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Abstract 

The role of reactive oxygen species (ROS) is critical in the emergence and progression of lung 
adenocarcinoma (LUAD), affecting cell survival, proliferation, angiogenesis, and metastasis. Further 
investigations are needed to elucidate these effects' precise pathways and devise therapeutic approaches 
targeting ROS. Moreover, the expression pattern and clinical significance of the ROS-related genes in 
LUAD remain elusive. Through comprehensive analysis incorporating 1494 LUAD cases from The 
Cancer Genome Atlas, six Gene Expression Omnibus series, and a Chinese LUAD cohort, we identified 
a ROS-related signature with substantial predictive value in various LUAD patient cohorts. The 
ROS-related signature has demonstrated a significant negative relationship with antitumor immunity and 
dendritic cell maturation and activation. Moreover, The ROS-related signature showed predictive value 
on immunotherapy outcomes across multiple types of solid tumors, including LUAD. These findings 
reinforce the ROS-related signature as a predictive tool for LUAD and provide new insights into its link 
with antitumor immunity and immunotherapy efficacy. These results have implications for refining clinical 
assessments and tailoring immunotherapeutic strategies for patients with LUAD. 
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Background 
Lung adenocarcinoma (LUAD), which repre-

sents the predominant subtype of non-small cell lung 
cancer (NSCLC), is among the most frequently 
diagnosed cancers worldwide. It ranks as the leading 
cause of cancer-related deaths, accounting for 
approximately 2 million new cases and 1.76 million 
fatalities each year [1]. Despite significant progress in 
treatment modalities such as targeted and 
immunotherapy, the 5-year survival rate for LUAD 
from 2010 to 2014 remained at 10% to 20% across most 
nations [2]. Immunotherapies, which target the 
immune system to recognize and attack cancer cells, 
have transformed treatment strategies for diverse 
types of solid and haematologic malignancies [3]. 

Immune checkpoint inhibitors (ICIs), including 
monoclonal antibodies against programmed cell 
death-1 (PD-1) and its ligand PD-L1, have provided 
up to 40% response rate in LUAD patients of 
advanced stages [4]. Favorable long-term outcomes 
with ICIs are observed in LUAD with high PD-L1 
expression [5], high T-effector- and interferon- 
gamma-associated gene expression [6], mismatch- 
repair deficiency [7], microsatellite instability [8], and 
high TMB [9]. However, few patients experience 
long-term disease remission with immune checkpoint 
inhibitors (ICIs) [10]. Thus, identifying novel 
biomarkers and developing a comprehensive 
understanding of underlying mechanisms of 
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immunotherapy response in LUAD is imperative. 
Reactive oxygen species (ROS), which include 

reactive molecules like superoxide anions (O2-) and 
hydroxide ions (OH-) [11], play pivotal roles in 
cellular signaling, impacting cell growth, 
differentiation, and proliferation [12]. When there is a 
redox imbalance—where the generation of ROS 
outpaces a cell's ability to neutralize them—oxidative 
stress ensues [13]. This surplus of ROS is implicated in 
several aspects of lung adenocarcinoma (LUAD) 
tumorigenesis. ROS can damage DNA, proteins, and 
lipids, which may result in genetic mutations, 
disrupted signaling pathways, and compromised 
cellular membranes, all of which can spur the onset 
and advancement of LUAD [14]. Additionally, ROS 
can stimulate various signaling pathways that are key 
to cancer cell survival, growth, the formation of new 
blood vessels, and the spread of cancer cells [15]. 
Emerging studies indicate that ROS might enhance 
the malignancy of LUAD and, in concert with the 
tumor microenvironment (TME), contribute to 
increased tumor aggression and resistance to 
treatment [16]. Nonetheless, the literature has yet to 
fully elucidate the role of ROS in the anti-tumor 
immune response and the effectiveness of 
immunotherapy for LUAD. 

Our research devised a predictive signature 
rooted in ROS-associated gene expression and LUAD 
patient data. This signature exhibited a strong 
correlation with patient outcomes within The Cancer 
Genome Atlas (TCGA)-LUAD cohort and six other 
independent cohorts. We also created a detailed 
nomogram for estimating LUAD overall survival (OS) 
probabilities. This ROS-based signature was linked to 
LUAD's tumor immune microenvironment (TIME). 

Further analysis into biological pathways and 
immune cell infiltration suggested that the signature's 
association with poor prognosis could be due to its 
dampening effect on dendritic cell (DC) maturation 
and activation. Comparisons with nine other 
recognized predictive gene signatures across various 
immunotherapy cohorts of multiple cancer types 
highlighted the distinctive predictive capabilities of 
the ROS-related signature. Pharmacological inhibition 
FOXM1—a gene within the ROS-related signature— 
proved effective in curbing tumor growth and 
boosting immunotherapy response in the LLC mouse 
model. 

Materials and Methods 
Publicly available mRNA data and the 
ROS-related geneset 

We integrated data from two publicly accessible 
sources. The workflow is depicted in Figure 1. We 
obtained TCGA-LUAD patient sample data from the 
UCSC Xena platform. Additional LUAD datasets 
were retrieved from Gene Expression Omnibus (GEO) 
series GSE50081, GSE13213, GSE30219, GSE72094, 
GSE29016, and GSE26939. The ROS-associated gene 
set (Table S1) was procured from the Molecular 
Signatures Database (MsigDB). We included the 
NSCLC anti-PD-1 cohort (GSE126044), the skin 
cutaneous melanoma (SKCM) anti-PD-1 cohort, the 
renal cell carcinoma (RCC) anti-PD-1 cohort, the 
glioblastoma (GBM) anti-PD-1 cohort, and the 
urothelial carcinoma (UC) anti-PD-L1 cohort to assess 
the predictive efficacy regarding immunotherapy 
response. Data from patients with incomplete 
information were excluded. 

 

 
Figure 1. The workflow of establishing and validating the ROS-related gene signature in LUAD patients.    
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Immune infiltration estimation 
We conducted a single-sample gene set 

enrichment analysis (ssGSEA) on 28 immune-related 
gene sets, encompassing a range of genes pertinent to 
diverse immune cell types, their functions, pathways, 
and regulatory checkpoints, as referenced in [17]. In 
particular, for assessing immune infiltration within 
LUAD, the ssGSEA method was applied using the 
'GSVA' software from the R programming 
environment [17]. This approach helped determine 
the presence of 28 distinct immune cell varieties and 
comprehensively evaluate the immune profile for 
each LUAD sample in the analysis. Additionally, the 
abundance of immune cells infiltrating the tumor and 
components of the stromal compartment were 
quantified using the 'MCPcounter' package for R [18]. 

Analysis of differentially expressed genes 
(DEGs) and signature development 

Prognostic genes were identified using the Cox 
proportional hazards model, and risk scores were 
computed using their expression levels. Based on the 
ROS-related signature expression, the LIMMA 
method was applied to discern DEGs between high- 
and low-risk LUAD patients. 

Risk stratification of patients in TCGA-LUAD 
cohort and GEO datasets 

Risk stratification of LUAD patients was 
performed according to the ROS-related signature 
expression via the 'survivalROC' package [19] in R. 
Using Kaplan-Meier (K-M) survival curves and the 
log-rank test, we assessed the significance of the 
ROS-related signature in predicting prognosis in 
patients from TCGA-LUAD. The robustness of the 
signature was further corroborated through similar 
methodologies across a range of GEO datasets, such 
as GSE50081, GSE13213, GSE30219, GSE72094, 
GSE29016, and GSE26939. We also conducted 
univariate Cox regression analysis to contrast the 
impact of the signature with other clinical predictors. 
Furthermore, a predictive nomogram was developed, 
and its accuracy was validated through receiver 
operating characteristic (ROC) analysis and K-M 
survival estimates. 

Sample collection and panel RNA-seq of the 
Chinese LUAD validation cohort  

We collected 66 frozen LUAD tissue samples 
from the National Cancer Center/Cancer Hospital, 
Chinese Academy of Medical Sciences, from May 2013 
to September 2018. Total RNA extraction followed 
standard procedures using RNAiso Plus reagent 
(Takara). Subsequent panel RNA-seq was performed 
as per the manufacturer's guidelines. The study 

adhered to protocols sanctioned by the relevant ethics 
committee, and informed consent was secured from 
all patients. Event numbers for each category and 
variable in the Chinese cohort are detailed in Table S2, 
with metadata and RNA-seq in Tables S3 and S4, 
respectively. 

Functional enrichment analysis and gene set 
variation analysis (GSVA) 

Functional enrichment for the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and 
Gene Ontology (GO) was conducted using the 
“clusterProfiler” package [20] in R, with significant 
pathways identified at P < 0.05. GSVA assessed 
signaling pathway changes across TCGA-LUAD 
samples. Gene Set Enrichment Analysis (GSEA) via 
“javaGSEA” software [21] between different risk 
groups was also conducted. 

Cell culture and gene silencing by lentiviral 
transduction 

The syngeneic mouse lung cancer cell line, LLC, 
was cultivated under standard conditions and tested 
to ensure the absence of mycoplasma contamination. 
We performed gene silencing of FOXM1 in these cells 
using a lentiviral system designed to express short- 
hairpin RNAs (shRNAs) (Table S5). Post-transduction 
selection with puromycin ensured the proliferation of 
only successfully transduced cells. 

Animal studies 
We obtained C57BL/6J (C57) mice from Charles 

River Laboratories. In these 5-week-old C57 mice, we 
introduced xenografts by subcutaneously inoculating 
half a million cells. We recorded tumor expansion 
tri-weekly, utilizing a caliper to measure the 
perpendicular diameters. We computed tumor size in 
cubic millimeters using the formula (Length × 
Width2)/2, with Length and Width as the primary 
dimensions. The protocol necessitated humane 
euthanasia of the mice upon the principal tumor 
dimension attaining 15 mm. When tumor volume 
reached approximately 500 mm3, we removed and 
prepared them for subsequent flow cytometry. All 
procedural work with the mice conformed to the 
ethical guidelines set forth by the National Cancer 
Center/Cancer Hospital's ethics committee at the 
Chinese Academy of Medical Sciences. 

Immunohistochemistry (IHC) staining 
LUAD tissue sections were prepared and 

incubated with rabbit monoclonal anti-FOXM1 
(Abcam, ab207298) and mouse monoclonal anti- 
PD-L1 (Proteintech, 66248-1-Ig) diluted at a ratio of 
1:500 and incubated at 4 degrees Celsius through the 
night. We conducted immunostaining using the 
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Envision System and diaminobenzidine as the 
chromogen (sourced from Dako). We employed 
Image-Pro Plus version 6.0 software to evaluate the 
FOXM1 and PD-L1 expression. 

Statistical analysis 
R software and GraphPad Prism were applied 

for statistical analyses. The Wilcoxon test compared 
immune cell infiltration, and survival data was 
analyzed using the log-rank test. P < 0.05 was 
considered statistically significant. 

Results 
Construction of a ROS-related predictive 
signature 

From the MSigDB, we gathered 235 genes 
associated with ROS (Table S1). Using the “glmnet” 
package's least absolute shrinkage and selection 
operator (LASSO) technique, we pinpointed 13 
ROS-related genes with differential expression and 
prognostic significance. A subsequent Cox 
proportional hazards regression analysis distilled this 
to six key predictive genes: FOXM1, F2RL1, PRKCD, 
CLEC7A, PDGFB, and RAC1. We derived a risk score 
formula: risk score = (0.15456 × FOXM1) + (0.17907 × 
F2RL1) + (-0.38644 × PRKCD) + (-0.16558 × CLEC7A) + 
(0.18365 × PDGFB) + (0.27251 × RAC1). Patient 
demographics and clinical features from 
TCGA-LUAD cohort are detailed in Table S2. The 
expression patterns of these six ROS-related genes 
were closely tied to risk scores, and an optimal cutoff 
was employed to categorize patients into high- or 
low-risk (Fig. 2A). K-M survival analysis 
demonstrated significantly poorer outcomes for the 
high-risk group (Fig. 2B). The predictive accuracy was 
gauged using time-dependent ROC curves, with the 
ROS-related signature showing AUCs of 0.722, 0.706, 
and 0.687 at 1, 3, and 5 years, respectively, within 
TCGA-LUAD cohort (Fig. 2C). As early-stage (clinical 
stages I and II) and advanced-stage (clinical stages III 
and IV) LUAD have different therapeutic approaches 
and prognoses [22], we also assessed the ROS-related 
signature in TCGA-LUAD patients across these 
stages. A higher risk score correlated with poorer OS 
in both early (Fig. 2D) and advanced stages (Fig. 2E). 
Additionally, the signature was a significant indicator 
for disease-free survival (DFS; Fig. 2F) and 
progression-free survival (PFS; Fig. 2G). 

Validation of the ROS-related signature in 
various LUAD cohorts 

To affirm the consistency of the ROS-related 
signature for LUAD patients, we computed each 
patient's risk score in six distinct GEO datasets, 
utilizing the established formula. The patient 

demographics from these datasets are detailed in 
Table S2. Patients were categorized into high and 
low-risk groups according to the optimal threshold. 
K-M analyses showed that high-risk patients had 
poorer OS than those at low risk across the GSE50081 
(Fig. 3A), GSE13213 (Fig. 3B), and GSE72094 (Fig. 3C) 
cohorts. Time-dependent ROC analyses further 
established the prognostic strength of the ROS-related 
signature, with the GSE50081 dataset exhibiting AUCs 
of 0.697, 0.669, and 0.680 for 1, 3, and 5-year OS (Fig. 
3D). Comparable outcomes were noted for the 
GSE13213 and GSE72094 datasets, which displayed 
AUCs of 0.920, 0.729, and 0.714, and 0.622, 0.656, and 
0.621, respectively (Fig. 3E and 3F). Moreover, 
significant DFS differences were observed between 
high and low-risk groups in the GSE50081 cohort (Fig. 
3G), with respective 1, 3, and 5-year AUCs of 0.776, 
0.732, and 0.738 (Fig. 3H). The ROS-related signature 
also effectively predicted OS and DFS in the GSE29016 
(Fig. 3I), GSE26939 (Fig. 3J), and GSE30219 (Fig. 3K) 
datasets. These findings corroborate the signature's 
precision and reliability in predicting survival for 
LUAD patients. We further assessed the signature's 
stability across different clinical subgroups. Patients 
were sorted by risk score and divided into high and 
low-risk categories, with K-M analyses evaluating OS 
differences. The results consistently showed shorter 
OS in the high-risk group across all subgroups (Fig. 
S2A-S2F). Additionally, when assessing the 
signature's performance in subsets of patients with 
various mutations, we found that the ROS-based risk 
factor effectively differentiated OS in groups defined 
by EGFR wild-type (WT), EGFR mutation (MUT), 
KRASWT, KRASMUT, and EGFRWT/KRASWT statuses 
(Fig. S3A-S3E). 

Both univariate and multivariate Cox regression 
analyses were conducted within TCGA-LUAD cohort 
to determine if the prognostic relevance of the 
ROS-based signature was independent of other 
clinical and pathological factors. These analyses 
showed that the risk score independently correlated 
with OS in LUAD patients, as detailed in Tables S6 
and S7. This finding was replicated across six 
additional LUAD cohorts (Tables S6 and S7), 
reinforcing that the ROS-related signature possesses a 
greater capacity to differentiate between LUAD 
patients with varying prognoses than other 
clinicopathological features. 

Univariate Cox regression analysis within 
TCGA-LUAD cohort identified four predictors of 
patient outcomes, namely, the ROS-related signature, 
T stage, N stage, and M stage. These factors were used 
to construct a prognostic nomogram (Fig. 4A). The 
accuracy of the nomogram was assessed using 
calibration curves, which tested the agreement 
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between the predicted and actual outcomes (Fig. 
4B-D). The nomogram's predictions, along with 
patient survival and risk scores, are depicted in Figure 
4E. Time-dependent ROC analysis was employed to 
evaluate the nomogram's predictive performance, 
yielding AUC values of 0.751, 0.737, and 0.729 for 1-, 
3-, and 5-year OS, respectively (Fig. 4F). When 
compared with the TNM staging system, which is the 
current clinical standard, the gene signature 
demonstrated better predictive ability, as evidenced 
by the bootstrap method analysis (Fig. 4F). The 
nomogram stratified patients into low- and high-risk 
groups, with the former showing significantly better 
survival in the K-M analysis (Fig. 4G). Furthermore, a 
multivariate Cox regression analysis across various 
TCGA pan-cancer cohorts pinpointed the ROS-related 
signature as a significant prognostic indicator not just 
in LUAD but also in mesothelioma (MESO), 
melanoma (SKCM), head and neck cancer (HNSC), 
pancreatic cancer (PAAD), cervical cancer (CESC), 
adrenocortical cancer (ACC), lower-grade glioma 
(LGG), thyroid cancer (THCA), and kidney papillary 
cell carcinoma (KIRP) (Fig. S4). This suggests the 
ROS-related signature’s broad applicability in 
predicting survival across multiple solid tumor types, 
underscoring its substantial translational potential. 

Functional annotation of the ROS-related 
signature 

The robustness of the ROS-related signature in 
predicting the OS of patients with LUAD prompted 
further investigation into the biological pathways 
associated with the signature. Differential gene 
expression analysis between high- and low-risk 
groups identified significant DEGs using a threshold 
of an absolute log2 fold change greater than one and a 
P value less than 0.05. GSEA on these genes showed 
significant enrichment of downregulated genes in 
immune and antigen-related pathways and 
upregulation in DNA replication pathways, 
suggesting a link between the ROS-related signature 
and the TIME (Fig. 5A). Further immune pathway 
analysis indicated a negative correlation between the 
ROS-related signature and aspects of the immune 
response, such as myeloid leukocyte migration and 
the major histocompatibility complex (MHC)-II 
complex (Fig. 5B). GO annotations also showed a 
significant relationship between the signature and 
antigen presentation and MHC complexes (Fig. 5C). 
Additionally, the tumor mutational burden (TMB) 
that serves as an indicator of a tumor's 
immunogenicity, demonstrated a positive correlation 
with the ROS-related signature (Fig. 5D and 5E). The 
OS of LUAD patients with higher ROS-related 
signature expression was notably inferior to those 

with lower expression, irrespective of their TMB 
status (Fig. 5F and 5G). This highlights the signature’s 
potential utility in predicting responses to LUAD 
treatments. Notably, the expression levels of specific 
HLA genes, including HLA-DPA1, HLA-DPB1, 
HLA-DRB6, HLA-DQA1, HLA-DQB1, HLA-DQB2, 
HLA-DRB1, and HLA-DRB5, had a negative 
association with the ROS-related signature (Fig. 5H). 
These findings underline the connection between the 
ROS-related signature and antigen presentation and 
antitumor immunity, which opens avenues for further 
exploration into the mechanisms by which the 
ROS-related signature could predict LUAD outcomes. 

To elucidate the association between the 
ROS-related signature and the TIME in LUAD, the 
ssGSEA algorithm [17], leveraging 29 immune gene 
sets, was employed to quantify the infiltration levels 
of various immune cells in TCGA-LUAD cohort. 
High-risk patients exhibited a reduction in cytotoxic 
immune cells such as CD8+ T cells, NK cells, and 
macrophages (Fig. 6A). Additionally, the 
MCP-counter method [18] showed a negative link 
between the ROS-related signature and 
tumor-infiltrating leukocytes, with myeloid DCs most 
strongly inversely related to the signature (Fig. 6B). 
Notably, both immature DCs and activated DCs 
infiltrated more in the low-risk group, which 
corroborated the ssGSEA findings (Fig. 6A, 6C, and 
6D), supporting the theory that the ROS-related 
signature inversely affects antitumor immunity. 
Furthermore, the analysis of hallmark pathways 
revealed that hypoxia, Wnt β-catenin signaling, and 
TNF-α signaling via NF-κβ—pathways known to 
undermine the immune response [23]—were more 
active in high-risk group tumors (Fig. 6E). Conversely, 
pathways for DC maturation and antigen processing 
were more active in the low-risk group (Fig. 6E), 
aligning with the ssGSEA outcomes, with consistent 
findings across validation cohorts (Fig. 6F). An 
extensive analysis of the ROS-related signature 
against 75 immune-related genes [24] revealed a 
generally negative correlation with immune gene 
expression levels in both the training and validation 
cohorts (Fig. 6G). In particular, the signature was 
inversely related to HLA gene expression and the 
expression of the costimulatory molecule CD28, while 
it positively correlated with the expression of 
inhibitory molecules like CD276, VTCN1, VEGFA, 
and IDO1 (Fig. 6G). These findings suggest that low 
ROS-related signature expression indicates stronger 
antitumor immunity compared to high expression. It 
implies that the ROS-related signature could play a 
pivotal role in immune regulation within LUAD by 
influencing DC maturation and activation. 
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Figure 2. Identification and establishment of the ROS-related signature. (A) The distributions of the risk score, survival status, and gene expression panel. (B) K-M 
survival analysis of OS between the high- and low-risk groups stratified by the ROS-related signature in TCGA-LUAD cohort. (C) AUC values of ROC for predicting 1-, 3- and 
5-year OS in patients in TCGA-LUAD cohort. (D) K-M survival analysis of OS between the high- and low-risk groups stratified by the ROS-related signature in TCGA-LUAD 
cohort with early-stage disease (stage I and II, n = 391). (E) K-M survival analysis of OS between the high- and low-risk groups stratified by the ROS-related signature in 
TCGA-LUAD cohort with advanced-stage disease (stage III and IV, n = 104). (F) K-M survival analysis of DFS between the high- and low-risk groups stratified by the ROS-related 
signature in TCGA-LUAD cohort. (G) K-M survival analysis of PFS between the high- and low-risk groups stratified by the ROS-related signature in TCGA-LUAD cohort. 
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Figure 3. Validation of the ROS-related signature in six independent cohorts. (A-C) Distributions of the risk score and survival status (upper and middle panels) and 
K-M curves of OS between the high- and low-risk groups of LUAD patients (lower panel) in the GSE50081, GSE13213, and GSE72094 datasets. (D-F) AUC values of ROC for 
predicting 1-, 3- and 5-year OS in patients in the GSE50081, GSE13213, and GSE72094 cohorts. (G) The distributions of survival status (left panel) and K-M curves of DFS (right 
panel) between the high- and low-risk groups of LUAD patients in the GSE50081 dataset. (H) AUC values of ROC for predicting 1-, 3- and 5-year DFS in patients in the 
GSE50081 dataset. (I-K) K-M survival analysis of OS (GSE29016 and GSE26939) and DFS (GSE30219) between the high- and low-risk groups stratified by the ROS-related 
signature in three additional GEO datasets. 
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Figure 4. The ROS-based nomogram for predicting OS in TCGA-LUAD cohort. (A) Nomograms for predicting the 1-, 3-, and 5-year OS of patients in TCGA-LUAD 
cohort. (B-D) Calibration curves for predicting patient OS at 1 (B), 3 (C), and 5 years (D). (E) The distributions of the risk score calculated by the nomogram and survival status 
of TCGA-LUAD patients. (F) Time-dependent ROC analysis to assess the predictive ability of the nomogram and TNM staging system at 1, 3, and 5 years. (G) K-M survival 
analysis of OS between the high- and low-risk patients in TCGA-LUAD cohort. 
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Figure 5. Functional annotation of the ROS-related signature in LUAD. (A) Significantly enriched gene sets based on the DEGs between the high- and low-risk groups 
in TCGA-LUAD cohort. (B) Correlation analysis between the risk score and immune metagenes. (C) GO annotation of the DEGs between the high- and low-risk groups. (D) 
The distributions of TMB between the high- and low-risk groups. (E) Correlation analysis between the risk score and TMB. (F) K-M survival analysis of OS between the high- 
and low-risk groups of patients with high TMB. (G) K-M survival analysis of OS between the high- and low-risk groups of patients with low TMB. (H) Correlation analysis 
between the risk score and HLA genes. 
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Figure 6. Relationship between the ROS-related signature and antitumor immunity. (A) Comparison of immune subpopulation infiltration inferred by ssGSEA 
between the high- and low-risk groups in TCGA-LUAD cohort. (B) Heatmap depicting the correlation between the risk score and the infiltration of immune cells inferred by 
MCP-counter in the training and validation cohorts. (C and D) Correlation analysis between the risk score and immature (C) or activated DCs (D). (E) GSEA of the DEGs 
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between the high- and low-risk groups in TCGA-LUAD cohort. (F) Heatmap depicting the correlation between the risk score and significantly enriched gene sets in the training 
and validation cohorts. (G) Circos plot depicting the correlation between the risk score and the expression level of immune‐related genes in the training and validation cohorts. 
From inside to outside the Circos plot, the vertical axis with a black arrow indicates different LUAD cohorts, which are annotated on the y-axis in Figure 6B. 

 

Evaluation of the ROS-related signature in the 
Chinese LUAD cohort 

To rigorously evaluate the predictive capacity of 
the six-gene ROS-related signature for OS in LUAD 
patients in a clinical setting, the signature was further 
assessed in an independent cohort from China. This 
cohort included 66 LUAD patients, with each 
individual's risk score calculated using the expression 
levels of the six ROS-associated genes. Consistent 
with previous datasets, the Chinese LUAD cohort 
exhibited a marked difference in survival times, with 
the high-risk group showing significantly shorter PFS 
compared to the low-risk group (Fig. 7A). Cox 
proportional hazards regression analysis substan-
tiated the risk score as a prominent prognostic 
indicator for patient outcomes in the Chinese LUAD 
cohort. The risk score consistently emerged as a 
robust prognostic factor in multivariate Cox 
regression analysis considering various datasets. The 
hazard ratios (HRs) and 95% confidence intervals 
(CIs) calculated underscored the stability of the risk 
score as an evaluation metric, detailed in Tables S6 
and S7. Corroborating the findings from the 
TCGA-LUAD cohort, an inverse relationship was 
noted between the ROS-related signature and 
pathways associated with immunity, specifically 
those involving DC antigen processing and 
presentation, as well as the activity of MHC protein. 
This correlation extended to broader immune-related 
signaling, including immune receptor activity, 
leukocyte activation regulation, cytokine-mediated 
signaling, immune effector process regulation, and 
cytokine activity. These pathways were inversely 
associated with the ROS-related signature, while 
pathways related to cell proliferation exhibited a 
positive correlation (Fig. 7B). GO and KEGG 
functional enrichment analyses, along with immune 
metagene analyses, revealed that processes like MHC 
antigen presentation, adaptive immunity, cytokine- 
cytokine receptor interaction, and signaling pathways 
involving IFN-γ, CTLA-4, and PD-1/PD-L1 were 
significantly involved in the low-risk group (Fig. 7C). 
These insights indicate potential mechanisms by 
which DC activation may regulate antitumor 
immunity, particularly in tumors characterized by 
low ROS-related signature expression. Further 
investigation into the infiltration of DCs 
demonstrated a consistent negative association 
between the ROS-related signature and both 
immature and activated DC populations in the 
Chinese LUAD cohort (Fig. 7D-7G). This pattern 

aligns with the training and validation cohorts' 
findings. IHC analyses performed on the Chinese 
LUAD cohort tissues affirmed these associations at 
the protein level. Specifically, the ROS-related 
signature exhibited a significant negative correlation 
with CD83 expression, a protein highly and stably 
expressed by mature DCs upon activation [25-27] (Fig. 
7H and 7I). This finding was in agreement with the 
transcriptomic data from the training and validation 
cohorts. Similarly, a negative correlation was found 
between the ROS-related signature and CD8 protein 
expression (Fig. 7H and 7J), which implies a possible 
involvement of the ROS-related signature in 
modulating T cell-mediated antitumor responses 
through its impact on DC maturation and activation. 
These multifaceted analyses provide a comprehensive 
view of the ROS-related signature's role in LUAD, 
highlighting its potential as a significant biomarker 
for patient stratification and prognosis in LUAD. 

Predictive value of the ROS-related signature 
on immunotherapy outcome 

Within the GSE126044 immunotherapy cohort 
for NSCLC, we computed risk scores employing the 
identical formula and observed a marked distinction 
between individuals who responded to anti-PD-1 
therapy and those who did not (Fig. 8A). The 
signature's area under the curve (AUC), serving as a 
measure for predicting responsiveness to anti-PD-1 
treatment, was recorded at 0.909 (Fig. 8B). In addition, 
the expression patterns of the 6 ROS-related genes 
were closely related to the immunotherapy response, 
with PRKCD and CLEC7A exhibiting positive 
correlations with and PDFGB, RAC1, FOXM1, and 
F2RL1 exhibiting negative correlations with the 
objective response status (Fig. 8C). Furthermore, the 
ROS-related signature was extended to the SKCM 
anti-PD-1 cohort [28] and the UC anti-PD-L1 cohort 
[29]. The results also revealed that the signature was 
closely related to immunotherapy response and 
patient outcome (Fig. S5A-S5F). These results indicate 
that the ROS-related signature can effectively predict 
the efficacy of immunotherapy. We subsequently 
combined cohorts of patients treated with anti-PD-1 
with RNA-seq data and OS and PFS available, 
namely, Bruan_RCC_aPD1 (n = 181) [30], 
Liu_SKCM_aPD1 (n = 121) [31], Van_SKCM_aPD1 (n 
= 36) [28], and Zhao_GBM_aPD1 (n = 17) [32]. After 
data normalization, we scored each patient with the 
ROS-related signature and classified them into high- 
and low-risk groups based on the optimal cut-off 
value. K-M analysis revealed that patients in the 
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high-risk group had worse OS and PFS than those in 
the low-risk group in the combined immunotherapy 
cohort (Fig. 8D and 8E). Moreover, higher 
ROS-related signature expression was associated with 
significantly worse OS (Fig. 8F and 8G) and PFS (Fig. 
8H and 8I) regardless of the CD274 expression. These 
data suggested that the ROS-related signature is 
independent of the PD-L1 expression in predicting the 
prognosis of patients treated with immunotherapy. 
Indeed, the ROS-related signature did not signifi-
cantly correlate with the CD274 mRNA expression 
(encoding PD-L1) in TCGA-LUAD cohort (Fig. S6A). 
The CD274 mRNA expression exhibited no 
comparable difference in patients with high and low 
ROS-related signature expression (Fig. S6B). 
Correlation analysis of TCGA pan-cancer cohorts 
revealed that the relationship between the ROS- 
related signature and the CD274 mRNA expression 
exhibited heterogeneous patterns (Fig. S6C), in which 
the ROS-related signature did not correlate 
significantly with the CD274 mRNA expression in 
liver cancer (LIHC), breast cancer (BRCA), esophageal 
cancer (ESCA), stomach cancer (STAD), prostate 
cancer (PRAD), endometrioid cancer (UCEC), MESO, 
rectal cancer (READ), PAAD, ocular melanoma 
(UVM), uterine carcinosarcoma (UCS), kidney 
chromophobe (KICH), ACC, and bile duct cancer 
(CHOL) cohorts (Fig. S6C). Similar results were 
obtained in the LUAD anti-PD-1 cohort (Fig. S6D and 
S6E), SKCM anti-PD-1 cohort (Fig. S6F and S6G), and 
UC anti-PD-L1 cohort (Fig. S6H and S6I), implying 
that the ROS-related signature was independent of the 
PD-L1 expression in predicting immunotherapy 
response and patient outcome. Analysis of the 
Chinese LUAD cohort also revealed no significant 
correlation between the ROS-related signature and 
PD-L1 expression at mRNA and protein levels (Fig. 
S6J and S6K), further supporting our hypothesis that 
the ROS-related signature may affect the antitumor 
immunity and the response to immunotherapy in 
LUAD through mechanisms beyond the PD-1/PD-L1 
axis. Notably, significant correlations were observed 
between the ROS-related signature and HLA genes in 
TGCT, GBM, LUSC, SKCM, SARC, OV, HNSC, CESC, 
PAAD, KIRP, MESO, THCA, COAD, and READ 
cohorts (Fig. S7), which were similar with the results 
found in the training and validation cohorts, 
indicating that the predictive value of ROS-related 
signature could be extended to other types of solid 
tumor in addition to LUAD. 

We further compared the performance of the 
ROS-related signature with nine previous 
well-established predictive gene signatures in LUAD 
and other types of solid tumors, namely, renal cell 
carcinoma (RCC), SKCM, and GBM. Compared with 

TRS.Sig [33], PDL1.Sig [34], INFG.Sig [35], IMS.Sig 
[36], IMPRES.Sig [37], TcellExc.Sig [38], CRMA.Sig 
[39], LRRC15.CAF.Sig [40], and IPRES.Sig [41], the 
ROS-related signature showed the best predictive 
capability in the GSE126044 NSCLC cohort with an 
AUC of 0.91 (Fig. 8J) and achieved favorable 
performance in RCC, SKCM, and GBM cohorts (Fig. 
8K), further demonstrating its potential as a predictive 
model of immune checkpoint blockade (ICB) response 
in LUAD and other types solid tumors. 

Concerning the relationship between the 
ROS-related signature and the primary/acquired 
resistance to immunotherapy, we analyzed the 
GSE91016 dataset in which melanoma patients were 
treated with anti-PD-1 and anti-CTLA4 therapy [42], 
and the RNA-seq data of pre- and on-treatment of 
tissue samples were available, enabling us to 
investigate the changes of the ROS-related signature 
upon immunotherapy. K-M survival analysis 
indicated that OS was significantly lower in the group 
with high risk compared to the group with low risk 
based on the ROS-related signature expression of 
pre-treatment samples of patients treated with 
immunotherapy (Fig. S8A). However, we did not 
observe comparable changes in the ROS-related 
signature expression upon immunotherapy (Fig. S8B 
and S8C), regardless of the response to immuno-
therapy (Fig. S8C to S8E). These results indicate that 
the ROS-related signature was associated with the 
primary resistance to ICB.  

Translational relevance of the ROS-related 
signature 

In the training and validation cohorts, FOXM1 
exhibited the most significant positive correlation 
with the ROS-related signature, which led us to 
evaluate the translational relevance of the signature 
by therapeutically targeting FOXM1. Using short- 
hairpin RNA-mediated endogenous knockdown of 
FOXM1 in LLC tumor cells, we revealed that ablation 
of tumor-intrinsic FOXM1 attenuated the 
tumorigenesis capacity of LLC cells in vivo (Fig. 9A 
and 9B). By administrating thiostrepton (TST), which 
is a protein translation inhibitor that has been 
reported to inhibit FOXM1 activity [43], we observed 
that pharmacological inhibition of FOXM1 was 
sufficient to induce tumor-inhibitory effect and 
potentiated the response to anti-PD-1 in the LLC 
mouse model (Fig. 9C to 9E). Taken together, our 
study has demonstrated the predictive value of the 
ROS-related signature in LUAD and provided 
insights into therapeutic targeting of FOXM1 as a 
novel strategy to potentiate the efficacy of 
immunotherapy (Fig. 9F).  
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Figure 7. Evaluation of the ROS-related signature in the Chinese LUAD cohort. (A) K-M survival analysis of DFS between the high- and low-risk groups in the 
Chinese LUAD cohort. (B) GO annotation of the DEGs between the high- and low-risk groups in the Chinese LUAD cohort. (C) GSEA of the DEGs between the high- and 
low-risk groups in the Chinese LUAD cohort. (D) Correlation analysis between the risk score and immature DCs. (E) The distributions of immature DCs between the high- and 
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low-risk groups. (F) Correlation analysis between the risk score and activated DCs. (G) The distributions of activated DCs between the high- and low-risk groups. (H) 
Representative microscopic images of CD83 and CD8 protein expression tested by IHC in tissue samples from patients of the Chinese LUAD cohort. The scale bars represent 
200 µm (left panel) and 50 µm (right panel) in each case, respectively. (I) Correlation analysis between the ROS-related signature and CD83 protein expression quantified by IHC 
in tissue samples from patients of the Chinese LUAD cohort. (J) Correlation analysis between the ROS-related signature and CD8 protein expression quantified by IHC in tissue 
samples from patients of the Chinese LUAD cohort. 

 
Figure 8. The predictive value of the ROS-related signature on immunotherapy outcome. (A) The distributions of the risk scores between responder and 
non-responder to anti-PD-1 therapy in the GSE126044 dataset. (B) Logistic ROC analysis of the ROS-related signature in stratifying responder and non-responder to anti-PD-1 
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therapy in the GSE126044 dataset. (C) The expression pattern of the ROS-related gene signature and response to anti-PD-1 therapy in the GSE126044 dataset. (D and E) K-M 
survival analysis of OS (D) and PFS (E) between the high- and low-risk groups in combined immunotherapy cohorts. (F and G) K-M survival analysis of OS between the high- and 
low-risk groups of patients with high (F) and low (G) CD274 mRNA expression in combined immunotherapy cohorts. (H and I) K-M survival analysis of PFS between the high- 
and low-risk groups of patients with high (H) and low (I) CD274 mRNA expression in combined immunotherapy cohorts. (J) Circos plot depicting the performance of the 
ROS-related signature and nine well-established predictive gene signatures of immunotherapy response in the GSE126044_NSCLC_anti-PD-1, Bruan_RCC_aPD1, 
Liu_SKCM_aPD1, Zhao_GBM_aPD1, and Van_SKCM_pre_aPD1 cohorts. (K) Heatmap comparing the predictive value of the ROS-related signature and nine well-established 
predictive gene signatures in the GSE126044_NSCLC_anti-PD-1, Bruan_RCC_aPD1, Liu_SKCM_aPD1, Zhao_GBM_aPD1, and Van_SKCM_pre_aPD1 cohorts. 

 
Figure 9. Inhibition of FOXM1 facilitates response to anti-PD-1 in LLC mouse model. (A) Subcutaneous C57 mouse xenograft assay of LLC cells transfected with 
FOXM1 shRNA (FOXM1KD) or the scramble control (Scramble) (n = 6). Images were acquired on day 17 after inoculation. (B) LLC tumor volumes of the FOXM1KD and Scramble 
group as described in (A). (C) The representative image of LLC tumors receiving PBS plus Isotype, TST plus isotype, PBS plus anti-PD-1, and TST plus anti-PD-1. (D) LLC tumor 
volumes of different treatment groups (n = 6/group) as described in (C). (E) LLC tumor weights of different treatment groups (n = 6/group) as described in (C). (F) Graphical 
abstract depicting the development of the ROS-related signature and its translational potential. 

 

Discussion 
While considerable research has delved into the 

interplay between ROS and antitumor immunity, 
direct clinical evidence linking ROS to 
immunotherapy response and survival outcome still 
needs to be improved. Moreover, despite the myriad 
of studies, biomarkers that account for the complex 

interplay of intrinsic and extrinsic factors in tumori-
genesis for predicting immunotherapy outcomes in 
LUAD still need to be identified. Hence, there's a 
pressing demand for novel molecular targets and 
prognostic indicators to refine LUAD diagnostics and 
therapeutics. In this context, our study introduces a 
signature composed of six ROS-associated genes, 
which we integrated with the TNM staging system to 
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construct a predictive nomogram for OS in LUAD 
patients. Our analyses underscore the ROS-related 
signature's excellent capability to differentiate patient 
outcomes. The nomogram's calibration curve further 
attests to its accuracy, reflecting a high concordance 
with actual patient survival rates. Additionally, we 
propose that the disruption of DC maturation and 
activation, as revealed through functional annotation 
and immune infiltration assessments, could 
contribute to unfavorable prognoses in LUAD 
patients. 

Previous research efforts have been dedicated to 
identifying molecular markers predicting the 
prognosis and immunotherapy responses of LUAD 
patients [44]. Such efforts have yielded several 
credible markers. Specifically, PD-L1 expression, 
assessed through the IHC method, has been endorsed 
as a biomarker for immunotherapy response in 
various solid tumors [45]. However, its direct 
prognostic relevance for patient outcomes remains 
unclear, and its predictive specificity has yet to meet 
clinical expectations. Given the sustained survival 
benefit observed, PD-1/PD-L1 axis blockade has 
become a preferred first-line therapy for LUAD 
patients [46]. Although immunotherapy has extended 
survival in clinical settings, the response rate among 
unselected LUAD patients was approximately 20% 
due to primary and acquired resistance [47, 48]. Most 
previous studies have concentrated on the immune 
cell presence or tumor mutational burden on 
immunotherapy efficacy. Yet, challenges persist, 
including a lack of transcriptional evidence [49] to 
support the mechanisms of immunotherapy response 
and resistance [23]. Therefore, the ROS-related 
signature comprising FOXM1, F2RL1, PRKCD, 
CLEC7A, PDGFB, and RAC1, emerges as a clinically 
valuable tool to predict prognosis in patients with 
LUAD.  

ROS function as both tumorigenic agents and 
inhibitors of cell proliferation, with their effects 
varying based on the specific spatial and temporal 
context [50]. In the early stages of cancer 
development, ROS facilitate the onset of cancer by 
inducing oxidative stress and causing mutations in 
both pro-oncogenes and genes that suppress tumors. 
As tumors evolve, ROS contribute to cancer cell 
invasion and spread by stimulating the NF-κB and 
MAPK signaling pathways [51]. Conversely, at very 
advanced disease stages, an excess of ROS can halt the 
cell cycle and trigger apoptosis in malignant cells. 
ROS initiate extrinsic apoptosis via death receptors 
and intrinsic apoptosis via mitochondrial routes [51]. 
Additionally, ROS increase levels of beclin-1, an 
essential autophagy initiator [52], and participate in a 
critical step of necroptosis [53]. These processes have 

been associated with LUAD development. Prior 
research indicates that ROS—molecules rich in 
oxygen that can damage cells in high 
concentrations—play a critical role in the emergence 
and progression of LUAD [51]. Normally, cells strike 
a delicate balance between ROS production and 
elimination. Yet, certain conditions such as persistent 
inflammation, environmental toxin exposure, or 
cellular stress can upset this equilibrium, leading to an 
overabundance of ROS. 

In the context of LUAD, various mechanisms 
contribute to the generation of ROS. A key factor in 
this process is the enhanced function of NADPH 
oxidase (NOX) enzymes, which are instrumental in 
ROS synthesis [54]. Elevated NOX activity in LUAD 
cells is a primary cause of heightened ROS levels. 
Additionally, mitochondrial dysfunction and the 
activation of other enzymes, such as xanthine oxidase 
and cytochrome P450, can lead to ROS production 
[55]. Furthermore, ROS can stimulate transcription 
factors like NF-κβ, AP-1, and HIF-1α, which are 
pivotal in gene expression regulation related to these 
pathways [56]. Activation of receptor tyrosine kinases, 
along with various signaling entities, by ROS can 
further promote cell growth and survival [57]. 
Considering ROS's crucial role in LUAD, strategies 
that target ROS or ROS-affected pathways are gaining 
traction as potential treatments. The use of 
antioxidants to neutralize ROS and diminish 
oxidative stress has been explored as a supplementary 
approach in treating lung cancer. The exploration of 
inhibitors that specifically target NOX or enzymes 
that generate ROS is underway, offering promise as 
potential treatments [58]. 

Considering the pivotal influence of ROS in 
LUAD and the therapeutic potential of ROS-related 
genes, we conducted an in-depth analysis of 235 
ROS-related genes in LUAD patient samples from 
TCGA database. Our findings revealed a dichotomy 
where a significant portion of these genes acted as 
protective agents while the remainder posed 
deleterious effects, echoing the dualistic nature of 
ROS in the genesis and advancement of tumors. Six 
genes—FOXM1, F2RL1, PRKCD, CLEC7A, PDGFB, 
and RAC1— were pinpointed as critical components 
of the predictive signature. Specifically, FOXM1's 
upregulation and amplification are implicated in 
various cancers, including NSCLC, contributing to 
processes such as invasion, movement, new blood 
vessel formation, cellular differentiation, and 
resistance to treatments [59]. Past research has 
indicated that the phosphorylation of FOXM1 at Ser25 
can activate genes like IL1A/B, VEGFA, and IL6, 
which in turn can attract monocytes and promote the 
differentiation of tumor-associated macrophages 
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(TAMs) towards an M2-like phenotype, thereby 
aiding in immune escape and fostering an 
immunosuppressive TME [60]. Recent research has 
linked F2RL1 with poorer outcomes following ICB, 
T-cell dysfunction in ICB-naive patients and 
demonstrated resistance to combined PD-1/CTLA-4 
blockade in experimental studies [61]. F2RL1 encodes 
PAR2, a G-protein-coupled receptor known to 
downregulate type I IFN responses and STAT1 
signaling [62], leading to the polarization of 
macrophages towards an M2-like, tumor-promoting 
phenotype [63]. Targeted inhibition of PAR2 has been 
observed to enhance immunotherapy responsiveness 
by inducing a phenotypic switch in macrophages [64]. 
These findings position F2RL1 as a promising new 
target for therapeutic intervention to counteract 
resistance to immunotherapy. PKCδ, encoded by 
PRKCD, is a cytoplasmic enzyme within the 
diacylglycerol-responsive and calcium-independent 
serine/threonine PKC family and acts as a regulatory 
molecule for apoptosis, being responsive to a 
spectrum of cellular stress factors, including 
ultraviolet light exposure, DNA-damaging agents, 
ROS, growth-promoting signals, and cytokines [64]. It 
influences cellular behaviors like survival, division, 
movement, and programmed cell death [65]. 
Additionally, this kinase has a widespread presence 
and fulfills various roles within the cellular 
components of innate and adaptive immunity [65]. 
PKC-δ is known to govern the migration of 
neutrophils and their capacity for an oxidative burst 
[66, 67], and it contributes to the functional capacities 
of macrophages [68], proliferation and cytokine 
synthesis in T cells, and B cell receptor signaling 
pathways [69]. The gene CLEC7A, which encodes 
Dectin-1—a member of the C-type lectin receptor 
family—is predominantly expressed in 
myeloid-derived suppressor cells (MDSCs) and serves 
as a receptor for β-1,3-linked glucans [70]. Dectin-1's 
activation orchestrates a spectrum of cellular 
responses, including the engulfment and digestion of 
pathogens (phagocytosis), casting of neutrophil 
extracellular traps, programmed cell death 
(autophagy), maturation of dendritic cells, 
presentation of antigens, and the triggering of 
inflammasomes, including NLRP3 and noncanonical 
caspase-8 types, as well as the release of eicosanoids 
and signaling proteins like cytokines and chemokines 
[71]. Recent research has shown that Dectin-1 
signaling can prompt the release of pro-allergic 
chemokines and the secretion of mucus [72], drive the 
differentiation of regulatory T cells [73], and activate 
IL-17F signaling pathways [74, 75], suggesting that 
Dectin-1 has critical roles in not only the immune 
response but also in the development of allergic, 

immune-mediated, and neoplastic diseases [76]. 
PDGFB is implicated in various fundamental 
biological processes like embryonic development, 
tissue repair, and the healing of wounds. However, 
irregularities in the signaling pathway of PDGFB are 
linked to the onset and advancement of cancer by 
fostering cell proliferation, stimulating the formation 
of new blood vessels, and increasing the invasive 
potential of cancerous cells [77]. Consequently, 
PDGFB has emerged as a potential focal point for 
therapeutic strategies. Currently available targeted 
therapies that act on PDGFB gene fusions have 
demonstrated notable efficacy in treating patients 
with these specific gene fusions [77]. In the context of 
PDGFB-driven GBM, these cells exhibit a distinct 
TME phenotype, where PDGFB modulates the 
secretion of monocyte chemoattractant proteins, 
leading to the recruitment of bone marrow-derived 
macrophages and the production of IL-1β [78]. 
Interrupting the IL-1β/IL1R1 inflammatory cytokine 
feedback loop has improved survival rates and 
reduced the prevalence of IBA1-positive 
tumor-associated macrophages within PDGFB-driven 
GBM [78]. Additionally, recent research indicates that 
PDGFB-based nanocomposites may enhance the 
movement and infiltration of natural killer cells, 
macrophages that exhibit an M1 phenotype, and CD8+ 
T cells, thereby strengthening antitumor immune 
response and curtailing tumor growth. These findings 
offer a glimpse into a potential new approach for the 
immunotherapy of solid tumors [79]. RAC1, a small 
GTPase from the Rac subfamily, is instrumental in 
various cellular processes, including cell migration. 
Abnormal RAC1 activity contributes to irregular cell 
movement, making it a significant molecule in cancer 
research. This is particularly due to its overexpression 
in various aggressive tumors, positioning RAC1 as a 
pivotal target for cancer treatment strategies [80]. 
Activation of RAC1 is known to regulate 
B-cell-mediated humoral immunity and in vitro 
immunoglobulin class switching [81], mediate 
harmful interactions between epithelial cells and 
immune cells [82], and maintain immune homeostasis 
[83]. Moreover, RAC1, along with TIAM1, is 
implicated in interleukin 17A (IL-17A) transcription 
and has a role in autoimmunity [84]. Dysregulated 
RAC1 activity has been linked to alterations in IL-10 
mediated signaling pathways and inflammatory 
cytokine levels [85], as well as the preservation of T 
cell adhesion and motility and the regulation of LFA-1 
integrin functions [86], which is critical for 
lymphocyte activation. Collectively, these insights 
underscore the essential functions of the six genes 
comprising the ROS-related signature in the 
modulation of adaptive immunity and antitumor 
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responses and affirm the ROS-related signature's 
utility in predicting patient outcomes, TME 
phenotype, and the response to ICB. 

In an examination of LUAD at the transcriptome 
level, a consistent pattern of diminished expression of 
genes tied to immune function and a lower presence 
of immune cells within tumors expressing a high 
ROS-related signature was noted. Intriguingly, an 
inverse correlation was found between the expression 
of HLA genes and the ROS-related signature. 
Additionally, the potential impact of DCs on ICI 
response through the tertiary lymphoid structure 
(TLS) [87] prompted an analysis of DCs' correlation 
with the ROS-related signature, which showed a 
negative relationship for both immature and activated 
DCs. Subsequent investigations also highlighted a 
significant link between the ROS-related signature 
and various immune-related biological processes, 
such as the adaptive immune response, antigen 
processing and presentation, MHC complex binding, 
migration of myeloid leukocytes, and lymphocyte- 
driven immunity. Furthermore, tumors exhibiting a 
high ROS-related signature were posited to have 
abnormal activations of pathways associated with 
hypoxia, Wnt/β-catenin, and TNF-α signaling via 
NF-κβ. The development of a hypoxic phenotype is 
recognized as a progressive tactic by which tumors 
circumvent immune detection [88]. Moreover, the 
intrinsic activation of Wnt/β-catenin signaling has 
been pinpointed as a critical factor in creating a 
T-cell-excluded TME [89]. The association of high 
ROS-related signature expression with pronounced 
immunosuppressive characteristics supports the 
predictive potential of this signature. 

The efficacy of the ROS-related signature in 
prognostication was corroborated across multiple 
independent cohorts and distinct clinical 
subdivisions, prompting further investigation into its 
mechanism for predicting outcomes. Functional 
annotation of DEGs between groups stratified by 
ROS-related risk levels underscored a significant 
engagement in immune-centric biological processes 
and pathways, including antigen processing and 
presentation, and MHC complex interactions. This 
suggests that immunological diversity may be a 
crucial element influencing OS disparities between 
high- and low-risk categories. Further assessments 
involving five immune-related clusters and scrutiny 
of immune cell infiltration furnished a deeper 
understanding of the immune milieu's variation 
between these groups. It was established that patients 
with a higher risk profile were characterized by an 
immunosuppressed status, marked by scant 
tumor-infiltrating leukocytes, particularly DCs, which 
are pivotal for antigen presentation. Conversely, 

low-risk patients demonstrated robust infiltration of 
activated CD8+ T cells and M1 macrophages, 
indicating a more vigorous antitumor immune 
response. Indeed, IHC analysis of tissue samples from 
the Chinese LUAD cohort demonstrated a negative 
correlation between the ROS-related signature and 
infiltration of DCs and CD8+ T cells. Nonetheless, the 
impact of these underlying mechanisms of the 
ROS-related signature on DC maturation and 
activation warrants subsequent experimental 
exploration. 

While the ROS-related signature shows promise 
as a reliable, independent predictive tool and a 
potential predictor of immunotherapy responses in 
LUAD patients, certain limitations must be 
considered. Firstly, our study relied on retrospective 
data, and there is a need for validation with 
prospective samples to confirm these findings. 
Secondly, the selection of candidate genes was limited 
to those responding to ROS. Given the high spatial 
heterogeneity of the tumor immune 
microenvironment (TIME), this may have restricted 
the prognostic predictive capacity of the ROS-related 
signature. Nevertheless, the signature contributes 
valuable insights into the immune microenvironment 
and potential immunotherapy responses. Thirdly, this 
study did not directly assess patients undergoing 
immunotherapy, meaning that the signature’s 
predictive accuracy for immunotherapy response was 
inferred rather than directly observed. Consequently, 
there is a clear need for future prospective studies 
with sufficient power to further elucidate the 
signature’s utility in clinical settings. Because 
tissue-based transcriptomic data from on- or 
post-treatment settings are relatively difficult to 
obtain [23], the relevance of the ROS-related signature 
with the acquired resistance to ICB warrants further 
exploration. 

Conclusion 
ROS play a pivotal role in the tumorigenesis and 

progression of LUAD. Our research delved into the 
expression and clinical relevance of genes associated 
with ROS in LUAD patients. We developed a 
predictive model based on these ROS-related genes, 
rigorously validating its efficacy across various LUAD 
patient cohorts and immunotherapy cohorts. These 
insights have implications for refining clinical 
assessments and optimizing immunotherapeutic 
strategies for patients with LUAD and other types of 
solid tumors. 
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