRNA 
Network-Based Prognostic Model  

Twelve relevant prognostic biomarkers were 
identified as essential elements for the ceRNA 
network; they were used to construct a novel 
multivariate model (Figure 4A). Using this model, the 
nomogram was depicted (Figure 4B). Using Lasso 
regression and univariate Cox regression analysis, the 
pivotal network genes were identified. Multivariate 
Cox regression analysis identified 12 important genes 
for the model (Figures 4C, D). The K–M plot revealed 
a substantial difference in the high-risk and low-risk 
populations. Simultaneously, K–M curves revealed 
that the survival time of the low-risk population was 
prominently longer than that of the high-risk 
population (Figure 4E). Furthermore, ROC and 
calibration curves (Figures 4F, G) revealed that the 
nomogram exhibited adequate accuracy and 
discrimination, with AUC values of 0.733, 0.795, and 
0.82 for 1-, 3-, and 5-year survival rates, respectively. 
Occasionally, we determined the regulation of the 
proteins encoded by some of these genes. Figure 5 
demonstrates that RAPGEF4, LRP8, and 
heparin-binding growth factor (HDGF) were 
positively expressed in EC tissues compared with 
nontumor tissues. In contrast, ZNF704, KIRREL1, and 
FAM13C were positively expressed in normal 
endometrial tissues. 

Composition of Carcinoma-Infiltrating 
Immunocytes in UCEC 

Figures 6A and B illustrate the histograms and 
thermograms displaying the composition of 22 types 
of CIBERSORT-identified immunocytes in UCEC. The 
goal of compositional estimation was to investigate 
the differences in the tumor microenvironments 
(TMEs) of healthy and carcinoma samples. The 
Wilcoxon rank-sum outcomes, as depicted in the 
violin plot, revealed a significantly higher percentage 
of memory CD4+ T cells and mast cells in the bone 
metastatic melanoma group than in the normal group 
(p < 0.001) and a comparatively higher percentage of 
M0 macrophages in the tumor group (p < 0.001) 
(Figure 6C). Pearson’s correlation analysis was used 
to perform the co-expression assay among the 
proportions of carcinoma-infiltrating immunocytes 
(Figure 6D). The assay revealed a significantly 
positive association between CD8 T cells and memory 
CD4+ T cells (r = 0.57); however, they were 
significantly and negatively associated with M1 
macrophages (r = −0.49). 

Clinical Relevance of the Immune Cells 

We determined whether there is an association 
between the percentages of various immunocyte 

subtypes and prognosis using K–M plots and 
nonparameter testing. The co-expression assay 
between immunocytes and clinical prognosis revealed 
that the fractions of M1 macrophages, resting 
dendritic cells, regulatory T cells (Tregs), and memory 
CD4+ T cells significantly differed among different 
cancer grades (Figures 7A-E). Furthermore, the 
fractions of activated natural killer cells (P = 0.010) 
and M2 macrophages (p = 0.030) were significantly 
associated with overall survival (Figures 7F, G). 

Analysis of Immune Cells for Prognosis 
First, we considered two possible prognosis- 

associated biomarkers as pivotal members among the 
22 immunocyte subtypes and constructed a novel 
multivariate model (Figure 8A). Using this model, 
two types of critical tumor immunocytes related to 1-, 
2- and 3-year overall survival probabilities were 
depicted as gene models in the form of a nomogram 
(Figure 8B). To examine the efficacy of these genes for 
modeling, Lasso regression analysis was conducted 
(Figures 8C, D). Figure 8E illustrates the immunocyte 
percentages and survival status of each group. 
Furthermore, calibration and ROC curves revealed 
the discrimination and consistency of the nomogram, 
with AUC values of 0.656, 0.666, and 0.645 for 1-, 3-, 
and 5-year survival rates, respectively (Figures 8F, G). 

Co-expression Assay between Immunocytes 
and Genes 

Using Pearson’s correlation analysis, Figure 9A 
depicts some significant patterns of co-expression 
between crucial ceRNA network members and pivotal 
immunocyte members. The activated dendritic cell 
fraction was positively associated with the expression 
of LRP8 (r = 0.25, p = 4.8e-06), HDGF (r = 0.25, p = 
4e-06), and TEAD1 (r = 0.19, p = 0.00082). However, 
the activated natural killer cell fraction was negatively 
associated with PPARGC1B (r = −0.19, p = 0.00065) 
(Figures 9B-E). 

Discussion 
EC is a common type of gynecological carcinoma 

[5, 24]. In America, it is the fourth most common 
carcinoma among women, after breast, lung, and 
colorectal cancers [5, 24]. A ceRNA network 
comprises lncRNAs and miRNAs, which belong to 
protein-coding mRNAs [8]. Many studies have 
reported the critical role of miRNAs in the regulation 
of carcinoma-associated genes [10]. miRNAs exert a 
regulatory role on mRNA function by primarily 
integrating with MREs, resulting in mRNA 
degradation [10]. lncRNAs are transcripts that are 
>200 nucleotides long and have no or limited 
protein-coding potential; they can be used to diagnose 
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and treat UCEC [25-27]. Therefore, the lncRNAs and 
carcinoma-infiltrating immunocytes that are 
differentially expressed in UCEC, which has largely 

been ignored in previous studies, piqued our interest. 
It is significantly vital to clarify the pathogenesis of 
UCEC and identify innovative carcinoma biomarkers. 

 
 

 
Figure 3. (A) Overview of the lncRNA–miRNA–mRNA ceRNA network of UCEC with 19 lncRNA-miRNA couples and 434 miRNA-mRNA pairs. Red balls represent miRNAs, 
green balls represent lncRNAs, and blue balls represent protein-coding mRNAs. The Kaplan–Meier survival curves based on the expression of biomarkers involved in ceRNA 
network related to the UCEC shows that (B) LRP8 (P < 0.001), (C) COL4A4 (P < 0.001), (D) DLC1 (P < 0.001), (E) SCML2 (P < 0.001), (F) C14orf28 (P < 0.001), (G) NR3C1 
(P < 0.001), (H) FAM13C (P < 0.001), (I) HOXA5 (P < 0.001) and (J) hsa-miR-93-5p (P < 0.001) had significantly prognostic values. 
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Figure 4. (A) The results of the Cox proportional hazards model based on the multivariate Cox regression. (B) The nomogram for predicting outcome of patients based on 
ceRNAs. (C, D) The model selected by Lasso regression. (E) The result of the Kaplan-Meier curves suggested risk score had prognostic value for UCEC patients (P < 0.001). 
(F, G) The ROC curves and the calibration indicated the acceptable accuracy of the nomogram [Area Under Curve (AUC) of 1-year survival: 0.733, AUC of 3-year survival: 
0.795; AUC of 5-year survival: 0.82]. 

 
In the present study, we focused on 

TME-infiltrating immunocytes and the ceRNA 
network. Using TCGA-UCEC, 252 UCEC-specific 
lncRNAs, 249 miRNAs, and 3636 mRNAs were 
identified as differentially expressed RNAs. By fusing 
the miRNA interplays with mRNAs or lncRNAs, a 
UCEC-based ceRNA network was established, 
encompassing 19 lncRNA–miRNA pairs and 434 
miRNA–mRNA pairs. CIBERSORT was used to 
identify the surrounding carcinoma-infiltrating 
immunocytes between the normal and UCEC groups. 
Then, using the chosen ceRNAs and surrounding 
tumor immunocytes, prognostic nomograms were 
constructed. Using the significant TME-infiltrating 
immunocytes and mRNAs, two risk models were 
constructed. In addition, the prognosis of UCEC was 
predicted based on the AUCs of the two nomograms, 
with values of 0.656, 0.666, and 0.645 for 1-, 3-, and 

5-year survival rates, respectively. Furthermore, we 
observed that immunocytes such as natural killer and 
dendritic cells and the related ceRNAs of LRP8, 
PPARGC1B, HDGF, and TEAD1 can accurately 
predict prognosis. Finally, correlation analysis 
revealed dramatic correlations between dendritic cells 
and LRP8 (r = 0.25, p = 4.8e-06), HDGF (r = 0.25, p = 
4e-06), and TEAD1 (r = 0.19, p = 0.00082). However, 
dendritic cells were negatively associated with 
PPARGC1B (r = −0.370, p < 0.001). We suggest that 
these ceRNAs and their respective relevant 
mechanisms play critical roles in the prediction and 
treatment of UCEC. 

LRP8 has already emerged as a promising 
biomarker for the diagnosis and management of 
carcinomas as well as for predicting their prognosis 
[28]. Some studies have revealed that higher LRP8 
expression is associated with poor patient survival 
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[29]. In addition, a Chinese population-based study 
has revealed that the single-nucleotide variants of 
PPARγ, PPARGC1A, and PPARGC1B may be related 
to the susceptibility factors of gastric cancer in an 
eastern Chinese population [30]. HDGF plays vital 
roles in the generation of blood vessels and mitosis 
and facilitates malignant processes such as cellular 
multiplication, invasion, and migration [31-34]. Some 

studies have demonstrated the Hippo–TEAD 
pathway modulates cell proliferation and function in 
both nonmalignant mature differentiated and 
malignant cells [35]. A preliminary investigation has 
revealed that TEAD1 binds to the NGF promotor and 
that YAP1/TEAD1 increases its transcription, 
resulting in improved cell invasion [36]. However, 
only few studies have investigated these ceRNAs.  

 
 

 
Figure 5. Validation of protein expression patterns dictated by select genes in both normal and UCEC tissues was performed utilizing samples procured from the Human Protein 
Atlas (HPA) database. 
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Figure 6. (A) Bar plot showing the composition of immune cells and relative percent in UCEC. Different colors represent different cell types. (B) Heatmap of tumor-infiltrating 
cells in tumor tissues estimated by CIBERSORT algorithm in UCEC. Annotations on top show clustering of samples. (C) The violin plot showed the proportion of cells between 
normal tissue and tumor tissue. The blue and red bars represent the tumor group and primary tumor group, respectively. (D) The result of the co-expression analysis (Pearson 
analysis) between significant tumor-infiltrating immune cells.  
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Figure 7. (A–E) The box plots showed the fraction of Dendritic cells resting, Macrophages M1, T cells CD4 memory resting, T cells CD4 memory activated, and T cells 
regulatory (Tregs) between different grades of cancer. (E, F) The Kaplan–Meier survival curves of NK cells activated and Macrophages M2. 

 
Figure 8. (A) The Cox proportional hazards model was integrated by different types of immune cells by the multivariate Cox regression. (B) The nomogram was based on 
prognosis-related immune cells for predicting outcome of the UCEC patients. (C, D) The model selected by Lasso regression. (E) The result of the Kaplan-Meier curves 
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suggested risk score based on prognosis-related immune cells had prognostic value for UCEC patients (P < 0.001). (F) The ROC was calculated on account of the significant 
immune cells that were associated with survival [AUC of 1-year survival: 0.656, AUC of 3-year survival: 0.666; AUC of 5-year survival: 0.645]. (G) The calibration curves were 
used to evaluate the accuracy of the nomogram. 

 
Figure 9. (A) The co-expression heatmap revealed the fractions of tumor-infiltrating immune cells and the key components in the ceRNA network. (B–E) Scatterplots further 
illustrate the exact relationship between Dendritic cells activated and LRP8 (R = 0.25, P = 4.8e-06), HDGF (R = 0.25, P = 4e-06) and TEAD1 (R = 0.19, P = 0.00082), NK cells 
activated and PPARGC1B (R = -0.19, P = 0.00065). These could be used to describe the important relationship between the key biomarkers. 

 
The TME plays pivotal roles in the growth and 

progression of carcinoma cells. Immune cells in the 
TME have either tumor-opposing or tumor- 
promoting effects [11]. Depending on their intra-
cancer functions, carcinoma-associated immunocytes 
in the TME can be classified into two subtypes: 
tumor-promoting immunocytes (TPICs) and 
tumor-antagonistic immunocytes (TAICs) [23]. TAICs 
primarily comprise M1 macrophages, N1 neutrophils, 
dendritic cells, natural killer cells, and effector T cells 
[37]. On the other hand, the TPIC subtype comprises 
Tregs and suppressor cells of myeloid origin. 
Carcinoma-associated immunocytes improve tumor 
development via cytokine release and metastasis, 
which are achieved by generating matrix-degrading 
enzymes and growth factors [38]. Furthermore, 
immune infiltration can affect clinical prognosis [37]. 

During tumor development and progression, 
LRP8, PPARGC1B, HDGF, and TEAD1 can kill them 
quickly if several nearby cells display oncogenic 
transformation-associated surface markers [39, 40]. 
Natural killer cells are unique immune cells; their 
ability to boost T cell responses suggests that they can 
be used as anticancer agents [39-42]. As distinct 
antigen-presenting cells, dendritic cells play a 
fundamental role in the development and modulation 
of both adaptive and innate immune responses 
[43-45]. Steinman, who received a Nobel Prize in 

Biomedicine in 2011, discovered that dendritic cells 
are the commander of the human immune cell system, 
commanding and leading various immune system 
functions [46]. Dendritic cells are responsible for 
antigen phagocytosis, processing, and presentation 
and familiarizing helper T and B cells with the 
characteristics of cancer cells that have been fought 
[47, 48]. After being informed by dendritic cells, 
helper T cells activate cytotoxic T cells, macrophages, 
natural killer cells, and B cells that have been 
stimulated by dendritic cells. After recognizing cancer 
cells, cytotoxic T cells kill them [49]. Some cytotoxic T 
cells are converted to a memory phenotype via helper 
T cells. This will make it easier for macrophages to 
decompose the cancer cells they engulf; on the other 
hand, natural killer cells can directly attack cancer 
cells. Therefore, we suggest that LRP8, PPARGC1B, 
HDGF, and TEAD1, as ceRNAs, are associated with 
the active participation of natural killer and dendritic 
cells in UCEC formation. The ceRNAs enlisted in our 
prognostic panel can be potential innovative targets 
for managing UCEC. Nevertheless, additional studies 
are warranted for further exploring the mechanisms. 

Although we established an UCEC-specific 
ceRNA network and filtration for possible prognostic 
biomarkers, the present study still has some 
limitations. The sample size should be increased to 
verify our findings, and more samples are warranted 
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for corroborating the prediction capability of the 
prognostic models. In addition, because our study 
included a mere multidimensional correlation 
investigation, further experiments are warranted to 
comprehensively determine the functions of hub 
genes to verify the potential biological mechanisms of 
these ceRNAs in UCEC. 

Conclusions 
In the present study, we constructed a UCEC- 

associated ceRNA network using bioinformatics 
methods. We found that UCEC may be related to 
LRP8, HDGF, PPARGC1B, and TEAD1 as well as its 
role in regulating dendritic and natural killer cells by 
using ceRNA networks and infiltrating immunocytes. 
Nomograms were constructed using these networks 
and immunocytes to predict the survival status of the 
UCEC population. Using AUC values, we demons-
trated that the nomograms have great practicability. 
This nomogram-based integrative analysis can help 
improve the personalized management of patients 
with UCEC. Lastly, we hypothesized that the 
mechanism of ceRNAs is valuable for UCEC 
prognosis, whereas infiltrating immunocytes play 
significant roles in UCEC development. 
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